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Abstract

We introduce a geometry-driven approach for real-time
3D reconstruction of deforming surfaces from a single
RGB-D stream without any templates or shape priors. To
this end, we tackle the problem of non-rigid registration by
level set evolution without explicit correspondence search.
Given a pair of signed distance fields (SDFs) representing
the shapes of interest, we estimate a dense deformation field
that aligns them. It is defined as a displacement vector field
of the same resolution as the SDFs and is determined iter-
atively via variational minimization. To ensure it generates
plausible shapes, we propose a novel regularizer that im-
poses local rigidity by requiring the deformation to be a
smooth and approximately Killing vector field, i.e. generat-
ing nearly isometric motions. Moreover, we enforce that the
level set property of unity gradient magnitude is preserved
over iterations. As a result, KillingFusion reliably recon-
structs objects that are undergoing topological changes and
fast inter-frame motion. In addition to incrementally build-
ing a model from scratch, our system can also deform com-
plete surfaces. We demonstrate these capabilities on several
public datasets and introduce our own sequences that per-
mit both qualitative and quantitative comparison to related
approaches.

1. Introduction
The growing markets of virtual and augmented reality,

combined with the wide availability of inexpensive RGB-
D sensors, are perpetually increasing the demand for vari-
ous applications capable of capturing the user environment
in real time. While many excellent solutions for the recon-
struction of static scenes exist [5, 12, 23, 31, 33, 34, 43, 54],
the more common real-life scenario - where objects move
and interact non-rigidly - is still posing a challenge.

The difficulty stems from the high number of unknown
parameters and the inherent ambiguity of the problem, since
various deformations can yield the same shape. These is-
sues can be alleviated through additional constraints, thus
solutions for multi-view surface tracking [4, 8, 9, 10, 18,
22, 50] and template-based approaches [1, 28, 57] have been
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Figure 1. Non-rigid reconstruction from a single noisy Kinect
depth stream: KillingFusion builds a complete model under large
deformations, rapid inter-frame motion and topology changes.

developed. DynamicFusion [32] is the pioneering work that
addresses the general case of incrementally building a 3D
model from a single Kinect stream in real time, which is
also the objective of our work. VolumeDeform [20] tackles
the same problem, combining depth-based correspondences
with SIFT features to increase robustness to drift. While
both systems demonstrate results of impressive visual qual-
ity, they may suffer under larger inter-frame motion due to
the underlying mesh-based correspondence estimation.

Many recent works on deformable 3D reconstruction use
a signed distance field (SDF) to accumulate the recovered
geometry [10, 20, 32], benefiting from its ability to smooth
out errors in the cumulative model [7]. However, they inter-
mittently revert back to a mesh representation in order to de-
termine correspondences for non-rigid alignment [20, 32],
thereby losing accuracy, computational speed and the capa-
bility to conveniently capture topological changes. On the
other hand, an SDF inherently tackles situations when sur-
faces are merging or splitting, e.g. a man puts hands on his
hips or takes his hat off (Fig. 1, 2), a dog bites its tail, etc.

In this paper we propose a non-rigid reconstruction
pipeline where the deformation field, the data explanation
and regularization are operating on a single shape repre-
sentation: the SDF. We formulate the problem of interest
as building a 3D model in its canonical pose by estimating
a 3D deformation field from each new depth frame to the
global model and subsequently fusing its data. To this end,
we incrementally evolve the projective SDF of the current
frame towards the target SDF following a variational frame-
work. The main energy component is a data term which
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Figure 2. Warped live frames from two-object topological changes.

aligns the current frame to the cumulative model by mini-
mizing their voxel-wise difference of signed distances - thus
without explicit correspondence search and suitable for par-
allelization. In order to handle noise and missing data, we
impose smoothness both on the deformation field and on
the SDFs, and require a certain level of rigidity. This is
done by enforcing the deformation field to be approximately
Killing [3, 41, 46] so that it generates locally nearly isomet-
ric motions - in analogy to as-rigid-as-possible constraints
on meshes [42]. Furthermore, we ensure that the SDF evo-
lution is geometrically correct by conserving the level set
property of unity gradient magnitude [26, 35].

To sum up, we contribute a novel variational non-rigid
3D reconstruction system that handles topological changes
inherently and circumvents expensive correspondence esti-
mation. Due to the generality of the representation, it can be
directly applied to evolving complete meshed models. Last
but not least, we propose a methodology for quantifying re-
construction error from a single RGB-D stream.1

2. Related Work
Here we discuss existing approaches on level set evolu-

tion, vector field estimation and deformable surface track-
ing in RGB-D data, identifying their limitations in the con-
text of our problem of interest and suggesting remedies.

Level set methods Deformable reconstruction systems
commonly rely on meshes for correspondence estimation,
making them highly susceptible to errors under larger de-
formations or topology changes [24]. On the contrary,
level sets inherently handle such cases [35]. They have
been used for surface manipulation and animation in graph-
ics [6, 14, 47, 53] where models are complete and noise-
free, while our goal is incremental reconstruction from
noisy partial scans. In medical imaging, where high fidelity
shape priors for various organs are available [13, 16], level
set methods have been applied to segmentation [2, 17] and
registration [25, 30], usually guided by analytically defined
evolution equations [36]. However, as we have no template
or prior knowledge of the scene, we propose an energy that
is driven by the geometry of the SDF and deformation field.

In computer vision, Paragios et al. [37] use distance
functions for non-rigid registration driven by a vector field,

1Our data is publicly available at http://campar.in.tum.de/
personal/slavcheva/deformable-dataset/index.html.

but are limited to synthetic 2D examples. Fujirawa et
al. [15] discuss extensions of their locally rigid globally
non-rigid registration to 3D, but demonstrate only few tests
on full surfaces. Instead, we define the energy in 3D and
impose rigidity constraints so that 2.5D scans can be fused
together from scratch.

Scene flow Determining a vector field that warps 2.5D/3D
frames is the objective of works on scene flow [19, 21, 39,
48, 51, 52]. They are typically variational in nature, com-
bining a data alignment term with a smoothness term that
ensures that nearby points undergo similar motion. How-
ever, this is not sufficient for incremental reconstruction
where new frames exhibit previously unseen geometry that
has to be overlaid on the model in a geometrically consis-
tent fashion. This is why we include another rigidity prior
that requires the field to be approximately Killing - gener-
ating nearly isometric motions [3, 41, 46]. In this way we
conveniently impose local rigidity through the deformation
field, without need for a control grid as in embedded defor-
mation [44] and as-rigid-as-possible modelling [42].

Multiview and template-based surface tracking Exter-
nal constraints help to alleviate the highly unconstrained na-
ture of non-rigid registration. The system of Zollhöfer et
al. [57] deforms a template to incoming depth frames in real
time, but requires the subject to stay absolutely still during
the template generation, which cannot be guaranteed when
scanning animals or kids. Multi-camera setups are another
way to avoid the challenging task of incrementally building
a model. Fusion4D [10] recently demonstrated a power-
ful real-time performance capture system using 24 cameras
and multiple GPUs, which is a setup not available to the
general user. Moreover, Section 8 of [10] states that even
though Fusion4D deals with certain topology changes, the
algorithm does not address the problem intrinsically.

Incremental non-rigid reconstruction from a single
RGB-D stream The convenience of using a single sensor
makes incremental model generation highly desirable. Dou
et al. [11] proposed a pipeline that achieves impressive qual-
ity thanks to a novel non-rigid bundle adjustment, which
may last up to 9-10 hours. DynamicFusion [32] was the
first approach to simultaneously reconstruct and track the
surface motion in real time. VolumeDeform [20] extended
the method, combining dense depth-based correspondences
with matching of sparse SIFT features across all frames in
order to reduce drift and handle tangential motion in scenes
of poor geometry. While both works demonstrate com-
pelling results, the shown examples suggest that only rel-
atively controlled motion can be recovered. We aim to uti-
lize the properties of distance fields in order to achieve full
evolution under free general motion.

http://campar.in.tum.de/personal/slavcheva/deformable-dataset/index.html
http://campar.in.tum.de/personal/slavcheva/deformable-dataset/index.html


3. Preliminaries

In the following we define our mathematical notation and
outline the non-rigid reconstruction pipeline.

3.1. Notation

Our base representation is a signed distance field (SDF),
which assigns to each point in space the signed distance to
its closest surface location. One of its characteristic geo-
metric properties is that its gradient magnitude equals unity
everywhere where it is differentiable [35]. It is widely used
since it can be easily converted to a mesh via marching
cubes [29] - the surface is the zero-valued interface between
the negative inside and positive outside.

SDF generation is done in a pre-defined volume of phys-
ical space, discretized into voxels of a chosen side length.
The function φ : N3 7→ R maps grid indices (x, y, z) to the
signed distance calculated from the center of the respective
voxel. We follow the usual creation process [40, 56], where
additionally a confidence weight counting the number of
observations is associated with each voxel. We also apply
the standard practice of truncating the signed distances. In
our case, voxels further than 10 voxels away from the sur-
face are clamped to ±1. This also serves the purpose of a
narrow-band technique, as we only estimate the deforma-
tion field over the near-surface non-truncated voxels.

In the given discrete setting, all points in space that be-
long to a certain voxel obtain the same properties. Thus an
index (x, y, z) ∈ N3 refers to the whole voxel.

Our goal is to determine a vector field Ψ: N3 7→ R3

that aligns a pair of SDFs. It assigns a displacement vector
(u, v, w) to each voxel (x, y, z). This formulation is similar
to VolumeDeform [20] where the deformation field is of the
same resolution as the cumulative SDF, while DynamicFu-
sion [32] only has a coarse sparse control grid. However,
both require a 6D motion to be estimated per grid point,
while a 3D flow field is sufficient in our case due to the
dense smooth nature of the SDF representation and the use
of alignment constraints directly over the field. Moreover,
this makes the optimization process less demanding.

3.2. Rigid Component of the Motion

Although the whole motion from target to reference can
be estimated as a deformation, singling out the rigid part of
the motion serves as a better initialization. The deformation
field is initialized from the previous frame, so we determine
frame-to-frame rigid camera motion. We use the SDF-2-
SDF registration energy [40] which registers pairs of voxel
grids by direct minimization. We prefer this over ICP where
the search for point correspondences can be highly erro-
neous under larger deformation. Nevertheless, any robust
rigid registration algorithm of choice can be used instead.

3.3. Overview

We accumulate the model φglobal in its canonical
pose via the weighted averaging scheme of Curless and
Levoy [7]. Given a new depth frame Dn, we register it
to the previous one and obtain an estimate of its pose rel-
ative to the global model. Next, we generate a projective
SDF φn from this pose. The remaining task is to estimate
the deformation field Ψ which will best align φglobal and
φn(Ψ), explained in detail in the next section. The field is
estimated iteratively and after each step the increment is ap-
plied on φn, updating its values using trilinear interpolation.
Once the minimization process converges, we fuse the fully
deformed φn(Ψ) into the model via weighted averaging.

The choice to deform the live frame towards the canon-
ical model and not vice versa is based on multiple reasons.
On the one hand, this setting is easier for data fusion into the
cumulative model. On the other hand, the global SDF has
achieved a certain level of regularity after sufficiently many
frames have been fused, while a single Kinect depth image
is inevitably noisy. Thus, if the model is deformed towards
the live frame without imposing enough rigidity, there is a
high risk that it would grow into the sensor noise.

4. Non-rigid Reconstruction
In this section we describe our model for determining the

vector field Ψ that aligns φn(Ψ) with φglobal.

4.1. Energy

Our level-set-based, and thus correspondence-free, non-
rigid registration energy is defined as follows:

E non
rigid

(Ψ) = Edata(Ψ) + ωkEKilling(Ψ) + ωsElevel
set

(Ψ) . (1)

It consists of a data term and two regularizers whose influ-
ence is controlled by the factors ωk and ωs.

Data term The main component of our energy follows
the reasoning that under perfect alignment, the deformed
SDF and the cumulative one would have the same signed
distance values everywhere in 3D space. Therefore the flow
vector (u, v, w) applied at each voxel (x, y, z) of the current
frame’s SDF φn will align it with φglobal. For brevity we
omit the dependence of u, v, w on location:

Edata(Ψ) =
1

2

∑
x,y,z

(
φn(x+ u, y + v, z + w)−

−φglobal(x, y, z)
)2
.

(2)

Motion regularization To prevent uncontrolled deforma-
tions, e.g. in case of spurious artifacts caused by sensor
noise, we impose rigidity over the motion. Existing ap-
proaches typically employ an as-rigid-as-possible [42] or an



embedded deformation [44] regularization, which ensures
that the vertices of a latent control graph move in an approx-
imately rigid manner. We take a rather different strategy and
impose local rigidity directly through the deformation field.

A 3D flow field generating an isometric motion is called
a Killing vector field [3, 41, 46], named after the mathe-
matician Wilhelm Killing. It satisfies the Killing condition
JΨ + J>Ψ = 0, where JΨ is the Jacobian of Ψ.

A Killing field is divergence-free, i.e. it is volume-
preserving, but does not regularize angular motion. A field
which generates only nearly isometric motion and thus bal-
ances both volume and angular distortion is an approxi-
mately Killing vector field (AKVF) [41]. It minimizes the
Frobenius norm of the Killing condition:

EAKVF(Ψ) =
1

2

∑
x,y,z

||JΨ + J>Ψ ||2F . (3)

However, as we are handling deforming objects, this
constraint might be too restrictive. Thus, we propose to
damp the Killing condition. In order to do so, we rewrite
Eq. 3 using the column-wise stacking operator vec(·):

EAKVF(Ψ) =
1

2

∑
x,y,z

vec(JΨ + J>Ψ )>vec(JΨ + J>Ψ ) =

=
∑
x,y,z

vec(JΨ)>vec(JΨ) + vec(J>Ψ )>vec(JΨ) .
(4)

Next, we notice that the first term can be written as:

vec(JΨ)>vec(JΨ) = |∇u|2 + |∇v|2 + |∇w|2 , (5)

which is the typical motion smoothness regularizer used in
scene and optical flow [19, 45, 52]. It only encourages that
nearby points move in a similar manner, but does not ex-
plicitly impose rigid motion. Based on this observation, we
devise the damped Killing regularizer

EKilling(Ψ) =

=
∑
x,y,z

(
vec(JΨ)>vec(JΨ) + γvec(J>Ψ )>vec(JΨ)

)
, (6)

where γ controls the trade-off between Killing property and
volume distortion penalization, so that non-rigid motions
can also be recovered. A value of γ = 1 corresponds to the
pure Killing condition. We refer the interested reader to the
supplementary material for a more detailed derivation.

Level set property To ensure geometric correctness dur-
ing the evolution of φn, the property that the gradient mag-
nitude in the non-truncated regions of an SDF is unity has
to be conserved [35]:

Elevel
set

(Ψ) =
1

2

∑
x,y,z

(
|∇φn(x+u, y+v, z+w)|−1

)2
. (7)

It is important to note that a subsequent work of the same
authors proposes an improved regularizer for maintaining
the level set property [27]. However, it is only useful when
the function to be evolved is initialized with a piecewise
constant function, and not a signed distance one. As we
are initializing φn with an SDF, the regularizer of Eq. 7 is
absolutely sufficient for the considered application.

4.2. Energy Minimization

One of the main benefits of our energy formulations is
that it can be applied to each voxel independently, as each
term only contains values of the current estimates for the de-
formation field and SDFs or their derivatives. Therefore the
displacement vector updates can be computed in parallel.

We follow a gradient descent scheme. It is variational
since Ψ is a function of coordinates in space. Only final
results of the Euler-Lagrange equations are presented here,
with full derivations given in the supplementary material.

We separate the 3D vector field Ψ into its spatial com-
ponents, each of which is a scalar field. This allows us to
calculate partial derivatives of the energy terms in each spa-
tial direction and to combine them into vectors in order to
execute the gradient descent steps.

To ease notation, we will no longer specify summation
over voxel indices. Further, we will write φ(Ψ) instead of
φ(x+u, y+v, z+w) to refer to the value of φ after the de-
formation field has been applied. Note that the summation
of integer- and real-valued indices is not problematic, since
interpolation is done after every step. We thus obtain the
following derivatives with respect to the deformation field:

E′data(Ψ) =
(
φn(Ψ)− φglobal

)
∇φn(Ψ) , (8)

E′Killing(Ψ) = 2Huvw

(
vec(J>Ψ ) vec(JΨ)

)(
1
γ

)
, (9)

E′level
set

(Ψ) =
|∇φn(Ψ)| − 1

|∇φn(Ψ)|ε
Hφn(Ψ) ∇φn(Ψ) . (10)

Here ∇φn(Ψ) ∈ R3×1 is the spatial gradient of the de-
formed SDF of frame number n and Hφn(Ψ) ∈ R3×3 is its
Hessian matrix, composed of second-order partial deriva-
tives. Similarly, Huvw =

(
Hu Hv Hw

)
is a 3 × 9 ma-

trix consisting of the 3 × 3 Hessians of each component of
the deformation field. To avoid division by zero we use | · |ε,
which equals the norm plus a small constant ε = 10−5.

Finally, we obtain the new state of the deformation field
Ψk+1 as a gradient descent step of size α starting from Ψk:

Ψk+1 = Ψk − α E′non
rigid

(Ψk) . (11)

The field of each incoming frame is initialized with that of
the previous frame. Naturally, for the very first frame the
initial state is without deformation. Registration is termi-
nated when the magnitude of the maximum vector update
in Ψ falls below a threshold of 0.1 mm.
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Figure 3. Comparison under topological changes. Our level-set-based KillingFusion fully evolves into the correct geometric shape between
frames, while VolumeDeform [20] does so only partially (3rd and 5th live frames), which is reflected as artifacts in the final reconstruction.

4.3. Implementation Details

Equations 8-10 are highly suitable for parallelization as
the update for each voxel depends only on its immediate
neighbourhood. Thus we opted for a GPU implementation,
which we tested on an NVIDIA Quadro K2100M. It runs at
3-30 frames per second for all shown examples. In partic-
ular, it takes 33 ms for a grid consisting of approximately
803 voxels. Naturally, speed decreases with increasing grid
resolution. However, the slowdown is not cubic, since only
the near-surface voxels contribute for the deformation field
estimation, which typically constitute less than 10% of all.

5. Results
This section contains qualitative and quantitative evalu-

ation of the proposed non-rigid reconstruction framework.
The parameters were fixed as follows: gradient descent step
α = 0.1, damping factor for the Killing energy γ = 0.1,
weights for the motion and level set regularization respec-
tively ωk = 0.5, ωs = 0.2. The choice of values for ωs
and ωk not only balances their influence, but also acts as
normalization since signed distances are truncated to the in-
terval [−1; 1], while the deformation field contains vectors
spanning up to several voxels. We used a voxel size of 8 mm
for human-sized subjects and 4 mm for smaller-scale ones.

Changing topology and large inter-frame motion The
first experiments that we carried out focus on highlight-

ing the strengths of our KillingFusion compared to other
single-stream deformable reconstruction pipelines: chang-
ing topology and rapid motion between frames. To be able
to quantify results, we used mechanical toys that can both
deform and move autonomously. We first reconstructed
them in their static rest pose using a markerboard for exter-
nal ground-truth pose estimation. Then we recorded their
non-rigid movements starting from the rest pose, which lets
us evaluate the error in the canonical-pose reconstruction.

We shared our recordings with the authors of VolumeDe-
form [20], who kindly run the Frog, Duck and Snoopy se-
quences and gave us their final canonical-pose reconstruc-
tions and videos of the model warped onto the live images.

Figures 3 and 4 juxtapose our results. Note that the re-
constructions are partial because these objects do not com-
plete 360◦ loops. Both approaches perform well under
general motion. However, the third and fifth Frog live
frames demonstrate that VolumeDeform, as an example of a
method that determines mesh-based correspondences, does
not track topological changes. Similarly, the latter three
Snoopy live frames show that it cannot recover once a topo-
logical change occurs when the feet touch. Furthermore, the
rapid ear motion, making a full revolution from horizontal
to vertical position and back within 5 frames, cannot be cap-
tured and causes artifacts in the final reconstruction, while
our level-set based KillingFusion fully evolves the surface
even in such cases. Thus SDFs are better suited for over-
coming large inter-frame motion and changing topology.
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Figure 4. Comparison of KillingFusion to VolumeDeform [20] under rapid motion and topological changes. Duck’s wings and Snoopy’s
ears make a complete up-down revolution within 5 frames, and Snoopy’s feet touch and separate several times. While a mesh-based method
does not handle such motions, our SDF-based approach fully captures the deformations. This is reflected in less artifacts and lower error in
the final model. Live frames are in chronological order, the objects do not complete 360◦ loops. Red is saturated at 1 cm in all error plots.

The last column of Figure 4 contains snapshots from
the evaluation of the canonical-pose outputs against the
groundtruth in CloudCompare2. Our models tend to be
less detailed than those of VolumeDeform due to the coarse
voxel resolution. However, we achieve higher geometric
consistency: our average errors are 3.5 mm on Snoopy and
3.9 mm on Duck, while those of VolumeDeform are 4.2 mm
and 5.4 mm respectively. Note that the voxel size we used
is 4 mm, indicating that our accuracy stays within its lim-
its. As expected, KillingFusion is closer to the groundtruth
model in the areas of fast motion, while VolumeDeform has

2CloudCompare - 3D Point Cloud and Mesh Processing Software,
http://www.danielgm.net/cc/.
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Figure 5. Canonical-pose result on a 360◦ sequence: KillingFusion
reconstructs a complete, geometrically consistent model.

accumulated artifacts there.
Finally, in Fig. 5 we scanned another object, which com-

pletes a full 360◦ loop while moving non-rigidly, in order to
demonstrate our capabilities to incrementally build a com-
plete water-tight model from scratch. The reconstruction er-
ror remained of the same order as for the partial view scans.

http://www.danielgm.net/cc/
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Figure 6. Comparison of our depth-only KillingFusion to Vol-
umeDeform [20] which additionally relies on the color frames for
SIFT matching: our reconstructions are of comparable fidelity.
In particular, our canonical model exhibits less artifacts where
larger motion occurred, e.g. around the neck which bends over
90◦. Moreover, our live frames show that KillingFusion follows
the folds of the neck more naturally (see marked regions).

Public single-stream RGB-D datasets Next, we tested
KillingFusion on the datasets used in related single-stream
non-rigid reconstruction works. We chose the sequences
that we identify as most challenging, i.e. exhibiting large
deformations and completing a full loop in front of the cam-
era, where available.

First, we tested KillingFusion on data from the Vol-
umeDeform publication [20]. The authors have also made
publicly available their canonical-pose and warped recon-
structions for every 100th frame. The comparison in Fig-
ure 6 shows that KillingFusion achieves similar quality. No-
tably, the second warped frame demonstrates that our SDFs
deform to the geometry more naturally: our warped model
replicates the skin folding around the neck, while the model
of VolumeDeform does not bend further than a certain ex-
tent, causing artifacts in the final reconstruction as well.
This is similar to the behaviour we observed on our own
rapid motion recordings. In conclusion, another dataset also
indicates that level set evolution allows to capture larger
motion better than mesh-based techniques.

Next, we run KillingFusion on 360◦ sequences used in
Dou et al.’s offline non-rigid bundle adjustment paper [11]
and DynamicFusion [32]. As we do not have the authors’
resulting meshes, we show snapshots available from the
publications. KillingFusion manages to recover a complete
model of comparable fidelity to the other techniques. In
particular, despite the coarse voxel resolution, it preserves
fine-scale details such as noses, ears and folds on shirts after
a full loop around the subject.
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Figure 7. Comparison to the offline bundle adjustment method of
Dou et al. [11]: our KillingFusion achieves similar quality at real
time, preserving fine structures, such as shirt folds and the nose,
after a full loop around the subject.
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Figure 8. KillingFusion result on the full-loop Squeeze se-
quence from DynamicFusion [32], showing front and back of the
canonical-pose reconstruction.

(a) all terms (b) ωs = 0 (c) ωk = 0 (d) γ = 0 (e) γ = 1
Figure 9. Evaluation of energy component effects. (a) Standard
parameter setting. (b) No level set property preservation. (c) No
motion regularization. (d) Conventional motion smoothness with-
out a Killing component. (e) Pure Killing condition.

Contributions of energy components In order to con-
firm that all regularizers from our non-rigid energy for-
mulation are essential, we studied their effects in Fig. 9.
The model is not smooth and fine artifacts, visible as small
holes, appear without the level set property (Fig. 9b), be-
cause it has been violated in places during the SDF evo-
lution. Without motion regularization (Fig. 9c), the mov-
ing parts of the object, such as the wings and head, get
destroyed as more frames are fused. In case of applying
standard motion smoothness, without enforcing divergence-
free Killing behaviour (Fig. 9d), the model is somewhat



Figure 10. Non-rigid registration of complete 3D shapes from the MIT dataset [49]. Starting with an initial SDF, we gradually evolve it to
match every next model in the sequence. Each pair shows our reconstruction along with its corresponding error plot (scale same as before).

smoother, but in several regions the geometry between dif-
ferent frames is inconsistent, resulting in holes. Conversely,
if we do not damp the Killing condition (Fig. 9e) and thus
the energy steers towards completely rigid motion, the non-
rigidly moving wings almost vanish. We empirically deter-
mined favourable values for γ to be between 0.05 and 0.3.

Multiview mesh datasets To show the generality of our
SDF-based approach, we run KillingFusion on the MIT
multiview mesh dataset [49], as done by Zollhöfer et
al. [57]. It contains several sequences of 150-200 meshes,
fused from multiview captures around people who are ex-
ecuting movements with considerably large deformation.
Therefore it also permits another quantitative evaluation.

Figure 10 shows our reconstructions throughout the se-
quences, together with the alignment error indicating the
deviation from the ground truth. We started with an SDF
initialized from the first mesh and continuously evolve it to-
wards the SDF corresponding to every next frame. While
the error tends to slightly increase over time, the effects of
drift accumulation are not severe. The model error remains
below 2 mm throughout both sequences, with an average
of 1.3 mm in D bouncing and 0.9 mm in T swing. We in-
cluded one of the dancing girl sequences, as they are typi-
cally used in literature to demonstrate problems with topol-
ogy changes when the dress touches the legs [11] - but do
not cause a problem for KillingFusion. In particular, we no-
tice no larger artifacts near the dress edge than other areas
of the model. The biggest errors are, in fact, typically near
the hands of the subjects. This is because the used voxel
size of 8 mm does not always manage to recover fine struc-
tures like the fingers with absolute accuracy. Last but not
least, we noticed that if instead we deform the first SDF to
every frame, more iterations are required to converge, but
the errors do not change significantly.

6. Limitations and Future Work
The primary aim of our non-rigid reconstruction system

is to recover the 3D shape of the deforming object. As this
is done via level set evolution rather than by determining the
new position of each point, applications which require ex-
plicit point correspondences, such as texture mapping, fall
out of the scope of our approach. Thus we plan to inte-
grate backward tracking of point correspondences in level
sets [38] in order to open up further possibilities. More-
over, we plan to explore representing the flow field at a
coarser resolution grid using interpolation of radial basis
functions [55], so that a larger volume can be covered.

7. Conclusion
We have presented a novel framework for non-rigid 3D

reconstruction that inherently handles changing topology
and is able to capture rapid motion. Our lightweight en-
ergy formulation allows to determine dense deformation
flow field updates without correspondence search, based on
a combination of a newly introduced damped Killing mo-
tion constraint and level set validity regularization. A vari-
ety of qualitative and quantitative examples have shown that
KillingFusion can recover the geometry of objects undergo-
ing diverse kinds of deformations. We believe our contribu-
tion is a step forward towards making real-time recovery of
unconstrained motion truly available to the general user.
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[34] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stamminger.
Real-time 3D Reconstruction at Scale using Voxel Hashing.
ACM Transactions on Graphics (TOG), 2013. 1

[35] S. Osher and R. Fedkiw. Level Set Methods and Dynamic
Implicit Surfaces, volume 153 of Applied Mathematical Sci-
ence. Springer, 2003. 2, 3, 4

[36] S. Osher and J. Sethian. Fronts Propagating with Curvature-
dependent speed: Algorithms based on Hamilton-Jacobi For-
mulations. Journal of Computational Physics, 79(1):12–49,
1988. 2

[37] N. Paragios, M. Rousson, and V. Ramesh. Non-rigid Reg-
istration Using Distance Functions. Computer Vision and
Image Understanding (CVIU), 89(2-3):142–165, 2003. 2

[38] J. Pons, G. Hermosillo, R. Keriven, and O. Faugeras. How
to Deal with Point Correspondences and Tangential Veloci-
ties in the Level Set Framework. In 9th IEEE International
Conference on Computer Vision (ICCV), 2003. 8

[39] J. Quiroga, T. Brox, F. Devernay, and J. Crowley. Dense
Semi-rigid Scene Flow Estimation from RGBD Images. In
European Conference on Computer Vision (ECCV), 2014. 2

[40] M. Slavcheva, W. Kehl, N. Navab, and S. Ilic. SDF-2-SDF:
Highly Accurate 3D Object Reconstruction. In European
Conference on Computer Vision (ECCV), 2016. 3

[41] J. Solomon, M. Ben-Chen, A. Butscher, and L. Guibas. As-
Killing-As-Possible Vector Fields for Planar Deformation.
Computer Graphics Forum (CGF), 30(5), 2011. 2, 4

[42] O. Sorkine and M. Alexa. As-Rigid-As-Possible Surface
Modeling. In Fifth Eurographics Symposium on Geometry
Processing (SGP), 2007. 2, 3
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