
Patient-specific 3D Ultrasound Simulation Based

on Convolutional Ray-tracing and Appearance
Optimization

Mehrdad Salehi1,3, Seyed-Ahmad Ahmadi2, Raphael Prevost1,
Nassir Navab3,4, and Wolfgang Wein1

1 ImFusion GmbH, München, Germany
2 Department of Neurology, Klinikum der Universität München, LMU, Germany

mehrdad.salehi@tum.de
3 Computer Aided Medical Procedures, Technische Universität München, Germany
4 Computer Aided Medical Procedures, Johns Hopkins University, Baltimore, USA

Abstract. The simulation of medical ultrasound from patient-specific
data may improve the planning and execution of interventions e.g. in
the field of neurosurgery. However, both the long computation times and
the limited realism due to lack of acoustic information from tomographic
scans prevent a wide adoption of such a simulation. In this work, we ad-
dress these problems by proposing a novel efficient ultrasound simulation
method based on convolutional ray-tracing which directly takes volumet-
ric image data as input. We show how the required acoustic simulation
parameters can be derived from a segmented MRI scan of the patient. We
also propose an automatic optimization of ultrasonic simulation param-
eters and tissue-specific acoustic properties from matching ultrasound
and MRI scan data. Both qualitative and quantitative evaluation on a
database of 14 neurosurgical patients demonstrate the potential of our
approach for clinical use.

1 Introduction

A realistic simulation of medical ultrasound is an important tool, e.g. for trans-
ducer design, training of physicians or multi-modal image-registration through
simulation. A further attractive application is pre-operative planning, in which
a patient-specific ultrasound simulation of the operational situs could help the
surgeon to anticipate tissue appearance or optimal transducer positioning. How-
ever, a wide adoption in this context has been prevented by two problems. First,
computation times of realistic ultrasound simulation methods still prevent inter-
active frame rates. Second, deriving the required acoustic parameters of tissue
from a CT or MRI scan of the same patient is difficult due to different physical
imaging principles and limited resolution of the source modalities. In this work,
we are addressing both problems by proposing an interactive and realistic sim-
ulation based on convolution and ray-tracing with simulation parameters that
can be optimized to match the appearance of real ultrasound images.
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Ultrasound simulation approaches can be roughly categorized into wave-based,
ray-based and convolution-based methods. Wave-based methods offer the highest
realism and physical accuracy due to actual simulation of wave-front propaga-
tion in tissue. However, they are computationally expensive, requiring up to one
hour for rendering of a single frame even on modern graphic card hardware [9].
Another approach is to simulate the spatial impulse response of the ultrasound
system and convolve it with an artificial map of micro-scatters. A well-known
software to employ this model is Field II, which takes up to one minute for
simulation of a 2D image [8] and often serves as gold standard in validation of
other methods. Another convolution-based approach was introduced by Bamber
[1] and expanded by Meunier [11], in which the image is created by convolution
of the imaging system’s point-spread-function (PSF) with a map of points rep-
resenting the position and reflectivity of scatterers. A comparison study in [5]
shows that recently proposed convolution-based method, COLE [4], can provide
similar image quality and statistics compared to Field II, while offering real-
time simulation speeds. A problem in these methods, however, is the inability
to mimic specific types of US imaging artifacts such as refractions, mirroring,
range distortion, shadowing, and enhancement.

Ray-based simulation techniques focus on generating real-time images using
ray optics. They cover acoustic brightness of tissue regions, reflections at tis-
sue boundaries and shadowing artefacts, but they are lacking speckle noise or
reflection- and refraction-induced artefacts.

In [2], a computer graphics ray-tracing scheme is adapted for fast convolution-
based ultrasound simulation. The ray-tracing depends on exact surface models of
brain regions, requiring extensive pre-processing of the data and post-processing
to overcome simplifications of the ray-based approach. We adopt and extend this
method to work directly on volume data, which can be derived from a patient’s
MRI or CT in a number of simple image processing steps. Moreover, our method
interleaves convolution and ray-tracing, such that scattering properties of the tis-
sue are propagated throughout the entire ultrasound beam formation process.
Additionally, we demonstrate for the first time a method to directly optimize
ultrasound simulation parameters and acoustic properties of the underlying tis-
sue maps through image-based matching of patient-specific ultrasound and MRI
data. An overview of the proposed system is shown in Fig. 1.

2 Methods

2.1 Patient-Specific Acoustic Data from MRI

Six acoustic parameters are defined for each medium. Speed of sound c, acoustic
impedance Z, and attenuation coefficient α are used in the ray-tracing engine to
compute the intensity and relative time of the rays at each point. Three other
parameters, μ0, μ1, and σ0 drive a generative model for the distribution and
intensity of scatterer points in each medium (detailed description in [2]). The
ray-tracing part is performed on a label volume containing the tissue indices
corresponding to the parameters table. The pre-processing part thus consists of
segmenting and labeling the source modality, in our case MRI data.
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A well-established approach for multi-class segmentation of MRI is to cluster
image intensities using a Gaussian Mixture model and optimizing the fitting
using the Expectation-Maximization (EM) algorithm [14]. Instead of enforcing
spatial regularization during EM, we pre-process the MRI with a guided filter [6]
which acts as a very fast anisotropic diffusion step. The resulting label maps are
sufficiently smooth and accurate to be used as input to our simulation algorithm.
No further processing or meshing of the segmentation is required.

2.2 Ultrasound Simulation

A ray-tracing engine is at the core of this method and builds the data for each
radio frequency (RF) scanline separately. The recorded echo for each scanline i
at the distance l from the transducer is defined as a sum of two main terms:

Ei(l) = Ri(l) +Bi(l) (1)

where Ri(l) is the reflected energy from the tissue boundaries and Bi(l) is the
backscattered energy from the scattering points throughout the scan line.

Reflection and Attenuation: We use a model similar to [13] to approximate
both specular and diffuse reflections. Let H(l) be the PSF of the imaging system,
and G(x, y, z) be an indicator function that returns 1 for points on the surface
boundaries and 0 otherwise. Then, the reflected energy can be written as:

Ri(l) =
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The term cos θi comes from Lambert’s cosine law and θi is the angle of in-
cidence. The exponent n is a simple modification to describe the heterogeneity
on the surface and Ii(l) is the remaining ultrasound wave amplitude. Z1 and
Z2 are the acoustic impedances of two adjacent tissues. The sound energy gets
attenuated during tissue traversal, which causes artefacts like shadowing and
enhancement. The remaining energy of the sound beam Ii(l) is modeled using
the Beer-Lambert Law as Ii(l) = I0 e−αlf , where I0 is the initial energy, f is
the sound frequency, and α is the attenuation coefficient of the medium.

Backscattering Term: The other term in the returned echo, the back-scattered
energyBi(l), is the product of the remaining wave amplitude and the convolution
of the PSF H(l) with random scatterers:

Bi(l) = Ii(l) ∗H(l)⊗ T (x, y, z). (3)

Similar to [2], we create the scatterers from a generative model. It is based on
two random textures which are combined using the tissue-specific parameters μ0,
μ1, and σ0. For each tissue, the model generates scatterers of various spatial and
acoustic density. We refer the reader to [2] for details. The spatial PSF H(x, y, z)
(or H(l) along the ray) is modeled with a cosine function modulated by a 3D
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(a) MRI Volume (b) Segmented Data (c) Simulation (d) Real US Image

Fig. 1. Simulation/optimization pipeline; (a) Input modality, (b) Label-map after seg-
mentation, (c) Simulation result before parameter optimization, (d) real US image,
which is used for optimization of simulation parameters.

Gaussian envelope, which is sufficient to approximate the far-field [11]. The con-
volution kernel can be separated [1] into three 1D components, i.e. H(x, y, z) =
Hx(x)×Hy(y)×Hz(z), with an axial pulse Hx(x) = exp(−0.5x2/σ2

x) cos(2πfx),
and lateral and elevational beam profiles Hy(y) = exp(−0.5y2/σ2

y) and Hz(z) =
exp(−0.5z2/σ2

z). The beam profile can thus be spatially varying, which allows
for simulation of a sharper, user-defined focus zone and blurrier out-of-focus re-
gions by dispersal of the beam profile. The convolution between the PSF and
the scatterers texture is calculated during the entire ray-tracing for each pixel
on the RF scan-lines.

Ray-Tracing: A binary tree structure keeps the data for the ray-tracing en-
gine, which is based on optical principles. Each crossing of a ray with a tissue
interface generates a reflected and a refracted ray, which are further traced into
the medium. The remaining intensity (according to Fresnel equation), direction
(according to Snell’s law) and the relative time to transducer are passed to the
child rays. The final result for each RF scan-line is the sum of all child rays
covering that scan-line. Each ray terminates if (i) it leaves the imaging frame,
(ii) its remaining intensity decreases lower than a user-defined threshold or (iii)
its relative time to transducer exceeds the image penetration depth and thus the
maximum allowed run-time. The whole simulation pipeline and post-processing
steps are parallelized on GPU using OpenCL and OpenGL libraries, which makes
it independent of proprietary ray-tracing engines as in [2].

Post-processing: Post-processing is performed using a simple RF to B-mode
conversion scheme. We first add (Gaussian) amplifier noise to the signal and
proceed with time gain compensation (TGC), envelope detection and dynamic
range limiting of the signal [7]. The RF data is log-compressed and 8-bit quan-
tized. Finally, the fan geometry and ultrasound image are calculated through
scan conversion.

2.3 Automatic Optimization

We use registered MRI and 3D freehand ultrasound data from all 14 patients
of the BITE neurosurgical database [10]. The following cost function is used in
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a non-linear optimization of the simulation parameters with respect to the real
ultrasound images as reference.

L(A,B) = ρ(A,B) + λ ∗ SAD(A,B) (4)

ρ(A,B) =
1
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√

PijQij (5)

ρ(A,B) is our proposed local Bhattacharyya distance between images A and
B; Pi and Qi are normalized distributions of patch number i of the images, M
is the number of bins, and N is the number of patches. This is a modification
of Bhattacharyya-based metric distribution distance proposed by Comaniciu et
al. [3]. It caters to the fact that simulated speckle positions can not match with
the real ultrasound, but their intensity distributions shall be similar. The local-
ized version is required to prevent arbitrary configurations of tissue parameters
which may nevertheless align the overall image histograms. We compute the
average Bhattacharyya distance within local square image regions of width 5
mm. Through λ, it is weighted to the sum of absolute differences (SAD) of
the image intensities. This assures the overall matching of large-scale structures,
brightness and contrast. This measure, therefore, allows us to optimize (i) global
post-processing parameters, which are typically unknown and different in every
ultrasound acquisition and (ii) the acoustic parameters of each modeled tissue.

3 Evaluation

3.1 Acoustic Model

We demonstrate various US phenomena and artifacts of our simulation on a
synthetic phantom. Obvious ones include shadowing or enhancement after high-
or low-attenuation areas. Compared to purely ray-based or convolutional ap-
proaches, our hybrid algorithm can also simulate more subtle effects such as
mirroring, reverberation or refraction at acoustic impedance interfaces, as well
as geometric range distortions due to variations of speed of sound (Fig. 2).

3.2 Qualitative Results on Patient Data

We also illustrate the fidelity of our simulation using real-life, co-registered MRI
and 3D US data from the BITE database. In Fig. 3, simulation results before
and after optimization are shown alongside the real US image and MRI plane.
Images are simulated using a pulse frequency of 5 MHz.

Direct comparison of this method to convolution-based approaches is challeng-
ing due to different scatterer map models. However, in future works our proposed
similarity measure can be used for comparing different simulation approaches to
real US data.
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Fig. 2. Ultrasound artifacts exhibited in the artificial phantom (top left). a) Shadow-
ing, b) Range distortion due to (exaggerated) speed of sound differences in tissue, c)
mirroring, d) refraction and e) reverberation

3.3 Quantitative Evaluation and Optimization

For the evaluation of the statistical characteristics, the simulation was performed
on a random scatterer volume with pixel dimension of 20 μm3 and density of
1250 per mm3 [11]. When using an unfocused beam-profile, intensity distribu-
tion for the produced analytic signal is known to follow Rayleigh statistics [12].
The result for the distribution fit is shown in Fig. 4. The sum of squares due
to errors (SSE) was 3.14e-05, which can be considered simlarly low as in litera-
ture [5], even though a direct comparison would require exactly identical source
data. The goodness-of-fit between the measured histogram and its Rayleigh fit
demonstrates that our simulation can produce accurate speckle characteristics
despite the complex decomposition of the 3D convolution between separate rays.
Please note that only envelope-detected, reflection/refraction-free data was used
in this experiment, without post-processing.

Performance: Simulation performance is dependent on scatterers size, image
depth, axial resolution, and depth of the rays binary tree. Simulation time in-
cluding post-processing lies between 0.1-1s, which mainly depends on the number
of scan-lines, depth of reflections, and axial resolution of the RF data (OpenCL
implementation run on a laptop with NVIDIA GTX 850M). We also limited
the binary trees depth to six since further reflections usually do not contribute
significantly to the final image due to reduced ray intensities.

Optimization: Table 1 shows the parameters after optimization on 14 datasets;
the visual appearance significantly improved in all cases. An exemplary result
is shown in Fig. 3. The values for μ0 and μ1 are more consistent, while σ0 and
α vary for different patients. An explanation is that the latter two depend on
log-compression and TGC parameters which are being simultaneously optimized.
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Fig. 3. Columns show (a): Simulation before optimization, (b): after optimization, (c):
real US image. Both rows show a tumor next to the cerebral falx. Inaccuracies in b)
are caused by segmentation errors (partly due to brain-shift) and the assumption of
homogeneous scatterer properties per tissue type.

Fig. 4. Rayleigh Distribution Fit. σ = 59.09, SSE = 3.14e-05

Table 1. α, μ0, σ0, and μ1 are brain white-matter’s acoustic properties. μ and σ are
mean and standard deviation of acoustic parameters after optimization.

AC Initial Optimized Parameters for each Patient Statistics
Prop. Values 1 2 3 4 5 6 7 8 9 10 11 12 13 14 μ σ
α 0.54 0.59 0.71 0.43 0.59 0.28 0.31 0.57 0.93 0.20 0.44 0.24 0.25 0.39 0.34 0.452 0.207
μ0 0.40 0.40 0.36 0.06 0.37 0.33 0.39 0.44 0.40 0.30 0.30 0.32 0.34 0.27 0.32 0.332 0.089
σ0 0.15 0.16 0.05 0.31 0.38 0.07 0.07 0.26 0.24 0.01 0.07 0.01 0.23 0.13 0.23 0.163 0.119
μ1 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.004 0.013

4 Conclusion

We have presented a patient-specific US simulation from MRI at interactive
frame rates, using a hybrid, convolutional ray-tracing approach with limited
data pre-processing. Furthermore, for the first time, we propose a similarity
formulation for optimization of both US system and tissue acoustic parameters.
This improves simulation realism and further closes the gap between underlying
physics and information contents of both modalities. Possible applications go
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beyond typical usages of ultrasound simulation today. For example, pre-operative
tissue appearance anticipation from MRI and planning of transducer positioning
could help with tight time constraints in US-guided interventions. A shortcoming
of our simulation is its high dependence on the segmentation accuracy. Future
work could address this with a hybrid model for the scatterers texture, which
combines the label map with original intensities of MRI/CT source data. The
simulation and optimization accuracy should be also further evaluated, ideally
in a controlled acquisition environment with known tissue parameters.
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