CUIML: A Language For the Generation of Multimodal Human-Computer Interfaces

Christian Sandor

sandor@cs.tum.edu

Technische Universität München Chair for Applied Software Engineering

Abstract

- DWARF Project at the Technische Universität München
- UIML complied with some of our requirements
- Extension of UIML was developed and will now be presented

What is DWARF?

- Distributed Wearable Augmented Reality Framework
- DWARF movie

Augmented Reality

Wearable Computer

The Problem

- Framework for Presentation Layer of Wearable Computers
 - An application should be platform independent

The Problem

- Framework for Presentation Layer of Wearable Computers
- An application should be platform independent
- Interaction with the user is multimodal

The Problem

- Framework for Presentation Layer of Wearable Computers
- An application should be platform independent
- Interaction with the user is multimodal

CUIML – a solution

- Cooperative User Interfaces Markup Language
- **Based on UIML**
 - Separation of document structure and presentation
 - Transformation to markup languages
 - Display in browsers for VRML, VoiceXML, HTML (Views)
- New concepts:
 - Controller
 - Manipulators

System Design – Views

UIML:

- Adresses requirement of platform independence
- No support for multiple cooperating Views

System Design – Views (2)

■ Multimodal Human-Computer Interfaces consist of multiple Views

System Design – Controller

- A central component is needed
 - Describes state of the HCI
 - Synchronizes views

System Design - Controller

- A central component is needed
 - Describes state of the HCI
 - Synchronizes views
- Deterministic Finite Automaton with XML based Configuration

System Design – Controller (2)

■ CUIML extended with Controller

Controller Example

■ State transitions of a View

Controller

Controller Example

■ State transitions of a View

Controller

Controller Example

■ State transitions of a View

Controller

System Design – Manipulators

- Views have to be modified by the Controller
 - Access mechanisms for Views differ

System Design – Manipulators

- Views have to be modified by the Controller
 - Access mechanisms for Views differ
 - Every View needs an appropriate Manipulator
 - Described in behaviour section

System Design – Manipulators

Example of a Manipulator

Benefits of CUIML

- Eases the task of developing multimodal HCIs
- Dynamic reconfiguration of the HCI to preserve functionality
- Incorperates the advantages of UIML
 - Separation of development tasks
 - Platform independence

Future Work

- Rewrite renderers with JavaCC
- Adapt the Human-Computer Interface at runtime

Future Work

- Rewrite renderers with JavaCC
- Adapt the Human-Computer Interface at runtime
- Establish standard metaphors

http://www.cg.tuwien.ac.at/research/vr/pip/

http://www.csl.sony.co.jp/person/rekimoto/cube/