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Variational Level Set Evolution for Non-rigid 3D
Reconstruction from a Single Depth Camera

Miroslava Slavcheva, Maximilian Baust, Slobodan Ilic

Abstract—We present a framework for real-time 3D reconstruction of non-rigidly moving surfaces captured with a single RGB-D
camera. Based on the variational level set method, it warps a given truncated signed distance field (TSDF) to a target TSDF via
gradient flow without explicit correspondence search. We optimize an energy that contains a data term which steers towards voxel-wise
alignment. To ensure geometrically consistent reconstructions, we develop and compare different strategies, namely an approximately
Killing vector field regularizer, gradient flow in Sobolev space and newly devised accelerated optimization. The underlying TSDF
evolution makes our approach capable of capturing rapid motions, topological changes and interacting agents, but entails loss of data
association. To recover correspondences, we propose to utilize the lowest-frequency Laplacian eigenfunctions of the TSDFs, which
encode inherent deformation patterns. For moderate motions we are able to obtain implicit associations via a term that imposes
voxel-wise eigenfunction alignment. This is not sufficient for larger motions, so we explicitly estimate voxel correspondences via
signature matching of lower-dimensional eigenfunction embeddings. We carry out qualitative and quantitative evaluation of our
geometric reconstruction fidelity and voxel correspondence accuracy, demonstrating advantages over related techniques in handling
topological changes and fast motions.

Index Terms—Non-rigid 3D reconstruction, signed distance field evolution, Laplacian eigenfunctions.
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1 INTRODUCTION

THE wide availability of off-the-shelf RGB-D sensors
and the growing popularity of virtual and augmented

reality have caused great progress in the realm of single-
stream 3D reconstruction in recent years. Various techniques
for capturing static environments have demonstrated im-
pressive results [1], [2], [3], [4], [5], [6], [7]. However, real-life
scenes also include moving people, interacting with objects
in their surroundings and with each other. This requires the
capture of non-rigidly moving surfaces, which is a highly
unconstrained problem that still poses major challenges.

The problem is ill-posed because there are infinitely
many warp fields that may deform one frame to the next [8].
While older techniques resorted to the use of multiple cam-
eras [9], [10], [11], [12], [13] or templates [14], [15], [16], [17]
in order to better constrain the solution space, nowadays
methods that utilize a single RGB-D camera are emerging.
DynamicFusion [18] first demonstrated real-time simultane-
ous tracking and reconstruction of non-rigid surfaces. Sev-
eral works build over it, incorporating colour features [19],
albedo constraints [20] or human-specific priors [21], [22].
Their results are of ever-improving visual quality, however,
they are still constrained mainly to contrived motion with-
out interactions or topological changes.

This paper addresses these issues through the use of
TSDF evolution. The majority of recent approaches for
both dynamic and static reconstruction employ a TSDF
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Fig. 1. Reconstruction of a person playing with a balloon. Our system
takes a single RGB-D stream as input (a) and warps each frame towards
the canonical model in order to grow it. Then the model is warped back
towards the live depth for display to the user (b). The final output is a
complete 3D model (c), whose colours would diffuse into each other if
evolved with the same warp field (d), but become consistent if Laplacian
eigenfunction signatures are matched for voxel correspondence (e). This
example has been reconstructed with Sobolev gradient flow.

for storing the growing reconstruction [4], [18], [19]. One
of the main advantages of this representation is its ability
to smooth out noise when repeated measurements at the
same voxel are averaged [23]. However, these methods
intermittently revert back to a mesh representation in or-
der to estimate correspondences for non-rigid alignment,
thereby losing accuracy, computational speed and the TSDF
capability to conveniently capture topological changes.

Therefore we propose a method that operates entirely
within the TSDF representation. It warps a TSDF to a target
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TSDF via gradient flow without correspondence search,
steered by a data term that imposes voxel-wise alignment.
Furthermore, we analyze three strategies that ensure ge-
ometric plausibility. First, we include an approximately
Killing vector field [24] energy term which enforces the
estimated deformation field to generate locally nearly iso-
metric motions, acting similar to an as-rigid-as-possible
regularizer [25]. Second, instead of adhering to the com-
monly used gradient defined via an L2 inner product,
we apply gradient flow defined in Sobolev space [26],
which acts as a pre-conditioner ensuring a coarse-to-fine
evolution behaviour [27]. While the former of these two
previously presented approaches [28] is slightly faster and
thus allows for the incorporation of additional terms which
impose desirable geometric properties, such as unit gradient
magnitude, the latter one [29] achieves higher geometric
detail without over-smoothing effects. Aiming to attain the
advantageous regularity properties of Sobolev gradient flow
in a faster setting, we present a new, third warp estimation
strategy that builds on recently proposed accelerated gradi-
ent descent schemes [30], which achieve considerably faster
convergence than standard gradient descent.

As a result, our variational solution is able to handle
challenging scenarios such as changing topology and fast
motion. However, due to the underlying TSDF evolution,
it loses track of correspondences, which are needed for
tasks such as animation and texture transfer (see Fig. 1). To
recover data association, we propose to utilize the lowest-
frequency eigenfunctions of the Laplacian matrices of the
TSDFs, as they encode information about the inherent
deformation patterns that the shapes can undergo. First,
we search for implicit correspondences via an eigencolour
data term that aligns these representations [31]. As it is
robust only up to moderate movements, we suggest an
explicit alternative, whereby we match signatures of lower-
dimensional embeddings of the eigenfunctions [29].

While this strategy for posterior correspondence estima-
tion is antithetical to traditional approaches, which use data
association in order to perform the non-rigid warping, we
reckon that it is the most suitable way to incorporate corre-
spondence into the TSDF evolution scheme. As it inherently
handles topological changes, which occur whenever objects
interact, it paves the way towards capture of arbitrary every-
day scenes. We demonstrate advantages over state-of-the-art
methods through evaluation of the geometric fidelity of our
reconstructions and the precision of voxel correspondences.

2 RELATED WORK

This paper tackles the task of reconstructing a dynamic
environment using a single RGB-D sensor without any prior
knowledge. In the following we discuss related techniques
and do not focus on systems that employ specialized multi-
camera set-ups [10], [11], [13], [32], hand [33], [34], face [35],
skeleton [21] or human body [14], [22] priors, or that require
the acquisition of a static template [17]. We refer the reader
to the recent comprehensive overview by Zollhöfer et al. [36]
for an extensive analysis of the properties of such methods.

Template-free methods for non-rigid fusion from a single
depth camera have been on the rise since 2015 with the
development of the offline bundle adjustment scheme of

Dou et al. [37] and the first real-time solution for simul-
taneous surface tracking and reconstruction, DynamicFu-
sion [18]. Several extensions to this semnial work have
been proposed, most notably VolumeDeform [19] which
combines the used dense depth-based correspondences with
sparse SIFT features to reduce drift and handle tangential
motions, and the system of Guo et al. [20] which increases
robustness by integrating surface albedo constraints. Nev-
ertheless, most examples in these works contain relatively
constrained motions without changing topology.

Fast motion, surface merging and splitting are inherently
handled by the signed distance field representation [38]. It
has been applied for segmentation [39], [40] and registra-
tion [41], [42] in medical imaging, where organ shape priors
are typically available, and for surface manipulation and
animation on complete noise-free models in graphics [43],
[44], [45], [46]. In computer vision Paragios et al. [47] and
Fujirawa et al. [8] have used level sets for non-rigid registra-
tion on 2D image data and have discussed extensions to 3D.
The task of fusion from 2.5D data is more challenging since
new data has to be incremented in a consistent manner.

The step before fusion requires estimating a dense warp
field between a new frame and the existing reconstruction.
This is the objective in scene flow [48], [49], [50], [51], [52].
Related are also approaches that segment the scene into
static and dynamic components, then reconstruct them sep-
arately [53], [54]. Many of these techniques are variational
in nature, combining a data term that imposes similarity
between the warped observed data and the target model,
and a regularizer that imposes motion smoothness to better
constrain the solution space. We thus propose to extend the
variational level set method [55] to the setting of incremental
fusion from a single depth stream.

As the challenge is to incrementally add new obser-
vations instead of erroneously registering them to old
data, we investigate additional regularizers. Non-rigid mo-
tion tends to be not only smooth, but also volume-
preserving. Therefore a prior that enforces the field to be
solenoidal, i.e. divergence-free, would benefit the fusion.
Killing vector fields are of this class and generate locally
isometric motions [24], [56], [57]. Thus they offer a way
to impose a rigidity prior directly through the warp field,
rather than resorting to embedded deformation [58] or as-
rigid-as-possible schemes [25].

An important remark is that the L2-type inner product
employed for gradient flow in most variants of the vari-
ational level set method [38], [55], [59] assumes a metric
that may lead to slow convergence and sub-optimal solu-
tions [60]. Instead, gradient flow in the Sobolev space H1

has been shown to have a superior performance without
changing the global optimum thanks to a desirable coarse-
to-fine evolution behaviour that is robust to spurious arti-
facts [60]. We refer the reader to the book of Neuberger [26]
for a thorough mathematical introduction to the topic.

A practical issue is that projecting to Sobolev space en-
tails inversion of differential operators [30]. While it can be
approximated by a convolution with the respective impulse
response [29], [61], real-time processing might be precluded
in 3D. Recently, an optimization acceleration technique that
achieves equivalent regularity properties without the use of
Sobolev norms has been demonstrated [30]. A mass density
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Fig. 2. Non-rigid fusion pipeline. First we generate the projective TSDF φiproj of an input RGB-D pair from the current camera pose estimate. Then
we warp it towards the current canonical model TSDF φi−1

model using our variational minimization scheme, obtaining φiwarped. Next, we optionally
estimate voxel correspondences between φiproj and φiwarped in order to transfer colour to the warped TSDF. Afterwards we fuse φiwarped into the
canonical model, obtaining its updated state φimodel. Finally, we run a backward warp from φimodel to φiproj to visualize the live frame to the user.

representing an infinite number of particles is evolved to-
gether with the optimization variable. The resulting equa-
tions of motion lead to convergence much quicker than
standard gradient descent and primal-dual methods [62].

While level sets are beneficial for capturing changing
topology, they are unable to track correspondences [63], [64].
Hybrid representations between level sets and meshes have
been tried for data association [65], [66], [67], but tend to be
slow and numerically unstable [68]. As the graph Laplacian
of a shape is invariant to isometric deformations [69], [70],
correspondence can be estimated after warping. The ap-
proach of Mateus et al. [71] matches voxel sets by comparing
Laplacian eigenfunction signatures and reducing the prob-
lem to rigid alignment in a lower-dimensional embedded
space. We modify the technique to handle TSDFs of partial
shapes, so that it can be used in non-rigid reconstruction.

3 PRELIMINARIES

Here we introduce our mathematical notation and outline
the steps of our variational reconstruction scheme.

3.1 Mathematical Fundamentals
Our system takes an RGB-D stream consisting of pairs
(IiRGB , I

i
D), where i is the frame index, IRGB is the 3-

channel colour image and ID is the aligned depth map.
We assume a calibrated camera and a projection function
π : R3 7→ N2 from 3D coordinates to pixels.

Our base representation is the truncated signed distance
field (TSDF), which associates each point in space with the
signed distance to its closest surface location. Surfaces are
located at the zero-valued interface between the negative
inside and positive outside, so their mesh representation can
be easily extracted via marching cubes [72].

We generate TSDFs in a pre-defined bounding volume,
which we discretize into cubic voxels of a selected side
length. They are indexed by integer tuples (x, y, z) ∈ N3.
Let (X,Y, Z) ∈ R3 be the coordinates of the respective
voxel’s center in 3D space. A single RGB-D frame allows
the generation of a projective TSDF φ : N3 7→ R. We follow
the traditional scaling and truncation scheme [73], [74]:

d(x, y, z) = ID(π(X,Y, Z))− Z , (1)

φ(x, y, z) =

{
sgn(d(x, y, z)) if |d(x, y, z)| ≥ δ ,
d(x, y, z)/δ otherwise ,

(2)

ω(x, y, z) =

{
1 if d(x, y, z) > −η ,
0 otherwise .

(3)

Here d is the directional signed distance, which is truncated
to the interval [−1,+1] to disregard voxels that are far
away from the surface. In practice we set the responsible
parameter δ to 5-10 times the voxel size, while η, which
determines the expected object thickness, is set to 2-3 voxels.
Voxels outside the object and within this thickness receive a
confidence weight ω of 1, while non-observed ones get 0.

TSDFs from multiple views are fused together via the
weighted averaging scheme of Curless and Levoy [23],
resulting in a true, non-projective TSDF.

Our goal is to determine a vector warp field Ψ =
(U, V,W ) : N3 7→ R3 that aligns a pair of TSDFs and has the
same resolution as them. U , V and W denote its x-, y- and
z-components respectively, each of which is a scalar grid
N3 7→ R. The field assigns a displacement vector (u, v, w) to
each voxel (x, y, z).

3.2 Overview
Our fusion pipeline is displayed in Fig. 2. Given the current
state of the cumulative model φi−1

model and an incoming
RGB-D pair (IiRGB , I

i
D), we iteratively warp the projective

TSDF φiproj generated from IiD towards φi−1
model by esti-

mating deformation field increments following one of the
approaches described in Section 4, resulting in the warped
TSDF φiwarped. We then estimate voxel correspondences
between the initial and warped TSDFs in order to transfer
colour from φiproj to φiwarped, as explained in Section 5. Then
we fuse φiwarped into the global model, obtaining its updated
state φimodel. Finally, we run a backward deformation from
φimodel towards φiproj to provide the user a live geometry
visualization without colour.

We assume that both the scene and the camera are
moving. Therefore we estimate a rigid camera transforma-
tion using another purely TSDF-based approach [75] which
registers pairs of voxel grids by direct minimization. We
prefer this formulation over ICP variants [76], [77], since
they would need a very robust norm to discard the many
outliers that result from large deformations.

4 NON-RIGID 3D RECONSTRUCTION

In this section we describe our variational models for non-
rigid 3D reconstruction from a single RGB-D stream.

4.1 Signed Distance Field Evolution Energy
As a new RGB-D frame is acquired and we estimate the
approximate camera pose, we generate its projective TSDF
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φproj . Next, we iteratively warp it towards the canonical
TSDF φmodel. In iteration t, we calculate a deformation field
increment Ψ = (U, V,W ) and apply it to the current warped
TSDF φ

(t)
proj , obtaining its new state φ

(t+1)
proj via tri-linear

interpolation. We do this following a variational formulation
consisting of a data term and a combination of regularizers:

Edef (Ψ) = Edata(Ψ) + wregEreg(Ψ) , (4)

where wreg > 0 controls the trade-off between data fidelity
and regularity. A solution of this model can be found via a
gradient descent scheme with step size α > 0:

Ψ(t+1) = Ψ(t) − α ∇Edef
(

Ψ(t)
)
, (5)

where ∇Edef
(

Ψ(t)
)

denotes the variational derivative of
the energy with respect to the deformation field. As will be
explained in Section 4.2, ∇Edef depends on the choice of
the underlying inner product.

4.1.1 Data term
Our data term is driven by the intuition that under perfect
alignment, the warped and the target TSDFs will have
identical signed distance values in each overlapping voxel.
Therefore the value at each voxel (x, y, z) of the current
frame φproj , displaced by its flow vector (u, v, w), will be
equal to the value in that voxel in φmodel. Thus to obtain the
warp, we minimize the sum of direct squared voxel-wise
differences:

Edata(Ψ) =
1

2

∑
x,y,z

(
φproj(x+ u, y + v, z + w)−

−φmodel(x, y, z)
)2
.

(6)

We obtain the derivative by standard calculus of variations:

∇Edata(Ψ) =
(
φproj(Ψ)− φmodel

)
∇φproj(Ψ) . (7)

Note that we use the symbol ∇ both for the spatial gradient
of φ and for the variational derivatives of the energy terms.

4.1.2 Regularization
Commonly, non-rigid registration methods impose regular-
ity constraints in order to introduce additional information,
thereby reducing the solution space of the problem [36]. In
our setting regularity can be enforced through the warp
field itself, as well as over the TSDFs. We propose several
alternatives in this section and analyze how to best combine
them for efficient deformable reconstruction in Section 4.3.

Uniform motion The expected input to our system is
noisy Kinect data, which might cause inconsistencies within
voxel neighbourhoods that result in holes in the reconstruc-
tion. A classical Tikhonov-type regularizer can be used to
reduce spurious artifacts and impose motion smoothness,
as often done in scene and optical flow [48], [52], [78]:

Esmooth(Ψ) =
1

2

∑
x,y,z

(
|∇U(x, y, z)|2+

+|∇V (x, y, z)|2 + |∇W (x, y, z)|2
)
.

(8)

Using calculus of variations we obtain:

∇Esmooth(Ψ) = −(∆U,∆V,∆W )> , (9)

where ∆U denotes the Laplace operator applied to the x-
component of the flow field, and similarly for V and W .

Divergence-free flow Another strategy is to prevent
uncontrollable deformations via rigidity constraints. Most
common are the as-rigid-as-possible [25] and embedded
deformation [58] formulations, which ensure that the ver-
tices of a latent control graph move in an approximately
rigid manner. Here we propose an alternative, whereby local
rigidity is imposed directly through the deformation field.

A 3D flow field that generates locally isometric motions
is called a Killing vector field [24], [56], [57], named after the
German mathematician Wilhelm Killing. It is divergence-
free, i.e.volume-preserving, and satisfies the Killing condition
JΨ+J>Ψ = 0, where JΨ is the Jacobian of the field. However,
it does not regularize angular motion.

A field which generates only nearly isometric motion
and thus balances both volume and angular distortion is an
approximately Killing vector field (AKVF) [24]. It minimizes the
Frobenius norm of the Killing condition:

Eakvf (Ψ) =
1

2

∑
x,y,z

∥∥∥JΨ + J>Ψ

∥∥∥2

F
. (10)

Its functional derivative is:

∇Eakvf (Ψ) = −2(∆U,∆V,∆W )>−

−2

(
∂(divΨ)

∂x
,
∂(divΨ)

∂y
,
∂(divΨ)

∂z

)>
,

(11)

where divΨ = Ux + Vy +Wz is the divergence of the warp
field. We refer the reader to the supplementary material for
complete derivations of all equations in this section.

However, this constraint might be too strict for surfaces
undergoing large deformations. Thus we propose to damp
the Killing condition. First, we rewrite Eq. (10) using the
column-wise stacking operator vec(·) as follows:

Eakvf (Ψ) =
1

2

∑
x,y,z

vec(JΨ + J>Ψ )>vec(JΨ + J>Ψ ) =

=
∑
x,y,z

vec(JΨ)>vec(JΨ) + vec(J>Ψ )>vec(JΨ) .
(12)

Next, we notice that the first term can be written as:

vec(JΨ)>vec(JΨ) = |∇U |2 + |∇V |2 + |∇W |2 =

= 2Esmooth(Ψ) .
(13)

Therefore we devise our damped Killing regularizer as a
damped-down AKVF condition, in which more weight is
given to the motion smoothness component:

EKilling(Ψ) =

=
∑
x,y,z

(
vec(JΨ)>vec(JΨ) + γvec(J>Ψ )>vec(JΨ)

)
. (14)

The parameter γ controls the trade-off between Killing prop-
erty and motion uniformity. A value of γ = 1 corresponds
to the AKVF condition from Eq. 10. The derivative is:

∇EKilling(Ψ) = −2(∆U,∆V,∆W )>−

−2γ

(
∂(divΨ)

∂x
,
∂(divΨ)

∂y
,
∂(divΨ)

∂z

)>
.

(15)

Level set property One of the characteristic properties of
a signed distance field is that its gradient magnitude equals
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unity everywhere where it is differentiable [38]. To ensure
geometric correctness during the evolution of φproj towards
φmodel, this property has to be conserved [79]:

Elevel
set

(Ψ) =
1

2

∑
x,y,z

(
|∇φproj(x+u, y+v, z+w)|−1

)2
. (16)

Again, applying the calculus of variations we obtain:

∇Elevel
set

(Ψ) =
|∇φproj(Ψ)| − 1

|∇φproj(Ψ)|ε
Hφproj(Ψ) ∇φproj(Ψ) ,

(17)
where Hφproj(Ψ) ∈ R3×3 is the currrent TSDF’s Hessian
matrix, composed of second-order partial derivatives. To
avoid division by zero we use the expression | · |ε, which
equals the norm plus a small constant ε = 10−5.

This term is not only suitable for imposing regularity
over the warped TSDF, but also for reducing noise in it,
since spurious artifacts will get smoothed out when this
constraint is applied. However, it does not hold strictly
on a discretized signed distance field with a numerically
approximated gradient [38], and is not valid at the border
of voxel truncation, so it may lead to over-smoothing ef-
fects. To overcome these issues, we instead consider pre-
conditioning the gradient flow, as explained next.

4.2 Sobolev Gradient Flow
The concept of Sobolev gradient flow was developed

several decades ago in the context of the numerical so-
lutions of partial differential equations (PDEs). The main
idea is to compute the variational derivative of an energy
with respect to the inner product of a smooth subspace
of L2, i.e. a Sobolev space, in order to obtain a gradient,
which employed in a descent scheme yields a gradient
flow that favours globally consistent solutions and is less
susceptible to undesired local minima. To describe this effect
Sundaramoorthi et al. [27] coined the term coarse-to-fine
evolution, which accurately captures the fact that coarse-scale
changes are favoured over fine-scale ones. In the context of
incremental 3D reconstruction, this means that the warped
TSDF will first adapt to more global deformations before
eventually converging also with respect to fine-scale details.

To compute a Sobolev gradient, it is sufficient to project
the original gradient ∇Edef to the Sobolev space H1 [80].
As done in traditional descent schemes, let us define∇Edef
from Eq. (5) as the L2 gradient ∇L2Edef . Thus we obtain:

∇H1Edef = (Id− λ∆)−1 ∇L2Edef , (18)

where Id denotes the identity operator. Eq. (18) involves the
solution of an equation system, but it is possible to derive
an approximate way of obtaining Sobolev gradients. First
we note that Eq. (18) can be realized via

∇H1Edef = S ∗ ∇L2Edef , (19)

where the filter S is the impulse response of the operator
(Id − λ∆)−1. In practice, we approximate S for chosen λ
and filter size s by solving the following system:

(Id− λ∆)S = v , (20)

where v is a one-hot vector that corresponds to a discretized
Dirac impulse of size s×s×s voxels, and ∆ is the Laplacian
matrix discretized via a s-point finite-difference stencil.

However, 3D convolutions might become prohibitively
expensive for large values of s. Thus we further approxi-
mate the Sobolev kernel S by three separable 1D convolu-
tions. To do so, we calculate the tensor higher-order SVD
decomposition [81] of S and retain only the first singular
vector from each resulting U matrix, and after normalization
to unit sum obtain the 1D s-element filters Sx, Sy and Sz .
Note that as their entries are identical, the subscript is used
to denote the spatial direction of application. This is an
approximation of S with crucial performance advantages.

4.3 Combined Energy Formulations
While any of the energy terms discussed in Section 4.1.2 can
be combined into Ereg with appropriate balancing weights,
and the proposed Sobolev filters can be additionally applied
to regularize any energy, each of these components entails
an increase in runtime. As we aim for applications at inter-
active rates, we favour two of the possible combinations.

If we are to use Sobolev gradient flow, a regularizer
that imposes smooth motion is sufficient, since the gradient
descent will follow a coarse-to-fine evolution that will first
recover global motion and then add details [29]:

∇EdefSobolev = ∇H1(Edata + wsmoothEsmooth) . (21)

As the Sobolev gradient flow enforces globally consistent
motion without changing the global optimum [60], we do
not need to impose additional rigidity constraints or carry
out level set re-initialization [79], [82].

However, if the kernel size s is too large, the execution
time starts to lag behind near-real-time rates. Therefore we
propose another alternative, without Sobolev regularization,
which allows for incorporation of more priors into the
energy formulation. Due to the lack of pre-conditioning, we
need to impose rigidity constraints and ensure that the level
set property is conserved throughout the evolution [28]:

∇EdefKilling = ∇L2(Edata+wkEKilling+wlsElevel
set

) . (22)

As our experiments will demonstrate, the two strategies
lead to similar results. While EdefKilling is slightly faster,
EdefSobolev does not suffer from over-smoothing effects and
may yield reconstructions with better geometric details.

4.4 Accelerated Optimization
The above-described concerns make it desirable to combine
the regularization properties of Sobolev optimization with
a fast numerical scheme. Speeding up high-dimensional
gradient descent problems has been an important topic in
machine learning lately, due to the widespread use of convo-
lutional neural networks [83], [84]. The so-called accelerated
gradient descent methods avoid the local minima that impede
optimization by averaging past descent directions. Well-
known examples, also referred to as momentum descent, are
Polyak’s heavy ball method [85] and Nesterov accelerated
gradient descent [86]. In particular, Nesterov proved opti-
mal convergence of his scheme among first-order methods.

It has recently been shown [84] that all variants of
Nesterov’s method are essentially discretizations of the ODE
equations of motion for a particular Lagrangian action
functional, and can thus be formulated with variational
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(a) s = 3 (b) wsmooth = 0 (c) default

Fig. 3. Parameter analysis for EdefSobolev : (a) a small neigbourhood
s is not able to fully overcome the effects of noise; (b) no motion
regularization results in inconsistent geometry; (c) the default setting
s = 7, wsmooth = 0.2, λ = 0.1 yields a detailed reconstruction.

principles [30], [84], [87]. Sundaramoorthi and Yezzi have
extended this to PDEs, demonstrating superior convergence
properties without the use of Sobolev spatial convolution in
tasks such as active contours and optical flow [30], [88], [89].

Here we devise the acceleration scheme for non-rigid re-
construction in 3D. Given our deformation energy Edef (Ψ),
whose optimization we want to speed up, we define an
action integral Jdef (Ψ) that consists of Edef (Ψ) as potential
energy, in addition to a kinetic energy term Kdef (Ψ):

Kdef (Ψ) =
1

2

∑
x,y,z

(ρ(Ψ,∇Ψ) Ψ2
t ) , (23)

Jdef (Ψ) =

∫
k(t)

(
Kdef (Ψ)− b(t)Edef (Ψ)

)
dt . (24)

Above ρ(Ψ,∇Ψ) is the mass density, k(t) and b(t) are time-
dependent weights, and the t-subscript denotes the time
derivative. In particular, k(t) ensures dissipation of energy.

The accelerated descent equation is the Euler-Lagrange
equation for Jdef (Ψ). Setting the initial density to a con-
stant ρ0 ∈ R throughout the volume and defining a(t) =
k′(t)/k(t), we obtain the following equation of motion [88]:

Ψtt + a(t)Ψt = −b(t)
ρ0
∇Edef (Ψ) . (25)

While any choice of Edef can be optimized via Eq. (25),
our goal here is to achieve the robustness properties of
Sobolev gradient flow, so we use the same, simpler energy
formulation as SobolevFusion rather than KillingFusion:

Eaccelerated(Ψ) = Edata(Ψ) + wsmoothEsmooth(Ψ) . (26)

4.5 Parameter Analysis
We use the Andrew-Chair full-loop sequence from Dou et
al. [37] in order to determine the most advantageous pa-
rameters in case of using Sobolev pre-conditioning with
EdefSobolev , shown in Fig. 3. Our model is robust with
regard to the parameter choice and achieves good results
with a variety of settings, of which we recommend neigh-
bourhood size s = 7, filter parameter λ = 0.1 and motion
smoothness wsmooth = 0.2 as default.

A Sobolev filter size s = 3 is not sufficient to achieve
satisfactory results. While a larger kernel would impede the
speed, the differences with s ≥ 7 become negligible.

The parameter λ has an effect on the convergence rate.
We estimated empirically that doubling its value reduces the
number of iterations by 3-8%. Moreover, motion regularity is

(a) wls = 0 (b) wk = 0 (c) γ = 0 (d) γ = 1 (e) default

Fig. 4. Parameter analysis for EdefKilling : (a) no level set prop-
erty preservation; (b) no motion regularization; (c) conventional motion
smoothness without a Killing component; (d) pure AKVF condition; (e)
default setting wls = 0.2, wk = 0.5, γ = 0.1.

essential to overcome noise. The ranges λ ∈ [0.05; 0.4] and
wsmooth ∈ [0.1; 0.5] yield high fidelity reconstructions, so
we set the default values as the midpoints of those intervals.

For the case without Sobolev regularization, we use the
fast-motion Duck sequence from the Deformable 3D Recon-
struction Dataset of KillingFusion [28], since the effect of
the damped Killing regularizer is better observable under
large motion. As shown in Fig. 4 without level set property
preservation the model is not smooth and develops fine-
scale artifacts where the property has been violated during
the evolution. If all motion regularizers are disabled, the
moving parts of the object, such as its wings and head,
get destroyed as more frames are fused inconsistently. If
only Esmooth is used as motion regularization, the recon-
struction is somewhat smoother, but holes appear in several
regions due to discrepancies. Conversely, if no damping is
applied to the AKVF condition, the stronger rigidity prior
causes the non-rigidly moving wings to nearly vanish. We
empirically determined the parameter ranges that yield ge-
ometrically consistent reconstructions to be wls ∈ [0.05; 0.2],
wk ∈ [0.1; 0.5] and γ ∈ [0.05; 0.25].

We use a gradient descent step size α = 0.1 in both the
standard and accelerated variants.

The accelerated optimizaiton parameters that yield Nes-
terov’s method are ρ0 = 1, b(t) = 1, k(t) = t3/2 and thus
a(t) = 3/t [88]. There has been no comprehensive study of
accelerated descent parameters [88], but a partial investiga-
tion that we carried out showed that while this is indeed
the most stable value for a(t), decreasing the scalar factor
ρ0 allows the number of iterations until convergence to be
further reduced. Plots summarizing this can be found in
the supplementary document. The value ρ0 = 1/3 was the
closest to the default Nesterov value that always gave stable
results in our analysis, so we use it in further experiments.

Eq. (25) can be implemented as a system of first-order
evolution equations for velocity, density and warp, but these
variables entail auxiliary storage. Our direct implementation
of the equation in its second-order form was stable in all
considered examples, so we opt for it.

4.6 Implementation Details

One of the main benefits of our correspondence-free vari-
ational energy formulation is that it can be applied to each
voxel independently, so all displacement vector updated can
be computed in parallel. We tested our implementations on
a laptop with an Nvidia Quadro K1100M GPU with 2 GB of
global memory, and on a desktop PC with an Nvidia Titan
Black with 6 GB of memory. Depending on the bounding
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#30 #31 #31
(a) reference (b) without Eeig (c) with Eeig

Fig. 5. Texture transfer from frame #30 to #31 of the Swing sequence
of the MIT dataset [90]: (a) reference texture; (b) colour propagated with
Edef from Section 4, showing diffusion around moving parts; (c) colour
propagated with Edef combined with the eigencolouring term Eeig .

volume, we used a voxel size in the range 4-12 mm in order
to fit the entire regular voxel grid into GPU memory.

On the laptop we achieve 30 frames per second for 643

voxels with EdefSobolev and for 803 voxels with EdefKilling .
On the PC the resolution is approximately doubled, with
real-time performance for 1283 and 1503 voxels respectively.
The runtime with Sobolev regularization can be improved
if a smaller kernel size is used, at the risk of certain loss of
geometric quality. In particular, a neighbourhood of s = 5
achieves similar speed to theL2-energy formulation. Thanks
to the combination of a lightweight energy formulation,
no need for spatial convolutions, and at least two times
fewer iterations (as shown in the results section), accelerated
optimization permits higher resolutions of up to 1283 to run
at 30 fps even on the laptop GPU.

In order to show high resolution results here, human
sequences were run on the PC, while smaller toys were
tested on the laptop.

5 LOOKING FOR DATA ASSOCIATION IN A
CORRESPONDENCE-FREE WORLD

Whether regularizing through the deformation field or via
Sobolev pre-conditioning, so far we have developed a strat-
egy for reliable 3D reconstruction under non-rigid motion.
We may now want to colour or animate the model. How-
ever, this is not feasible since level set methods do not
preserve correspondences [63], [64]. In particular, if we store
an RGB grid containing the colour of each voxel and warp it
in the same way as the TSDF, as shown in Fig. 5 (b) colours
would diffuse into each other due to displacements to non-
integer locations that require trilinear interpolation [64].

Thus we now aim to establish voxel correspondence
using the spectrum of the Laplacian matrix of a shape,
which is invariant to isometric deformations [91], [92]. Its
lower-frequency eigenfunctions, corresponding to its small-
est eigenvalues, represent the base shape (e.g. a human
body) and capture information about its natural non-rigid
motion patterns, while the higher-frequency ones account
for details (limbs, wrinkles) [69], [70].

5.1 Laplacian Eigencolourings

We first aim to match voxels implicitly in the level set
evolution. As the eigenfunction representation results in a
colouring of the voxels, which describe the natural defor-
mation modes of the shape, we also call it eigencolouring.

Fig. 6. Lowest-frequency Θ1-eigencolourings of several poses of the
same subject. The contours form similar patterns in all cases and
saturate around the skirt folds, which is the most motile region.

To build it we first calculate the normalized graph Lapla-
cian of the respective voxel grid. Let the number of voxels
in the narrow band that is not truncated to ±1 be l - we
refer to them as occupied in the current context. This is the
main difference to other spectral methods, which typically
consider the entire shape. The adjacency matrix W of size
l × l has an entry 1 when adjacent voxels are occupied, and
0 elsewhere. Note that the diagonal entries are 0, as a voxel
is not adjacent to itself. The degree matrix D contains the
degree of each voxel, i.e. the row-wise sums of elements in
W , on its diagonal. Then the normalized Laplacian is [71]:

L = D−
1
2 (D −W )D−

1
2 . (27)

Next, we calculate its eigendecomposition L = UΛU>.
The full spectrum of the Laplacian (or rather, the Laplace-
Beltrami) reflects all possible ways in which the shape
can deform isometrically. However, since real-world data
contains noise, we discard high-frequency eigenfunctions.
Instead, we want to capture only the most significant char-
acteristics of the shape, so we retain only the K ≤ 20 eigen-
functions with smallest non-zero eigenvalues [71]. Thus
we obtain the matrix UK , which is a lower-dimensional
embedding of the shape, whose columns are the K retained
eigenvectors, while its l rows are the K-dimensional coordi-
nates of the embedded shape.

As each eigenfunction is an l-element vector, we pad it
to the size of the original TSDF and de-linearize its indices,
obtaining Θe which is the eigencolouring of the volume for
its eth smallest non-zero eigenvalue. It is a scalar field of the
same resolution as the TSDF and if mapped to colour values
gives a colour pattern distinctive for the shape, as shown in
Fig. 6. We pad with the smallest entry of the eigenfunction so
that the gradient is not reversed. Furthermore, we normalize
the values to the interval [−1; 1] similar to a TSDF.

Given two TSDFs which we want to align, φinput and
φtarget, we expect theirK lowest-frequency eigencolourings
to be similar, since they stem from the same shape in poten-
tially different poses. However, there is no guarantee that
the eigenvalues are reliably ordered in the two embeddings,
so we need to determine a K × K permutation matrix P
that aligns the eigenspaces of our two shapes. In addition,
due to sign ambiguity, we have to determine a sign matrix
M , resulting in an overall transformation T = MP .

In case we use only K = 1 eigenfunction, it always
corresponds to the smallest non-trivial eigenvalue, so there
is no ambiguity. For larger K , we determine the trans-
formation T as explained in Section 5.2 and re-order the
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Fig. 7. Texture transfer via implicit correspondence energy on the MIT dataset [90] Squat (top) and Swing (bottom) sequences. When there is no
abrupt motion, Eeig is sufficient to preserve a stable texture. However, under larger motion texture diffusion occurs as blue replaces purple on the
skirt, and the geometric quality suffers as we cannot recover the arm.

embeddings respectively. Finally, we integrate the Laplacian
eigencolourings term into our variational formulation:

Eeig(Ψ) =
1

2

∑
x,y,z

K∑
t=1

(
Θinput(x+ u, y + v, z + w)−

−Θtarget(x, y, z)
)2
.

(28)

The complete evolution energy then becomes:

Edef2(Ψ) = Edata(Ψ) +weigEeig(Ψ) +wregEreg(Ψ) . (29)

As we view the eigencolourings term as another data term,
we use weig = 1 in our experiments, but a comprehensive
study of the balance between the two data terms is an
interesting direction for future work.

Figure 7 shows colour transfer using correspondences
estimated implicitly using Edef2. It demonstrates that the
energy is robust for moderate motion such as a squat,
but cannot handle larger deformations such as the turning
dancing girl. Next, instead ofEeig , we propose explicit voxel
matching, to be applied after Edef warps the current TSDF.

5.2 Voxel Correspondences
The transformation T discussed in the previous section re-
lates the reduced embeddings of the two shapes as follows:

(UKinput)
> = T (UKtarget)

> . (30)

To calculate it, we seek an optimal assignment be-
tween their column eigenvectors uitarget and ujinput, i, j ∈
{1, ...,K}. The approach of Mateus et al. [71] suggests to
construct histograms from these eigenvectors, since they are
invariant to the value ordering and the number of entries
l, and to consider them as signatures of the eigenfunctions.
We thus build a 200-bin histogram hist(·) from each vector
and store the similarity of each eigenvector pair as the `1
histogram difference in a score matrix A:

Ai,j = min(||hist(uitarget)− hist(±u
j
input)||1) . (31)

Additionally, a matrix M ′ stores the sign of ±ujinput that
yielded the lower score.

This is an assignment problem between eigenfunction
signatures, which we solve for the lowest cost via the
Munkres algorithm [93] over A. We then build the permu-
tation matrix P according to its output, and look up M ′

for the appropriate sign in M . We thus obtain the sought
transformation matrix T = MP and use it to estimate
correspondence, since according to Umeyama’s theorem,
it can be found through alignment of the two Laplacian
eigenspaces [94]. The correspondences between the embed-
dings are transferred to the voxels of the original shapes
via nearest neighbour search between the embedded- and
voxel-coordinates. If a near-surface voxel is assigned to an
off-surface voxel, we discard the match.

After obtaining initial matches, we use the Weiszfeld
algorithm [95] to determine the geometric median in a
3 × 3 × 3 neighbourhood in order to retain only the most
likely correspondence. This step is crucial as we are dealing
with partial TSDFs, whose Laplacian eigenfunctions might
carry information about non-overlapping regions.

5.3 Implementation Details
We use the described strategy to transfer colour from an
initial projective TSDF to its warped counterpart. In this way
we are able to obtain a reliably coloured cumulative model.

As parallelization of the voxel matching procedure is not
straightforward, in practice we run it on the CPU while the
next frame(s) are being warped on the GPU. Depending on
volume size, it takes 58-500 ms per frame on a 2.80 GHz
Intel Core i7 CPU. When done, it continues with the latest
warped frame, effectively avoiding temporal overhead.

6 EXPERIMENTAL EVALUATION

In this section we carry out various qualitative and quanti-
tative tests of the non-rigid reconstruction and voxel corre-
spondence components of the proposed formulations. All
three proposed variational deformation schemes, namely
using Sobolev gradient flow (SobolevFusion [29]), using
damped AKVF constraints (KillingFusion [28]), and the
newly devised one using accelerated gradient descent (Ac-
celeratedFusion), have as basis the same energy term Edata.
Thus it is expected that their results are similar, so here we
discuss the reasons causing differences. Please refer to the
supplemental video for additional visual comparisons.

6.1 Convergence
For all methods we stop optimizing when the energy up-
date, as measured by the total SSD error divided by the
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Fig. 8. Comparison of iterations required by our three variational approaches to converge on a slow (left) and fast (right) motion sequence. The
average number of iterations per frame for each method is displayed as a dotted line. The number of iterations taken by EdefKilling is reduced by
13% with EdefSobolev and by more than 50% by Eaccelerated.

Warped live frames Canonical-pose reconstruction

Fig. 9. Non-rigid reconstruction from a single depth stream with damped AKVF regularizer (EdefKilling). We obtain a geometrically consistent
model after a 360◦ loop under topological changes and large motion.

number of voxels, falls below a threshold of 10−6. The-
oretically, we expect Sobolev preconditioning to decrease
the number of required iterations slightly, while accelerated
optimization should decrease them more significantly. Fig-
ure 8 displays the iterations taken by the three strategies
on the relatively small-motion Andrew-Chair sequence of
Dou et al. [37] and on the large-motion Alex sequence from
KillingFusion [28], with averages displayed next to the plots.
Indeed, EdefSobolev decreases the iterations of EdefKilling
by 12.8% and 13.3% on Andrew and Alex respectively, while
Eaccelerated decreases them more than twice. As expected,
the larger motion sequence requires more iterations on
average for any method. It is notable that the iterations with
accelerated optimization are rather stable, with prominent
increases towards the end of Alex when the motion is quick.

6.2 Topological Changes and Fast Motion
A major advantage of our proposed formulation that stays
entirely within the TSDF representation is that it can inher-
ently handle topological changes and capture large defor-
mations. Thus we first demonstrate these abilities.

Both Fig. 1 and Fig. 9 show a human turning in a
complete 360◦ loop while undergoing topology changes,
such as interacting with a balloon or splitting his hands from
the hips. They have been reconstructed with the Sobolev
and the AKVF regularization respectively, proving that both
variants of our scheme are able to recover a complete 3D
model in unconstrained motion.

Likewise, in Fig. 10 we test on the Umbrella sequence
from VolumeDeform [19]. The damped AKVF scheme con-
sistently over-smooths thin structures such as the tip due
to the level set gradient preservation constraint. VolumeDe-
form occasionally produces artifacts near edges or fuses
the strap into the umbrella due to erroneous registration.

Volume Killing Sobolev Accelerated
Deform [19] Fusion [28] Fusion [29] Fusion

fr
am

e
#2

00
fr

am
e

#4
00

Fig. 10. Warped live frames of the Umbrella sequence from VolumeDe-
form [19]. Damped AKVF, accelerated optimization and VolumeDeform
occasionally over-smooth thin elements such as the tip and strap, while
Sobolev gradient flow yields similar or higher level of detail as Vol-
umeDeform without artifacts at the edge.

Sobolev gradient flow well captures all geometric details.
Accelerated optimization has the least amount of high-
frequency noise among the variational methods. However,
the second sample frame is over-smoothed due to the fact
that accelerated gradient flow may sometimes surpass the
energy optimum and then oscillate until reaching stabil-
ity [30], thereby losing some fine details. This frame is a rare
example, but avoiding the effect all-together is subject to
further studies of optimal parameters. Likewise, the warped
live frames in Fig. 11 show the robustness to fast motion and
topology changes of variational level set evolution even in
the accelerated scheme, but the ends of the legs in the fourth
shown frame are smoothed out. These observations are also
reflected in the quantitative evaluation on the Deformable 3D
Reconstruction Dataset [28], displayed in Fig. 12.
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Fig. 11. Reconstruction of fast-moving chicken legs using accelerated optimizaiton (Eaccelerated). Frames are ordered chronologically.

Ground Volume Killing Sobolev Accelerated
truth Deform [19] Fusion [28] Fusion [29] Fusion

— 5.4 mm 3.9 mm 3.7 mm 3.3 mm

— 4.2 mm 3.5 mm 3.1 mm 3.6 mm

Fig. 12. Geometric error on objects with ground-truth canonical models
from the Deformable 3D Reconstruction Dataset of KillingFusion [28]. All
versions of our variational formulation outperform VolumeDeform [19],
as the mechanical toys in the sequences exhibit fast motion. Errors are
given below the respective reconstruction.

To conclude, Sobolev gradient flow better captures con-
cavities and defines sharper edges than the damped AKVF
strategy, which over-smooths details as the level set term is
not valid at the TSDF truncation boundary. But convolving
the grid with 7-voxel Sobolev kernels is more computation-
ally demanding. This can be remedied by the accelerated
optimization framework, which yields less noisy results
without the use of additional regularizers or spatial con-
volutions, in a shorter time. However, it may over-smooth
under larger motion due to its oscillating energy design.
Thus selecting the appropriate version of our variational
framework depends on the amount of expected motion and
on the importance of speed over geometric detail.

6.3 Voxel Correspondences
To evaluate the ability of our system to determine corre-
spondences, we look at texture transfer. If voxel matches
are accurately determined, colours will not diffuse into each
other over time.

First, we assess the amount of colour that can be trans-
ferred depending on the difference in pose. To this end we
test on the richly textured Minion sequence from VolumeDe-
form [19]. Fig. 13 shows the results when transferring colour
from frame i to the next one, as well as to frames separated
by a larger distance. The amount of texture that is being
recovered decreases with increasing pose difference, but our
scheme manages to determine stable matches even when
views are 10 frames apart. Moreover, our match rejection
procedure makes sure that only reliable correspondences are
returned, and thus there is no transfer of incorrect colours.

Fig. 1 demonstrates results on a full 360◦ loop sequence.
When the RGB values are propagated with the same warp

reference i

i+ 1 i+ 5 i+ 5 + EM

i+ 3 i+ 10 i+ 10 + EM

Fig. 13. Colour transfer from reference frame i to target frame i+n. With
larger distance the amount of transferred colour decreases, but remains
correct thanks to our robust voxel correspondence scheme. They can
be densified via a posterior EM scheme, as shown on the right.

field as the evolving TSDF, the colours on the resulting
model diffuse into each other during the interpolation pro-
cess. In particular, since there is no guarantee that surface
voxels remain on the surface during evolution, colours
mix not only with their neighbouring ones, but also with
the colour-less off-surface voxels, resulting in the observed
smoky effect. One possibility to counteract this problem is to
propagate colours along the normal direction, but the issue
of colour diffusion will still persist.

On the other hand, our voxel matching scheme is able
to recover a much clearer texture. Colours on the front are
rather crisp, since the difference between the canonical pose
and the initial frames is not too large and thus matching
is very exact. The back shows more mixed colours, as the
poses become more distant and matching becomes more
challenging, but the result remains visually pleasing.

Note that our proposed technique is a first solution to
combine explicit correspondence information with level set
evolution. Thus the main objective has been to reliably
colour the reconstructions, rather than to estimate a dense
set of correspondences. Nevertheless, we carry out quantita-
tive evaluation on the yt sequence with Vicon markers used
in BodyFusion [21], which features a human in motion.

We observed that our matching procedure typically re-
turns a low error for markers on the torso of the subject,
which is a region where mesh-based correspondences often
suffer from sliding. However, since the lower-frequency
Laplacian eigenfunctions do not always capture limbs, it
is often not possible to find correspondences for markers
located on the arms. As 12 out of the 18 Vicon markers are
placed on the subject’s arms, this dataset is not optimally
suited for our method, which on average returns matches
for half the markers per frame. Yet, our mean `1 error
of 7.7 cm over the entire sequence is not too far from
that of other single-stream methods that do not employ
priors, namely 4.4 cm for DynamicFusion [18] and 3.7 cm
for VolumeDeform [19]. A reason for the bigger error is
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that our method accumulates a higher discretizaiton error,
since it always stays in voxel space, while others explicitly
determine correspondences for deformation field calcula-
tion. Further, Table 1 of BodyFusion [21] allows us to com-
pare the ratios of maximum to average error on the Vicon
dataset: 2.0 for BodyFusion, 2.9 for DynamicFusion, 2.4 for
VolumeDeform and 2.2 for our approach. This means that
for DynamicFusion the maximum error deviates most from
the mean, while the error of the skeleton-based BodyFusion
stays most uniform throughout the sequence. Our ratio is
outperformed only by that of BodyFusion, i.e. our algorithm
is consistent over all frames and is independent of the
amount of motion.

Finally, we devise another quantitative test for voxel
correspondences, which allows us to test on locations that
are not on limbs. For this purpose we detect SIFT fea-
tures [96] on well-textured sequences, such as the Minion
from VolumeDeform [19]. Next, we match them across
frames using a very strict outlier rejection policy, so that only
very accurate matches are retained. On average we kept 26
SIFT matches per frame pair. Then we carried out our voxel
matching scheme as before and compared the 3D locations
of the found correspondences to the back-projected SIFT
keypoints, obtaining an average `1 error of 7.2 cm. Since
this result is close to that on the Vicon dataset, it confirms
the performance of our system. This is a promising result for
the incorporation of explicit correspondences into implicit
level set frameworks.

7 LIMITATIONS AND FUTURE WORK

Although we achieve interactive frame rates, the resolution,
speed and memory consumption of our framework can be
improved by replacing the used regular voxel grid TSDF
with an appropriate hashing [5] or hierarchical structure [2],
or if the warp field is represented at a coarser resolution and
interpolated using radial basis functions [97].

Moreover, our voxel matching can be improved, for
instance to obtain denser correspondences. One possibility
to achieve this is to carry our an expectation-maximization
procedure over the spectral matches after the initial esti-
mation that we have proposed, leading to results as those
shown on the right of Fig. 13. However, this is currently not
feasible in real time [71]. An alternative would be to learn
a mapping from sparse to dense flow fields [98], or even
to learn correspondences in the spectral embedding [12].
Finally, segmentation can be helpful in the case of multiple
objects, so that for each one we can compute a separate,
more representative Laplacian matrix.

8 CONCLUSION

We have presented three variational methods for non-rigid
3D reconstruction of surfaces undergoing free motion, in-
cluding fast movements, changing topology and interacting
subjects. Our framework allows to determine dense defor-
mation flow field updates without correspondence search
and to avoid repeated conversion between mesh and TSDF
representations. We have proposed several regularization
and speed-up alternatives and discussed their advantages
and drawbacks. Last but not least, we have devised a voxel

correspondence estimation strategy over TSDFs of partial
shapes, allowing realistic colouring of the obtained models.
We believe that our contribution is a step forward towards
making real-time capture of unconstrained motion and 3D
avatar creation truly available to the general user.
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