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Abstract

In this paper, we propose a method for simultaneous human full-body pose tracking
and activity recognition from time-of-flight (ToF) camera images. Simple and sparse
depth cues are used together with a prior motion model that constrains the tracking prob-
lem. Our model consists of low-dimensional manifolds of feasible poses for multiple
activities. A particle filter allows us to efficiently evaluate various pose hypotheses over
different activities and to select one that is most consistent with the observed depth image
cues. We relate poses in the manifold embeddings to full-body poses and to observable
depth cues using non-linear regression mappings. Our method is able to robustly detect
changes of activity and adapt accordingly. We evaluate our method on a dataset contain-
ing 10 activities for 10 persons and show that we can track full-body pose and classify
performed activities with a high precision which is discussed in the paper.

1 Introduction
Recent technological advances have lead to the development of cameras that measure depth
by means of the time-of-flight (ToF) principle [15]. ToF cameras allow capturing an entire
scene instantaneously, and thus provide depth images in real-time. Despite the relatively low
resolution, this type of data offers a clear advantage over conventional cameras for some ap-
plications. Human-machine interaction is an example where real-time is required and where
depth information is a valuable cue. In this paper, we investigate the use of depth cues from
ToF cameras for interactions governed by human motion. Specifically, we propose a method
both to recognize the current activity and to track the full-body pose of a person observed by
a ToF camera. Simultaneous recognition and tracking allows for rich interactions, since the
exact pose and variations, e.g. the speed of execution, can be taken into account.

Over the past years, action recognition and pose estimation from monocular videos [10,
17, 23] have received a lot of attention. These are difficult problems since the 2D projection
of human movements is, by the nature of the imaging process, prone to ambiguities. The
problem can be simplified if depth cues are provided [26]. The use of 3D data has been
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Figure 1: Overview of the proposed full-body tracking and activity recognition method.
The learned prior motion model is based on low-dimensional, activity-specific manifolds of
feasible poses. A particle filter is used to sample the reduced pose space. The highest-scoring
hypothesis is used for activity classification and full-body pose estimation.

studied in [25] for action recognition and in [19] for pose estimation using a multi-view
camera system and 3D laser scanners, respectively. These types of observations are difficult
to obtain in real-time and require complex hardware. ToF cameras avoid such problems and
permit building systems that are suitable for 3D interactions [7, 21]. However, ToF data is
sparse and suffers from noise and motion blur, and gives rise to other challenges in action
recognition and especially full-body tracking.

We propose an efficient method for activity recognition and body tracking based on sim-
ple depth features, a strong prior motion model and a sampling-based inference approach
(Figure 1). Our motion model removes the need for fitting a skeleton using computationally
expensive optimisation techniques, as in [2], and allows us to rely on easily obtainable depth
features for tracking. To prevent being dependent on error prone body part detection in ToF
data, we design a global feature representation describing the human body shape at each
instant. As opposed to feature descriptors commonly used for 3D shape recognition [7, 12],
our feature representation varies continuously with the performed motion.

The central component of our method is the prior motion model that is based on a set
of low-dimensional manifold embeddings for each activity of interest. We apply a mani-
fold learning technique [3] to generate the embeddings from full-body pose training data.
Each of the embeddings acts as a low-dimensional parametrisation of feasible body poses
[4] that we use to constrain the tracking problem. Instead of exhaustively searching the
high-dimensional full-body pose space, we deploy a particle filter in the low-dimensional
manifold embedding space. This way, our method is able to track multiple pose hypotheses
for different activities and to select one that is most consistent with the depth cue observa-
tions. In order to link the manifold embeddings to full-body poses (joint angles) and obser-
vations (depth features), we learn predictive mappings by means of non-linear regression.
Our approach combines the distinctiveness of multiple local, activity-specific motion mod-
els into a global model capable of recognising and tracking multiple activities from simple
observations. The results provided in the evaluation section demonstrate accurate activity
recognition and full-body tracking for 10 persons and 10 different activities.

1.1 Related Work

Recently, several approaches for human action (or gesture) recognition using ToF images
have been proposed. For instance, Penne et al. use a ToF camera for hand gesture recognition
with the aim of manipulating a medical 3D dataset [16, 21]. The method is based on a
classifier trained to distinguish the surface appearance of a set of pre-defined hand poses.
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Holte et al. describe a technique for recognizing upper-body gestures, such as raising one or
both arms, from ToF camera images [7]. Jensen et al. propose an approach for gait tracking
using whole-body ToF images [11]. The method is based on localising leg joint positions in
range images of a person walking on a treadmill. Zhu et al. present a technique for upper-
body tracking by fitting a body model to the ToF data, after identification of anatomical
landmarks [27]. A more general, whole-body tracking approach is described by Plagemann
et al. [5, 18]. Their method detects interest points in each ToF image and associates them
with hands, head and feet of a body model. As opposed to separately targeting recognition
[7, 16, 21] and tracking [5, 11, 27], we perform the two tasks simultaneously. Moreover, the
aforementioned approaches for pose tracking are highly dependent on detecting body parts
in the ToF data and are therefore susceptible to noise and self-occlusions. Another strategy
for feature extraction is to use general 3D shape descriptors, such as shape contexts or spin
images [12]. This type of features have been used for gesture recognition from ToF data [7].
However, these descriptors are mainly suitable for shape classification and do not adequately
represent subtle pose changes, as required for full-body tracking. We design a simple but
general feature descriptor that, first, does not rely on body-part detection and, second, varies
smoothly with the movements of a person. In fact, it is our prior motion model that enables
full-body tracking from such simple depth cues.

Prior models have been used for constraining the tracking problem from observations
such as silhouettes in monocular videos [10, 23] or wearable sensor data [20]. The common
idea is to avoid searching the high-dimensional full-body pose space and to use a learned
parametrisation of feasible human poses instead. Several authors have proposed tracking
methods based on the Gaussian Process Latent Variable Model (GPLVM) [22, 23], where
a low-dimensional latent space of poses for a given activity is learned from training data.
Other authors use manifold learning techniques, such as Isomap [10] or Laplacian Eigen-
maps [17], for obtaining low-dimensional pose priors. We also choose a manifold learning
method over GPLVMs since the latter are computationally significantly more expensive. In
addition, manifold embeddings have the favourable property of preserving the local spatial
relationships of the high-dimensional input data.

2 Method
We propose a method for full-body pose tracking and activity recognition from simple depth
cues. The problem is constrained by means of a prior motion model learned during a training
phase from full-body pose data (Figure 1). Our model is based on activity-specific manifold
embeddings that can be seen as an independent, low-dimensional parametrisation of feasible
poses for each activity of interest.

Formally, let y ∈Rdy denote a full-body pose, consisting of the joint angles of our skele-
ton model and let s ∈ Rds be a feature vector representing a ToF depth image (section 2.1).
We are given a training dataset of labelled full-body poses and ToF feature vectors {Yα ,Sα},
α ∈ {1, . . . ,M}, for M activities of interest. Each activity α contains Nα training poses, i.e.
Yα = [yα

1 , . . . ,yα
Nα

] and Sα = [sα
1 , . . . ,sα

Nα
]. During the training phase, our objective is to

learn a prior motion model based on manifold embeddings Xα = [xα
1 , . . . ,xα

Nα
] for each ac-

tivity (section 2.2). The link from positions in embedding space to full-body poses and
feature vectors is created by means of two predictive mappings learned from training data
using non-linear regression. We also introduce prior knowledge for keeping pose predictions
close to the poses in the training dataset and for modelling the activity switching process.
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Figure 2: ToF feature extraction process. a) Filtered depth image, b) background image, c)
3D segmented foreground, d) feature descriptor based on 3D vectors (lines) from the centroid
of the segmented person to extremal points on the surface boundary (crosses).

In the testing phase, we wish to recognize the performed activity α̂t and to predict the
full-body pose ŷt at every time step t, given only observed feature vectors st . We model
the state of our dynamic system as a pair (α̂t , x̂t) of an activity index and a position in the
corresponding manifold embedding. For state inference, we employ a particle filter that effi-
ciently samples the embedding space and tracks multiple pose hypotheses (section 2.3). The
features, the prior motion model and the inference approach are described in the following.

2.1 Feature Extraction from ToF Images
Given a ToF depth map It at time t, we obtain a feature vector st ∈Rds in three steps: (1) pre-
processing of the image to remove noise and to convert the depth map to 3D information, (2)
segmentation of the person from the scene background and (3) extraction of simple features
related to the boundaries of the observed 3D point cloud. Initially, we apply a median filter
to the depth map to remove noise. We then transform the filtered depth map to a 3D point
cloud using the intrinsic parameters of the ToF camera [6]. This representation of the scene,
denoted by Ĩt , is invariant to scaling caused e.g. by the person moving towards the camera.
In order to segment a person in front of the ToF camera, we perform static background sub-
traction [14]. This process is illustrated in Figure 2. We discard all 3D points in Ĩt if their
z coordinate is close to that of the corresponding points in the background model Ĩbg. The
centroid of the remaining 3D points is computed and the 3D space occupied by the points is
divided into b cells, followed by determining the bounding box of each cell. We then extract
the vectors vk, k ∈ {1, . . . ,d}, connecting the centroid to the bounding box corners that are
furthest apart and closest to the camera. These corner points are equivalent to a sparse sil-
houette representation but in 3D. The feature descriptor is then given by st = [v1 . . .vb]>. For
noise reduction, we apply a moving average that includes the previous feature vector st−1.

2.2 Low-dimensional Prior Motion Model
The prior motion model consists of the following components that are learned for each ac-
tivity: (1) a low-dimensional manifold embedding of feasible poses, (2) predictive mappings
from embedding space to full-body space and to feature space, (3) a pose likelihood prior
and (4) an activity switching prior. These components are now described in more detail.

Manifold Embeddings. For each activity α ∈ {1, . . . ,M}, we learn a manifold embed-
ding Xα = [xα

1 , . . . ,xα
Nα

] from the full-body pose training data Yα . Each embedding point
xα

i ∈ Rdx corresponds to a full-body pose yα
i ∈ Rdy and dx � dy. The full-body pose rep-
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Figure 3: Learned motion models for 4 activities. a) Manifold embeddings obtained from
full-body pose training data. Each point on the manifolds (left) corresponds to a full-body
pose (right). Static pose priors (b) and activity switching priors (c) in embedding space.

resentation is based on our skeleton model with dy = 35 degrees of freedom. We generate
the manifold embeddings using Laplacian Eigenmaps [3]. Our experiments have shown that
2D embeddings are already discriminative enough to represent different poses of one activ-
ity. Increasing the dimensionality thus mainly affects computational efficiency. Note that
the system state is not required to coincide exactly with the known embedding points xα

i ,
allowing us to track poses that differ from the training data.

Predictive Mappings. In order to predict full-body poses ŷ and depth feature vectors ŝ
from given manifold embedding positions x, we define the predictive mappings f α

xy : Rdx →
Rdy and f α

xs : Rdx → Rds for each activity α . Following the approach in [13, 17], we use
non-linear kernel regression to model these mappings as

ŷ = f α
xy(x) =

Nα

∑
i=1

k(x,xα
i )

∑
Nα

j=1 k(x,xα
j )

yα
i and ŝ = f α

xs(x) =
Nα

∑
i=1

k(x,xα
i )

∑
Nα

j=1 k(x,xα
j )

sα
i , (1)

where k(·, ·) is a Gaussian kernel function with a width that we determine from the stan-
dard deviation of the embedding points xα

i . Intuitively, the mappings compute a weighted
average of the full-body poses yα

i and feature vectors sα
i in the training data, with weights

proportional to the similarity of the embedding location x to the embedding points xα
i .

Pose Likelihood Priors. The pose likelihood prior ppose(α,x) gives the probability that
an embedding space position x represents a valid human pose of activity α . Intuitively,
we want this probability to be high for locations close to the embedding points xα

i . Fig-
ure 3 gives examples of pose likelihood priors. We define the prior as a distance trans-
form in manifold embedding space, with a distance measure given by k(·, ·): ppose(α,x) =
maxi∈{1,...,Nα} k(x,xα

i ). This expression is essentially equivalent to a kernel density estimate
(KDE), with the summation in the KDE being replaced by a maximum. This ensures that the
prior probability does not increase if a pose is repeated more than others (e.g. due to very
slow movements).

Activity Switching Priors. The activity switching prior pswitch(α,x) describes how
likely an activity switch is at a location x on the embedding of activity α . To ensure gen-
erality, we allow activity switching from any pose with constant minimum probability pk.
However, we let the probability of switching increase for poses that typically occur between
subsequent activities. In our experiments, the upright standing pose was used as an in-
termediate pose. We model the switching prior with a normal distribution pswitch(α,x) =
N ( f α

xy(x);y0,Σ
α
y )+ pk, where y0 represents the intermediate pose in full-body space, f α

xy(x)
is a predicted pose and Σα

y is the diagonal covariance matrix of the training data Yα .
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2.3 Pose Tracking and Activity Recognition
We infer the state (α̂t , x̂t) of our dynamic system at each time step by means of a particle
filter [8, 9] that allows estimating the posterior density of states given the observed features.
The algorithm updates the particles iteratively following a dynamics model and an obser-
vation model. We initialize n particles pi

0 = (α i
0,x

i
0), i ∈ {1, . . . ,n}, with locations across

all manifold embeddings. Initially, the particle locations are randomly chosen according to
the probabilities given by the pose likelihood priors ppose(α,x). The weights wi

0 associ-
ated with the particles are initialized uniformly. Then, for each iteration t, we perform the
following steps: (1) Given the particles and weights {pi

t−1,w
i
t−1} from time t − 1, select

particles with a probability proportional to their weight, to obtain the new set {p̄i
t−1, w̄

i
t−1}.

(2) Compute a prediction pi
t = (xi

t ,α
i
t ) for each particle by sampling from the dynamics

model p(xt ,αt |x̄i
t−1, ᾱ

i
t−1). (3) Evaluate each particle pi

t against the current observation st by
computing its weight wi

t = p(st |xi
t ,α

i
t ) using the observation model.

Dynamics Model. The dynamics model governs the evolution of particles through state
space. It represents the probability distribution for new pose hypotheses, based on a previous
particle state, p̄i

t−1 = (ᾱ i
t−1, x̄

i
t−1). Following [9], we define it to be a product of two terms:

p(xt ,αt |x̄i
t−1, ᾱ

i
t−1) = p(xt |x̄i

t−1,αt , ᾱ
i
t−1) p(αt |x̄i

t−1, ᾱ
i
t−1), (2)

p(xt |x̄i
t−1,αt , ᾱ

i
t−1) =

{
p(xt |x̄i

t−1) if αt = ᾱ i
t−1,

ppose(αt ,xt) else. (3)

p(αt |x̄i
t−1, ᾱ

i
t−1) =

{
1 if αt = ᾱ i

t−1,
pswitch(ᾱ i

t−1, x̄
i
t−1) else. (4)

The pose dynamics model (Equation 3) describes particle movement through the embedding
space. When no activity switch occurs, we define it to be a random walk p(xt |x̄i

t−1) =
N (xt ; x̄i

t−1,Σ
αt
x ), otherwise, ppose is used. Here, Σαt

x is the diagonal covariance matrix of
the manifold embedding points Xαt . The activity transition model (Equation 4) describes
the activity switching process. It is based on the assumption that switching to all activities
is equally likely and that the probability of an activity switch only depends on the previous
particle location x̄i

t−1 in the embedding space of activity ᾱ i
t−1.

The prediction step for a particle from p̄i
t−1 to pi

t consists of the following steps. We
sample the activity transition model (Equation 4) by selecting a new activity index α i

t .
With a probability proportional to pswitch(ᾱ i

t−1, x̄
i
t−1), this activity is randomly chosen such

that α i
t 6= ᾱ i

t−1. We determine the new particle location xi
t by sampling the pose dynamics

model (Equation 3). The new location is a random walk from the previous position, x̄i
t−1, if

α i
t = ᾱ i

t−1. Otherwise, the particle is placed on the manifold embedding of the new activity,
following the pose likelihood prior that favours locations close to the training poses.

Observation Model. The observation model allows evaluating how consistent the pose
hypothesis represented by a particle is with the observed depth features. We define the
observation model as a product of three terms – a prediction term, a pose smoothness term
and the pose likelihood prior:

p(st |xi
t ,α

i
t ) = N (st ; f α i

t
xs (xi

t),Σ
α i

t
s ) N (yt−1; f α i

t
xy (xi

t),Σ
α i

t
y ) ppose(α i

t ,x
i
t). (5)

The prediction term uses the learned mapping f α
xs(x) to predict depth feature vectors from

an embedding position xi
t . This term is maximal if the prediction perfectly matches the
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true observation st . To reduce the influence of outlier observations, the smoothness term
penalizes pose hypotheses if their predicted full-body pose differs strongly form the previous
pose yt−1. Σα

s and Σα
y are the diagonal covariance matrices of the training observations and

full-body poses for the respective activity.

State Estimation. We determine the system state at every time instant t as follows: The
estimated activity α̂t is selected as the most frequent activity among the k particles with the
highest weights. The pose estimate x̂t in manifold embedding space is computed as a convex
combination of the positions of the highest-weight particles with activity α̂t . Finally, we
predict the full-body pose as ŷt = f α̂t

xy (x̂t).

3 Experiments and Results

The following sections present the results of our evaluation. Since a synchronized dataset of
ToF images and motion capture data is not available online, we recorded a database using
a PMDVision CamCube ToF camera (204× 204 pixels resolution) and an ART Dtrack2
tracking system. Depth features were extracted from the ToF images by subdividing the
segmented 3D point cloud into 16 cells (8 vertical, 2 horizontal). The feature descriptor thus
has ds = 16×3 = 48 dimensions. We generated manifold embeddings of dx = 2 dimensions.

We considered M = 10 activities: clapping, golfing, hurrah (arms up), jumping jack, knee
bends, picking something up, punching, scratching head, playing the violin and waving.
Each of the movements was recorded 6 times with 10 actors. The testing data consists
of 6 sequences per actor containing all activities in a row (∼ 1500 frames per sequence).
Only the depth features were used for testing, the motion capture data served as ground
truth. Our experiments on classification (section 3.2) and pose estimation (section 3.3) were
performed in a cross-validation scheme, i.e. each testing sequence was generated from one
of the recordings per activity and actor, using the remaining five for training.

3.1 Pose Tracking

All presented experiments have been performed with n = 300 particles. The appropriate
number of particles grows linearly with the number of considered activities. Using 300
particles, sufficiently many particles can sample the 10 embeddings, while keeping the com-
putational complexity reasonable (our MATLAB code runs at 1 frame per second).

Figure 4 illustrates the behaviour of the particle filter on a sample sequence of two ac-
tivities: pickup and golfing. The figure shows two out of the 10 used manifold embeddings.
When the person starts leaning forward for picking something up (frame 33), the number of
particles sampling the pickup manifold quickly increases and remains at a high level (∼ 200
particles) until the person returns to the standing pose (frame 135). The number of particles
sampling a particular manifold embedding is a measure of the algorithm’s certainty about an
activity classification. A certain number of particles constantly samples all other manifold
embeddings. With the onset of the golfing move (frame 174), the particles on the golfing
manifold are attributed higher weights and take overhand. In practice, the particle filter al-
lows to robustly detect activity switches and thus to select the most suitable prior model for
pose estimation.
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Figure 5: (a) Activity classification results for one of the testing sequences. Ground truth
classification (green) and predicted activities (blue) are shown for each frame of the se-
quence. (b) Confusion matrix of the classification results for all testing sequences.

3.2 Activity Classification
Figure 5.(a) shows activity classification results for one of the testing sequences. Misclas-
sifications mainly occur at the beginning and end of activities which correspond to the idle
standing pose common to all activities. The confusion matrix in Figure 5.(b) gives the clas-
sification rates for all activities over all testing sequences. On average, we achieved a correct
classification rate of 92% for all non-idle frames. The matrix is mostly diagonal, minor con-
fusion only occurs between activities that consist of similar full-body poses, such as waving
and scratching head. Misclassification in these cases therefore does not necessarily affect
the precision of full-body pose estimation.

3.3 Pose Estimation Accuracy
We measured how precisely the poses estimated by our method match the ground truth using
two metrics. The angular error eang gives the deviation from the ground truth in terms of joint
angles. The distance error edist is the difference in 3D space between predicted joint locations
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clap golf hurrah jack knee pickup punch scratch violin wave
eang 3.00 4.02 5.47 8.78 4.64 3.51 3.67 2.56 3.64 2.83
σang 1.90 1.95 3.62 4.26 2.22 2.14 1.86 1.00 1.39 1.19
edist 20.1 37.4 28.5 53.1 41.3 29.9 23.8 15.7 24.8 16.2
σdist 10.7 18.6 14.6 24.0 17.9 22.5 10.5 6.3 8.8 6.6

Table 1: Pose estimation accuracy for all considered activities. Differences to ground truth
poses are shown as joint angles (eang in degrees per joint) and as distances (edist in millimeters
per joint), averaged over all experiments. Standard deviations σang and σdist are provided.

Figure 6: Illustration of pose estimation accuracy for sample frames of different activities.
Top: Segmented input 3D ToF data of a person. Bottom: Corresponding estimated (red) and
ground truth (blue) full-body poses.

and the ground truth. Averaged over all frames of the testing sequences, we achieved ēang =
4.21◦ per joint and ēdist = 29.1mm. As shown in Table 1, the deviation from the ground truth
only increases for fast movements with a large variability, such as jumping jack. Figure 6
illustrates the achievable accuracy qualitatively. Our results are comparable to other state-
of-the-art methods using visual observations as input [1, 24].

4 Discussion and Conclusion
The proposed motion analysis approach is intended for human-machine interaction appli-
cations, where a set of commands is defined in advance, allowing for a training phase. The
ability of our method to combine activity recognition and full-body tracking permits not only
triggering discrete commands with specific movements, but also performing fine-grained
control, e.g based on the exact pose and speed of execution. The introduced learned model
integrates prior knowledge on human motion, making it possible to handle the non-trivial
multi-activity tracking problem efficiently while relying on simple depth cues.

The depth images provided by ToF cameras are comparable to low-resolution stereo im-
ages without the computational complexity; they allow us to easily segment the foreground
and to extract features that are invariant to scale and translation. We do not explicitly address
rotational invariance. This is sufficient for interactions where the person is facing the camera.
Although the sequences in the experiments included small variations, more severe rotations
of the person would require to include lateral poses in the training data. Experiments using
a 2D version of our depth descriptor confirm the advantage of using the 3D information, as
well as the ability of our simple depth descriptor to capture the 3D information. As expected,
lower recognition rates are obtained (∼ 10% less) with confusions occurring especially be-
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tween movements that extend to the third dimension (e.g. punching, clapping).
We have presented a method for human motion analysis using simple depth cues from

ToF cameras. Our learned prior motion model enables simultaneous activity recognition and
full-body pose tracking. The method is efficient, since we track poses in a low-dimensional
space of manifold embeddings and use non-linear regression to relate the embedding space
to observations and to full-body poses. Experiments show that the method can reliably rec-
ognize movements of multiple activities and estimate full-body pose to a high precision.

Acknowledgements This work was partially supported by the German Federal Ministry
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