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Abstract. In this paper, a method is presented that allows reconstruct-
ing the full-body pose of a person in real-time, based on the limited input
from a few wearable inertial sensors. Our method uses Gaussian Process
Regression to learn the person-specific functional relationship between
the sensor measurements and full-body pose. We generate training data
by recording sample movements for different activities simultaneously
using inertial sensors and an optical motion capture system. Since our
approach is discriminative, pose prediction from sensor data is efficient
and does not require manual initialization or iterative optimization in
pose space. We also propose a SVM-based scheme to classify the ac-
tivities based on inertial sensor data. An evaluation is performed on a
dataset of movements, such as walking or golfing, performed by different
actors. Our method is capable of reconstructing the full-body pose from
as little as four inertial sensors with an average angular error of 4-6 de-
grees per joint, as shown in our experiments.

Keywords: Human pose estimation, Gaussian process regression, wear-
able inertial sensors, ambulatory motion analysis.

1 Introduction

Human motion analysis plays an important role in various fields of application,
such as industrial ergonomic studies or sports engineering, but especially in
the medical domain. Precise and quantitative representations of human motion
can help physicians in diagnosis, treatment planning and progress evaluation.
For instance, orthopedists use motion analysis to assess the status of diseases
affecting the skeletal system [1]. Neurologists analyze the movements of epilepsy
patients to identify the cortical locations that cause epileptic seizures [2].

Typical systems for acquisition of full-body motion work with optical track-
ing systems based on a stationary multiple camera setup. The person is often
required to wear cumbersome markers or suits and to stay within a dedicated
tracking volume. However, medical motion analysis can be most beneficial when
patient movements are monitored over extended periods of time and during ac-
tivities of daily life. In such cases, a pose estimation system using wearable body
sensors as an input is of great advantage. Patients equipped with a few wireless
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and light-weight sensors on their extremities could move naturally and follow
their everyday routine, while their movements are recorded. In contrast to exist-
ing ambulatory motion analysis systems that record only specific signals, such as
heart rate or step count [1,3,4], a mobile pose estimation system could provide
physicians with a reconstruction of full-body movements.

However, inferring full-body pose from inertial sensor data, such as accelera-
tion or orientation of individual body segments, is a challenging problem. The
sensor measurements typically exhibit high drift rates and provide only a lim-
ited number of constraints for analytical calculation of human pose, e.g. using
inverse kinematics [5,6,7]. Instead, we propose to use prior knowledge about fea-
sible human poses obtained from sample motions in a learning-based approach.
In a training phase, the person-specific functional relationship between the low-
dimensional sensor data and the full-body pose, acquired with a motion capture
system, is learned. After training, our method allows reconstructing the pose of
a person in real-time, given only the data of a few inertial orientation sensors
attached to the limbs (Figure 1). The focus of our method is not a generaliza-
tion across different actors, but the ability to model the particular motions of
individual persons for evaluation, as in the case of medical motion analysis.

The problem of estimating human pose from low-dimensional input data can
be approached using generative or discriminative learning techniques. In the for-
mer case, one searches for the joint angle configuration of a simplified skeleton
model that best fits the measured input data [8,9,10,11]. This typically requires
using costly iterative optimization algorithms. On the other hand, discriminative
methods learn a direct functional relationship from input data to joint angles,
allowing efficient pose prediction. Gaussian Process Regression (GPR) is a dis-
criminative learning technique that has been applied to predict full-body pose
from image-based input data, such as human silhouettes [12,13,14,15]. We pro-
pose to employ GPR for learning the direct mapping from inertial sensor data
to full joint angle configurations. To the best of our knowledge, a discrimina-
tive learning-based pose estimation approach using observations from wearable
sensors has not been proposed before.

In our method, person-specific GPR models are learned for each activity of
interest, such as walking or particular disease-related movements. The person is
required to perform sample movements using a motion capture system to gen-
erate training data. After training, the predictive means of the GPR models
provide pose estimates from wearable sensor data. Additionally, in order to de-
termine which of the learned activities a person is performing, we propose to use
a multi-class Support Vector Machine (SVM) classifier, trained on the wearable
sensor dataset with the known activities as class labels.

The main contribution of this paper is to demonstrate that full human body
pose can be estimated based on just a few wearable inertial sensors using a
discriminative learning approach. This opens the way for creating a wearable
pose estimation system suitable for long-term evaluation of full-body motion
during daily life. The quantitative evaluation of our method shows that the
full-body pose can be estimated for the activities we considered (Section 3.1)
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Fig. 1. Schematic of the proposed pose estimation approach. An actor is equipped
with a few inertial sensors measuring orientation angles. Full body pose is predicted
using a Gaussian Process Regression model that has been trained on the functional
relationship between the sensor data x and the joint angle configuration y.

with average errors of 4-6 degrees per joint, using four, three and even two
inertial orientation sensors. This reconstruction quality is comparable to other
state-of-the-art methods that use higher-dimesional input for discriminative pose
estimation [12,13,16,17].

1.1 Related Work

There is a large variety of learning-based approaches for human pose estimation
in the literature [12,13,14,15,16,17]. Many recently published methods are gen-
erative and focus on learning low-dimensional representations of human poses
using so-called latent variable models [8,9,10,11]. After projecting a training
dataset of poses into a low-dimensional (latent) subspace, these methods predict
new poses by optimizing for the latent positions that best account for new obser-
vations. For instance, Urtasun et al. [11] use Gaussian Process Latent Variable
Models (GPLVM) to learn a 3D latent space from motion capture data. Human
poses are then tracked in video sequences by optimization in each frame.

Disadvantages of such generative pose estimation methods are their sensi-
tivity to initialization and the high computational cost of pose inference [13].
Several authors therefore propose to directly learn a mapping from simple, low-
dimensional observations to the corresponding full body poses by non-linear
regression [12,17,15]. Such discriminative approaches have the advantage that
poses can be predicted efficiently, without the need for iterative optimization.

Different types of input data have been proposed for discriminative pose es-
timation, such as silhouettes in 2D images [12], SIFT-features [15] or 3D voxel-
representations of humans [17]. Fossati et al. [13] use trajectories of body parts
in videos as an input. In contrast, our method estimates human pose from wear-
able inertial sensor measurements. Learning methods that have been described
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in the context of discriminative human pose estimation include Relevance Vector
Machines [12,17], Support Vector Machines [18] and Gaussian Process Regres-
sion [13,14,15]. We use the latter technique because of its compact mathematical
formulation and its computational efficiency.

Similar to our goal of reducing the dimension of the input data, Chai and
Hodgins [19] reconstruct full-body pose from a low number of visual markers
in an optical setup. However, the person is still constrained to stay within the
camera volume. Wearable sensors allow us to acquire information on human pose
without being bound to a specific location.

The goal of estimating human pose based on wearable sensors has been tar-
geted by several authors [6,7,20], however, mostly relying on physical models,
inverse kinematics and stochastic filtering. For instance, Zhou et al. [7] use ac-
celerometers to compute the pose of one arm based on kinematic constraints.
Roetenberg et al. [6] fuse inertial and ultrasonic sensor streams using a Kalman
filter, allowing to track position and orientation of the four limbs and the torso.
A Kalman-based approach is also described by Zhu et al. [20], where magnetic
sensors are used for tracking of a single arm. Our method removes the need for
complex, physical motion models, since learned prior knowledge about human
movements is used to cope with limitations of low-dimensional sensor data.
Paper Organization. In section 2, the methods we apply for pose estimation
are presented. Training of human motion models is explained in section 2.3.
Section 2.4 describes how our method recognizes activities from inertial sensor
data. Section 2.5 explains how pose is estimated, given the learned pose models
and an activity classification. A quantitative evaluation of the proposed method
is given in section 3.

2 Human Pose Estimation Approach

In this paper, we propose a method to reconstruct full-body pose of an actor,
given only the readings from wearable orientation sensors attached to the ex-
tremities of the actor. We propose to learn person-specific motion models for
each considered activity from corresponding sets of sensor data and full-body
joint angles, obtained offline by motion capture. In the testing phase, only the
sensor data is used for pose estimation, allowing the person to move freely and
follow their daily routine.

2.1 Method Outline

Let xi ∈ R
d be a vector containing the concatenated measurements of all inertial

sensors for a single pose. Also, let yi ∈ R
D (d � D) denote a vector of joint angles

that fully determines a pose in terms of the articulated body model (Figure 2(a)).
The sensor measurements for a specifc activity, consisting of a sequence of M
poses, are arranged in a matrix X = [x1, ...,xM ]�. The corresponding joint angle
configurations are stored in a matrix Y = [y1 − ȳn, ...,yM − ȳn]�. Here, ȳn is
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Fig. 2. a) Articulated body model consisting of five kinematic chains (arms, legs and
torso). Each chain contains joints with one, two or three degrees of freedom (dof),
totaling 35 dof. b) Actor equipped with reflective markers for optical motion capture
and wireless inertial sensors. Markers are only worn during training.

the mean joint configuration for activity n ∈ {1, ..., N} and N is the number of
considered activities.

We train a GPR model Gn = {X,Y, θ} for each activity, modeling the non-
linear functional relationship fn(xi) = yi between the sensor readings xi and the
joint angles yi. This implies optimizing the so-called hyperparameters θ of the
GPR model. In order to compute the pose estimate y∗ from new, unseen sensor
data x∗, we first need to determine the activity n∗ performed by the actor. For
this purpose, we train a multi-class SVM to classify the activities directly from
the sensor measurements. The full-body pose estimate is then computed from
the predictive mean of the GPR model corresponding to activity n∗.

2.2 Gaussian Process Regression

This section briefly introduces the general principles of GPR. Regression meth-
ods can be used to recover an unknown functional relationship f(x) = z, given
noisy observations of the output variable zi ∈ R at certain values of the input
variable xi ∈ R

d. Knowledge about this relationship allows predicting z∗ for a
new value x∗. For the following paragraphs, let {xi, zi}i=1...M be a set of training
data pairs and let z = [z1, ..., zM ] denote the observed function values.

By definition, a Gaussian process is a collection of random variables, any finite
number of which have a joint (multivariate) Gaussian distribution [21]. One can
thus model a function f with a Gaussian process, by assuming that the function
values z are a sample from the multivariate Gaussian distribution N (0,K). Here,
K is a covariance matrix with entries given by a covariance function k, such that
Kij = k(xi,xj). The type of covariance function that is used, along with the
hyperparameters, determines properties of the sought functional relationship
f(x) = z. In this paper, we follow the typical choice of the squared exponential
covariance function [22,23]:
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k(xi,xj) = α2 exp
(
− 1

2β2
(xi − xj)2

)
+ γ2δij , (1)

where δij equals 1 if i = j and 0 otherwise. Here, the hyperparameters are
θ = (α, β, γ) [21]. γ represents the assumed noise level in the training data and
β represents the length-scale. Suitable values for θ are obtained by optimization
over a training dataset (section 2.3).

Adding a new pair of input and output values {x∗, z∗} to the initial distribu-
tion of function values z, results again in a multivariate Gaussian distribution,
since the function values are assumed to follow a Gaussian process:

[
z
z∗

]
∼ N

(
0,

[
K k(x∗)

k(x∗)� k(x∗,x∗)

])
, (2)

where k(x∗)i = k(xi,x∗). The distribution in Equation 2 can be used to state the
conditional probability p(z∗|z) of the new output value z∗ given the training data
[21]. This probability, in turn, follows the Gaussian distributionN (μ(x∗), σ2(x∗)),
with mean and variance given by

μ(x∗) = k(x∗)�K−1z, (3)

σ2(x∗) = k(x∗,x∗) − k(x∗)�K−1k(x∗). (4)

When only a new value x∗ is available and z∗ = f(x∗) is unknown, the GPR
estimate for z∗ given the training data is the predictive mean (Equation 3). The
predictive variance (Equation 4) can be seen as an assessment of prediction un-
certainty. Note that prediction and uncertainty can be computed in closed form.
While in the derivation above the functional relationship is assumed to be real-
valued, the extension to the case of vector-valued functions is simply achieved
by concatenating the one-dimensional regression result for each dimension of
output space.

2.3 Learning Human Pose Models

We now describe our use of GPR to learn the functional relationship between
inertial sensor data and full joint angle configurations. Given a matrix of sensor
measurements Xn for activity n and a matrix of full joint angle configurations
Yn, we train a GPR model Gn = {Xn,Yn, θ} by minimizing the negative log
marginal data likelihood with respect to the hyperparameters θ:

− log p(Yn|Xn, θ) =
1
2
tr(Y�

n K−1Yn) +
1
2

log |K| + c, (5)

where c is a constant and the matrix K is a function of the hyperparameters (see
Equation 1). During minimization, the first term fits the model to the training
data, whereas the second term prevents overfitting by penalizing complex models
[22]. Optimization can be done offline, for instance using standard gradient-based
approaches. We use the conjugate gradient method [24].
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2.4 Classification of Sensor Measurements

Since we train individual GPR models Gn for each activity performed by an actor,
new wearable sensor data needs to be classified to one of the activities before
pose estimation to choose the appropriate model. To this end, we propose to
use a multi-class SVM classifier based on the standard one-against-all approach
and using an RBF kernel [25]. The training data for the classifier is generated
by concatenating the sensor measurement matrices Xi over all activities in the
training dataset into a matrix X and supplying the known class labels for each
sensor measurement in a vector Y. We denote the SVM classification for a given
input measurement x∗ as n∗.

2.5 Pose Estimation

Once a new, unseen sensor reading x∗ has been classified as belonging to activity
n∗, we can recover the full joint angle configuration y∗ using the corresponding
GPR model Gn∗ . To this end, we use the predictive mean of the model, in
analogy to Equation 3 (extended to the vector-valued case), which is essentially
a weighted combination of the joint angle configurations in the training dataset:

ỹn∗(x∗) = ȳn∗ + Y�
n∗K

−1k(x∗). (6)

The notation ỹn∗ implies that this is only an estimate of the true, unknown joint
configuration y∗ corresponding to x∗, as given by the model for activity n∗. The
equation can be efficiently evaluated online for each incoming sensor reading,
since K−1 can be precomputed.

In order to increase robustness with respect to scattered misclassifications,
we extend this simple frame-by-frame classification scheme as follows. Let x∗ be
the j-th sensor measurement in the sequence. All preceding frames in a sliding
window of size w are classified using the SVM classifier. The pose estimate for
frame j is then a linear combination of the predictions from all models, weighted
by their relative contribution within the current window:

ỹ(x∗) =
N∑

n=1

λn

w
· ỹn(x∗), (7)

where λn is the number of frames in the current window classified as activity n.
The more frames in a window are classified as a certain activity, the higher the
influence of the corresponding GPR model will be. When all frames are classified
identically, only one GPR model is used for pose estimation. An inherent advan-
tage of this weighting approach is that transitions between different activities
are smooth in the pose reconstruction. When the activity performed by the actor
changes from one to another, the influence of both corresponding GPR models
is shifted gradually (for an evaluation, see section 3.4).



166 L.A. Schwarz, D. Mateus, and N. Navab

3 Experimental Results

We performed several types of experiments in order to quantitatively assess
our pose estimation method. We first present separate studies for the activity
classification and pose estimation parts (sections 3.2 and 3.3). An evaluation of
the combined approach is given thereafter (section 3.4). Finally, we illustrate the
influence of the number of inertial sensors and that of the training dataset size
on pose estimation results (section 3.5).

3.1 Data Acquisition

For training and evaluation purposes, we use a database consisting of motion
sequences that were recorded simultaneously with the wearable sensors and a
motion capture system. We considered the following generic activities: clap-
ping hands, golfing, jumping on one foot, scratching head, walking and waving
hand. Each type of motion was recorded with three different actors and six
repetitions per actor. Individual sequences are between 200 and 900 frames in
length.

In our experiments, we used wireless InertiaCube sensors that output orien-
tation values (yaw, pitch and roll), filtered from an internal accelerometer, a gy-
roscope and a compass (www.intersense.com). We discard the yaw values, since
they give the absolute orientation of the actor with respect to the earth’s mag-
netic field, which is unnecessary for learning general properties of movements.
Unless stated otherwise, we used four orientation sensors in our experiments,
such that the input space is eight-dimensional (d = 8). Figure 2(b) shows an ac-
tor equipped with inertial sensors and markers required by the infrared tracking
system (www.ar-tracking.de).

3.2 Pose Estimation Accuracy

In a first set of experiments, we evaluated the pose estimation approach assuming
we know which activity is being performed in the testing data. We measured the
error between the joint angles estimated with our approach and the ground
truth obtained from the optical motion capture system. The acquired database
of motions was used for cross-validation experiments, i.e. repeated measurements
were performed for every activity and actor, each time using one of the sequences
in the dataset for testing and the remaining ones for training. The error for
activity n is computed per frame as

eang =
1
D

D∑
i=1

| [y]i − [ỹn]i |, (8)

where D is the number of joints, ỹn is the vector of joint angles estimated us-
ing Equation 6 and y is the corresponding ground truth joint configuration. The
mean error over all frames in the testing sequence and the standard deviation are
listed in Figure 3(a). Typical reconstruction errors lie between 4 and 7 degrees
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Fig. 3. Experimental results for pose reconstruction and pose classification, computed
in a six-fold cross-validation study for 3 actors. a) Average angular error per joint per
frame. b) Recall and precision for SVM-based pose classification for each activity class.
c) Confusion matrix with average classification rates per combination of ground truth
(rows) and prediction (columns).

per joint per frame, with standard deviations between 0.8 and 2.0 degrees. These
values are comparable to the results of other state-of-the-art discriminative pose
estimation methods that use higher-dimensional input data, e.g. obtained from
restrictive camera setups [12,13,16,17,15]. Figure 4 visualizes the pose recon-
struction result for two sample sequences, showing the predicted angles for the
main joints, the corresponding ground truth and the angular error throughout
the sequences.

3.3 Activity Classification Reliability

In a second series of experiments we separately evaluated the SVM-based activity
classification approach. As in section 3.2, we performed a set of six-fold cross-
validation studies for each acvitity in the training dataset, repeated for each
of the three actors. Figure 3(b) indicates recall1 and precision2 for each activity
class and Figure 3(c) shows the confusion matrix. Entry (i, j) of the matrix gives
the relative number of frames belonging to class i that were classified as j.

The highest correct classification rates are achieved for clapping (98%) and
jumping (90%), since these activities consist of repetitions of a few similar and
characteristic poses. Around 20% of frames belonging to walking are classi-
fied as other activities. This can be explained by the multitude of poses taken
during walking, some of which are similar to poses of other activities, e.g.
jumping. The most significant misclassifications occur between scratching head
and waving. The precision for these activities drops below 75% and the con-
fusion matrix indicates relatively high numbers in the corresponding entries.
However, the quality of the pose estimates for frames that are misclassified

1 Recall: relative number of poses belonging to class n that are classified as such.
2 Precision: relative number of poses classified as n that really belong to this class.
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Fig. 4. Illustration of pose estimation results for two sample sequences. The top graph
shows the reconstructed angles for the main body joints over the length of the sequence.
The second graph is the corresponding ground truth. Reconstruction error is plotted
in the third graph. Skeletons are displayed for the frames indicated with black vertical
bars (red: reconstructed pose, blue: ground truth pose).

between similar activities is not severely affected, as shown in the following
section.

3.4 Combined Activity Classification and Pose Estimation

In order to demonstrate the combined performance of the activity classification
and pose estimation parts, we created sequences consisting of all the activities
considered in this paper performed in a row. For each of the three actors, a six-
fold cross-validation study was done. As described in section 2.5, pose estimates
were computed by combining the pose predictions of multiple GPR models based
on the classification of frames in a sliding window (w = 15).

Figure 5(a)-(c) shows the results for one of the sequences. The error does not
significantly increase in areas where the pose was misclassified. Averaged over
all experiments in this study, over 78% of frames are correctly classified. The
angular error is 5.6◦ per joint on average. This value is equivalent to what can be
achieved in the more controlled setting with prior knowledge of the performed
activity (section 3.2). The SVM-based activity classification scheme therefore
significantly increases the flexibility of our pose estimation approach without
having a negative effect on pose reconstruction accuracy.
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3.5 Number of Sensors and Training Dataset Size

Although the inertial sensors do not impose a burden on a wearer, we evaluated
the ability of our method to estimate full-body pose from less than four inertial
sensors. For this experiment, we only used the walking sequences in our dataset,
since all four extremities are moved equivalently in this activity. We selected the
following sensor configurations: four sensors (left wrist, right wrist, left shinbone,
right shinbone), three sensors (left wrist, right wrist, left shinbone) and two
sensors (left wrist, right shinbone). Figure 6(a) shows the average angular error
values achieved in our cross-validation study. The error for the legs is higher
than that of the arms, since apparently the variation between individual walking
sequences is higher for the legs. Most remarkably, the pose estimation error does
not increase for any of the configurations with less than four inertial sensors,
even when only two sensors are used. The experiments show that, for activities
as regular as walking, our method is capable of predicting 35-dimensional full-
body poses from input data of 6 or even 4 dimensions (3 or 2 sensors).

The size of the training dataset influences the processing time required to
train a GPR model and the achievable reconstruction quality. Training duration
increases with the number of frames, but can improve the ability of the GPR
model to generalize to different motion styles. In order to evaluate this behavior,
GPR models for the walking motion were learned with a varying training dataset
size, ranging from 25 to 800 frames. Figure 6(b) gives the cross-validation results.
While it takes considerably more time to train a GPR model with a dataset size
of 800 frames, the reconstruction quality does not improve above a number of
approximately 500 frames. In fact, when using up to 250 frames for training,
significantly shorter training times (< 40 seconds in our implementation) can be
achieved by the price of just a slight increase in average angular error (∼ 5.5◦).

4 Conclusion

We have presented a discriminative pose estimation method that allows recon-
structing the full-body pose of a person, given only the limited observations of a
few wearable inertial sensors attached to the person’s limbs. Our method makes
use of Gaussian Process Regression for learning the non-linear mapping between
sensor measurements and full joint angle configurations. The system is trained
on the specific movements of individual persons for each activity of interest.
Since our method only requires an installed motion capture system for training,
it can be applied in many settings, especially in complex, occlusive environments
and outdoors. It is particulary suited for applications where movement patterns
of individual persons are in focus, such as in ambulatory medical motion studies.
Our experiments show that a low number of 2-4 inertial sensors are sufficient
for reconstructing full-body pose for movements the system has been trained on.
We plan to evaluate the feasibility of our approach in the medical scenario of
motion analysis for epilepsy patients. In addition, the method will be extended
in the direction of reconstructing more arbitrary movements, based on a training
dataset of general human poses.
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