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Abstract

3D Point clouds are a rich source of information that en-
joy growing popularity in the vision community. However,
due to the sparsity of their representation, learning mod-
els based on large point clouds is still a challenge. In this
work, we introduce Graphite, a GRAPH-Induced feaTure
Extraction pipeline, a simple yet powerful feature transform
and keypoint detector. Graphite enables intensive down-
sampling of point clouds with keypoint detection accompa-
nied by a descriptor. We construct a generic graph-based
learning scheme to describe point cloud regions and extract
salient points. To this end, we take advantage of 6D pose in-
formation and metric learning to learn robust descriptions
and keypoints across different scans. We Reformulate the
3D keypoint pipeline with graph neural networks which al-
low efficient processing of the point set while boosting its
descriptive power which ultimately results in more accurate
3D registrations. We demonstrate our lightweight descrip-
tor on common 3D descriptor matching and point cloud
registration benchmarks [76, 71] and achieve comparable
results with the state of the art. Describing 100 patches of a
point cloud and detecting their keypoints takes only 0.018
seconds with our proposed network.

1. Introduction
Point clouds play an indispensable role in modern 3D

computer vision applications. LiDAR-equipped cars sense
distances as sparse point clouds and mobile robots as well
as modern hand-held devices measure depth with RGB-D
and Time-of-Flight hardware. These devices essentially see
the world in point cloud form. Thus, efficient processing
of point clouds is an integral part to equip agents with 3D
perception. At the same time, modern sensors are capable
to provide large quantities of point cloud data at high frame
rates. However, processing high numbers of sparse and un-
ordered points can be computationally demanding. While
trivial sub-sampling methods can lead to increased sparsity
and loss of fine local information, perceptive sub-sampling
of point clouds is very much structure dependant.
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Figure 1. Graphite helps representing a source point cloud (top-
left) densely by describing each patch with a small descriptor and
detecting a keypoint per patch (down-left). Fast calculation with
lightweight model enables real-time point cloud applications.

Keypoints and Feature Description. To distill the
essential information in such rich vision data, classical
methods represent image and scenes regions using feature
descriptors. Extracted keypoints indicate salient landmarks
and descriptors encapsulate local information in different
formats. For example for the application of 6D pose
estimation, a generic descriptor is oftentimes preferred
over learning each object specifically with a deep neural
network. In the image domain, handcrafted features
[36, 6, 1, 32] and learned descriptors [75, 67] are employed
to match regions or objects under certain levels of 3D
rotation change and various illuminations. Recently with
the popularity of self-supervised learning, it is possible to
improve the quality of image-based features across multiple
frames when homography or correspondence information
is available. This has shown to improve matching rate
when dense keypoints are exploited [17, 15]. In the 3D
domain and specifically on point clouds, descriptors are
used for surface registration, multi-view reconstruction
and 3D object pose estimation. Registration of 3D points
clouds normally involves three steps: 1) find a set of salient
points 2) describe each salient point with a descriptor 3)
discover correspondences through descriptor matching.
Neural Point Processing. Point clouds are by nature
unordered sets and processing models thus require per-
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mutation invariance. PointNet [48] pioneered the field by
suggesting a deep network that could segment or classify
objects from their point clouds. In their work, building
blocks such as T-Nets are utilized to force transforma-
tion invariance while permutation invariance is gained
via max-pooling. Although PointNet and its successor
PointNet++ [49] are widely used, their design choice limits
the inclusion of local neighborhoods and geometrical
embeddings. Later works such as [33, 69] suggests the
use of graphs to introduce point connectivity and vicinity
information. Although they manage to learn local geome-
tries by connecting points and learning node level features,
they lack notion of metric scale through construction
of graphs using k-NNs. After every step in processing
node-level features, they change edge links and attributes.
The inherent edge permutation of this process inhibits a
consistent information flow. To this end, we propose a
novel graph-based model capable of retaining geometrical
shape under varying scale and sampling conditions. To
describe point clouds, graphs are well suited as to capture
relative information with their connections and can be
designed to be invariant to transformations.
The Graphite Model. A classical approach for point
cloud registration is the two stage paradigm of initial
sampling of points to find keypoints and a subsequent
feature description [56, 25]. A keypoint is matched with
another by finding the closest point in feature space. If
insufficient salient keypoints are matched or mismatches
occur, the registration fails. Besides sub-sampling a point
cloud to a set of interest points, we propose to describe
point clouds on dense patches. However forcing keypoints
per patch might not be ideal for some tasks such as
registration. Therefore we define soft keypoint saliency
through a scoring mechanism. We first form patches from
a point cloud uniformly and then convert every patch to a
graph structure similar to the connected structure of carbon
atoms in the crystalline form of graphite. These graphs are
learned to represent Graphite features which can be used
for matching. We train our model in two stages. Firstly, we
initialize our network to learn keypoints by supervision. In
the second stage, we let our network optimize the descriptor
and detector by performing metric learning on object point
clouds obtained from various 6D poses.

In short, our contribution is two-fold: Firstly, we provide a
lightweight model that can detect salient keypoints in point
cloud patches and regions taking advantage of a novel graph
processing architecture. Secondly, the same model is used
to describe the patch with a feature descriptor which can be
used for correspondence matching. Our patch-based repre-
sentation and reduction model is a major advantage com-
pared to dense descriptors per point approach. We evaluate
our descriptor on 3DMatch [76], a commonly used bench-

mark for descriptor matching. Furthermore, we evaluate our
dense descriptor and the extracted keypoints for the applica-
tions of point cloud registration on ModelNet Object Reg-
istration [71].

2. Related Work
This section reviews related work in the area of feature

extraction in 2D to 3D from both handcrafted and learned
approaches, and discusses state of the art for point cloud
learning and registration.

2.1. 2D Feature Extraction & Matching

Image descriptors are functions that map a local region
of an image to a feature vector. In order to determine the in-
terest region worth to describe, keypoint detectors are used
to find salient areas. The first keypoint extractors [43, 26]
rely on image gradients and self-similarity metrics to detect
corner like structures. To robustly detect corner points, con-
secutive methods make use of template-based techniques
[62, 52, 53, 38] using machine learning and binary clas-
sifiers. The concept of consecutively smoother images in
scale space [34, 35] helps to find blob-structured keypoints
across various image scales with the Laplacian of Gaussian
(LoG) operator and its scale-normalized counterpart. The
approximation of its calculation with a differences of Gaus-
sians improves runtime performance in the prominent SIFT
[36] pipeline. Further methods [6, 32, 1, 31] focus on ad-
vances in repeatability, accuracy, robustness and computa-
tional efficiency. These are well studied in extensive com-
parison and survey papers [60, 66, 39, 40, 30, 58, 4] that in-
vestigate differences and performance of feature extraction
pipelines. With the advent of deep learning, TILDE [67]
tackles the problem of illumination changes and Magic-
Point [16] explores the advantages of training with synthetic
primitive data while Key.Net [5] combines handcrafted and
learnt features.
Some methods combine keypoint extraction directly with a
feature description stage. SIFT, for instance, uses a 128-
dimensional vector to describe its feature points and a ratio
test is proposed to withdraw ambiguous matches. Further
descriptors [12, 32, 54, 1] propose binary features to make
use of the fact that the matching can be done efficiently via
Hamming distance calculation. This allows their use in real-
time systems such as 6D pose estimation [11] and SLAM
[45] pipelines. Metric learning is a prominent way to lever-
age data for image description. HARDNet [41] proposes a
triplet margin loss with hard negative mining for this task
and the advantages of descriptor learning over hand-crafted
methods have been shown with L2Net [64]. R2D2 [51] pro-
poses a dense version of it while estimating also repeatabil-
ity and reliability.

A joint estimation of detection, orientation and descrip-
tion is done in LIFT [75] and LF-Net [46] also integrates



scale space in an unsupervised learning framework driven
by structure from motion. Similar to this, SuperPoint [17]
uses homography warping as a self-supervision signal to
jointly estimate saliency map and a dense descriptor. More
recently, D2Net [19] experiments with a single feature map
for both detection and description resulting in more robust
but less accurate results. The matching stage classically in-
volves a nearest neighbour search [44, 7, 61, 22] accompa-
nied by outlier removal through ratio test, cross check or
RANSAC [21] and more elaborate techniques involve mo-
tion statistics [8] or temporal constraints [55]. Recently,
SuperGlue [59] proposes to use a graph neural network to
solve the assignment as an optimal transport problem.

2.2. 3D Descriptors

3D descriptors are relatively less evolved. One reason is
varied data representations and the complexity of describing
point clouds. In scenarios where RGBD images are avail-
able, depth is used as an auxiliary information to find fea-
tures or templates for matching [27, 28, 70]. Classical point
cloud and surface descriptors such as SHOT [65], RoPS
[24] and TriSi [25] use a unique local reference frame to
explain geometry with rotation invariance. PFH [57] and
FPFH [56] use pair-wise point features and surface normals
describe curvature. While large scene variability can harm
their performance, their classical nature allows for the use
on edge devices with hardware constraints. In recent years,
scholars have also designed 3D descriptors with deep learn-
ing methods. CGF [29] uses supervised learning to map
hand-crafted high dimensional features into a lower dimen-
sional vector. PPf-FoldNet [13] combines PPF-Net [14],
PointNet [48] and FoldingNet[73] to learn rotation invari-
ant features with self-supervision. 3DFeat-Net [74] also
learns to extract sparse features with weak supervision from
the tagged geolocation data. In parallel to this also dense
voxel based approaches are explored. 3DMatch [76] con-
verts point clouds to truncated distance functions (TDF) and
Perfect Match [23] uses voxelized smoothed density value
(SDV) to describe local reference frames. Although they
achieve substantial results on the 3DMatch Benchmark [76]
they do not learn directly from point clouds.

2.3. Deep Point Cloud Processing

While point clouds are used widely in computer vi-
sion, learning them with deep models have been far more
challenging than 2D images or voxels. The pioneering
pipeline PointNet [48] manages to build an architecture
which is permutation-invariant and can learn point cloud
features. Following that, PointNet++ [49] proposes hier-
archical learning to learn larger scale sets. While the con-
tribution of PointNet is without doubt significant, it con-
centrates on global features. As a result, it fails to employ
local features and information on the geometric neighbor-

hood. To this end, also 3D Capsules [77] are used for this
task where and auto-encoders and capsule networks learn
point features. In an effort to simulate convolutions, re-
searchers incorporated graphs to operate on point clouds
[42, 9]. Graphs help connecting points and build struc-
tures which can potentially represent surfaces and mani-
folds. Graph based point cloud approaches such as DGCNN
[69] and PointCNN [33] yield better results on segmenta-
tion and classification of point clouds. While graphs struc-
tures bring rotation invariance (isomorphism), how to de-
fine edges without losing metric information and attributing
nodes and edges to sustain geometries are still not fully in-
vestigated.

2.4. Point Cloud Registration

Registering point clouds is a classic problem with appli-
cations such as scene reconstruction or object pose estima-
tion. Conventional iterative methods such as ICP [3] are still
commonly used although they are very dependent on ini-
tialization. Go-ICP [72] improves ICP by accuracy but at a
high computational cost. Soft assignment [50] is another it-
erative approach which improves initialization by exploring
and soft assigning correspondences to estimate 6D poses
[10]. Other scholars use conventional 3D descriptors to reg-
ister clouds [63, 56, 72]. Following the success of PointNet,
PointNetLK [2] builds an iterative learning approach on top
of PointNet and Lucas & Kanade (LK) algorithm [37] to
register two point clouds. Deep Closest Point (DCP) [68]
suggests using an attention-based module to find correspon-
dences and a differentiable singular value decomposition to
estimate transformation.

3. GRAPHITE
In this section we explain the methodology and pipeline

of Graphite. First we discuss how to segment point clouds
into patches and to convert them into graphs. We then intro-
duce our graph learning architecture and the training stage.
Finally we explain how we perform point cloud warping.

3.1. Point Patches

The input to our pipeline is a point cloud, that can come
directly from a sensor such as a LiDAR, can be back-
projected from an RGB-D frame or can be sampled from
a 3D mesh. A point cloud P with m points is an unordered
set of points {p1, p2, p3, ..., pm}, with each pj consisting of
coordinates and normal/color information pj = (xj , yj , zj).
We want to break our point cloud P into small patches
Ci each holding n points. Ci = {p1, p2, p3, ..., pn} with⋃
Ci = P . In order to find clusters we perform random

sampling and build clusters of n points around each cen-
troid. If a projected depth frame is available, this can be a
rectangular patch of size w × w = m in the image domain,
which represents a small frustum in the point cloud. Now
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Figure 2. Top: The schematic of node level feature propagation given the edge connectivites of graph and different hops values K=(1,2,3).
Bottom: The Graphite architecture, consisting of GCN layers with different hops (increasing and then decreasing) to estimate a patch
descriptor (D) from the middle stage and keypoint localization (Y ) and scoring (S) at the end.

suppose we have a function F (Ci) = Yi, F : IRn×3 → IRn

that, for each point p in patch Ci, finds a value y repre-
senting the saliency of that point. The point with maximum
value in each patch would be our point of interest or key-
point ki:

ki = argmax
p

(F (Ci)) = argmax
p

(Yi) (1)

Every patch is thus associated with a salient point (key-
point). Furthermore, we transform every patch to a de-
scriptor vector Di of size l. A function G(Ci) = Di, G :
IRn×3 → IRl maps a patch to the descriptor. Using the
functions F and G, one can transform every patch to ki ∈
IR3 and Di ∈ IRl respectively.

3.2. Graph Definition

Given a set of points Ci = {p1, p2, p3, ..., pn} in a patch
as described in the previous section, we want to create a
graph Xi = (Vi, Ei). Graphs are constructed from a set of
vertices Vi and edgesEi. As a common practice, we assume
that every point in the patch Ci can be considered as a node
in the graph Xi. A node is represented by its coordinates
and normal vectors in local reference frame (x, y, z, a, b, c).
Thus Vi ∈ IRn×6.

In addition to nodes, edges would demonstrate the con-
nectivity of nodes and hold geometrical embedding. An
edge ej,k connects vertices vj and vk. In previous works
such as [69], edge connectivities are associated with K-
nearest neighbors. The k-NN constraint would force a fixed
number of edges into every node ultimately losing metric
information. In contrast to this, we consider the unit ball
with radius r around each node’s positional coordinates, and
connect them to other nodes when their distance falls bel-
low r. We calculate the parameter r based on average point
cloud resolution. In addition to this, we attribute a weight to
every edge to give a higher weight to close neighbors (and

vice-versa) as follows:

e(j, k) =

{
r

r+||pj−pk|| , if ||pj − pk|| < r.

0, otherwise.
(2)

Taking the function F (Ci) from Section 3.1, we can input a
graph to our model F (Ci) = F ′(Xi) = Yi, F

′ : IRn×6 →
IRn and predict a value per point/node of the patch. We can
define this value as the inverse of the shortest path to the de-
sired keypoint ki. yki

= max(F ′(Xi)). During supervised
training explained in Section 3.7, we assign the distance to
a known keypoint to the node values.

3.3. GCN Architecture

In this section we introduce our graph convolutional net-
work (GCN) architecture as depicted in Figure 2. As men-
tioned previously we build graphs consisting of edges and
nodes to represent a point cloud. We associate node fea-
tures to estimate the value function F (X) which is used
for keypoint detection discussed in Section 3.2. Moreover,
we construct a function G(Xi) that estimates descriptors
from the graph, which should be invariant to node orders.
We therefore use the scatter max operation which is a sym-
metric function for our descriptor. We build upon Topol-
ogy Adaptive Graph Convolutions [18] which will give us a
framework to digest node and edge level information under
different topologies.
We simulate the notion of multi-scale processing in clas-
sical feature descriptor and modern 2D convolutional net-
works by stacking GCN layers with different hops as il-
lustrated in Figure 2. Hops define how many nodes the
information passes by on its way. By letting increasing
and then decreasing hops (K=1,2,3) in our filters we in-
crease the receptive field of nodes to capture patch-wide
features and therefore manage to describe a global repre-
sentation of the graph. Moreover, in contrast to previous



works that uses two heads for F and G [5, 17], we model
both F,G(Xi) = (Yi, Di) with the very same network. An
illustration of hops and the Graphite model can be found
in Figure 2. In the next section, we describe the design and
process steps of our three concepts for description, keypoint
localization and scoring.

3.4. Descriptor

Starting with the input patch graph X we apply 3 lay-
ers of graph convolutions at first. Every graph convolu-
tion module is taking into account the adjacency matrix
A ∈ IRn×n built using Eq. 2 and its diagonal degree matrix
D′ ∈ IRn×n to propagate node features across the graph.
As in [18], we update node level information X ′i by propa-
gating features using edge level information as follows:

Xi
′ =

K∑
k=0

D′
−1/2

AkD′
−1/2

XiΘk, (3)

where Θk is the matrix to be learned for hop iteration k.
After each layer we increase the depth of features from 6
to 8, 8 to 16 and 16 to 32. After three layers, the updated
node features encapsulate features from the surrounding
points and therefore describe the considered patch. To force
descriptor invariance with respect to both point and node
permutation, a scatter max aggregation function is utilized
similar to PointNet [48]. The features follows linear fully
connected layers and a normalization layer to project the
feature on a unit sphere. The final descriptor vector is
32-dimensional (l = 32).

3.5. Keypoint Localization

Apart from descriptor we need to formulate a value func-
tion G(Xi) = Yi to estimate how salient a point is in com-
parison with its neighboring nodes. In the context of this
work we assume every small patch has at most one salient
keypoint. Following the first three GCN layers leading to
descriptor branch, we now squeeze back features to esti-
mate per node values (Yi). Feature depths are decreased
from 32 to 16, 16 to 8 and 8 to 1 while the graph formation
and node values are constrained.

3.6. Keypoint Scoring

Our target is to improve point cloud registration. How-
ever, not every single patch possesses enough structure to
represent a salient keypoint. For this reason, we formulate
a soft invalidation of our non-salient keypoints through as-
signment of a global score S per patch. Figure 3 depicts
different level of keypoint scoring. We can use mesh sur-
face information from synthetic data to assign scores given
their curvature magnitude. To regress this scalar value we
perform another scatter max on the output feature of layer
five and apply a FC unit on top of that.

Figure 3. We render point clouds (in red) from different surfaces
of 3D primitives. We assign a score measure S to each patch given
its taper curvature and height and a keypoint K in green. S = 1
infers a surface with potential salient keypoint . S ≈ 0 infers a
non-salient flat patch

3.7. Network Initialization

In order to properly learn our joint model we propose to
have a training initialization. Supervising the network in the
first stage helps the model to detect corners. As the pointi-
ness of a shape corner is a fundamental geometric property,
we let our network first focus on these points. Furthermore,
we drive our GCN to predict surface flatness and curvature
to infer keypoint scoring.

To fulfill this goal, we create a synthetic dataset, includ-
ing point clouds of rendered depth maps with known shape
and surface. Random primitive corners are generated with
different curvature and known corner points. We also render
the same 3d primitive (such as cone, box or pyramid) from
two different camera views to simulate pose and sampling
variations. Keypoint locations are labeled on the point sam-
pled closest to the corner. We then measure ground truth
values for all the points in the point cloud given their short-
est path to the target keypoint in the constructed graph. Val-
ues and scores are learned in a supervised way with MSE
loss (Eq. 4) to give the network an early assumption of such
salient extreme points. This will be fine-tuned without di-
rect supervision in the following stage (see Section 3.8).

LV = (Y − Ŷ )2, LS = (S − Ŝ)2 (4)

Alongside keypoint detection, we also predict a descriptor
which we train using metric learning with a triplet margin
loss. Each of the triplet samples, i.e. reference, positive and
negative, will have a predicted descriptor (Dr, Dp andDn).
A similarity term |Dr−Dp| pulls together descriptors while
a push term |Dr −Dn| increases the distance between non-
matching descriptors. The loss is as follows:

LD =
|Dr −Dp|

|Dr −Dp|+m · |Dr −Dn|
(5)

With this we force the point clouds taken from the same
patch but with different samplings to retrieve the same de-
scriptor while descriptors from different patches are pushed
apart. The total loss will accumulate all three losse terms
LT = LD + LV + LV .
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Figure 4. Training happens in two stages. In the initialization stage
(top), triplet inputs are fed into networks with shared weights. The
detectors are learned with supervised loss and the descriptors are
learned through triplet loss. (Bottom) we train using 6D pose with
minimum supervision. Both detector and descriptor are trained
with triplets. In order to measure similarities on point cloud values
we warp one point cloud to another using known relative pose.

3.8. Training with pose variations

After initializing our model on homemade synthetic
primitives dataset, we subsequently fine-tune our feature
detector with the support of pose annotations on a more va-
riety of geometries and samplings. Descriptors should be
rotational and sampling invariant. If we transform and re-
sample a point cloud with a 6D pose, it should not produce
a different descriptor or find a different keypoint. More-
over the salient regions should be consistent under differ-
ent patch samplings to improve matching. This is par-
ticularly significant in real applications e.g. when captur-
ing range data, sampling a surface would produce different
point clouds with different resolution and noise. To build a
robust descriptor and detector, we use the Graphite model to
describe the same surface with varied samplings and poses.
Similarly, we remove the direct supervision of value esti-
mation to let the network detect optimal and persistent key-
points from different views using metric learning and triplet
loss similar to Eq. 5.

3.9. Point cloud warping

Given two point clouds from two different viewpoints
with known relative pose, we first tessellate each cloud into
small sets of points (patches). In presence of variable sam-
pling rate or noise perturbations transformed points would
not lay exactly on corresponding points but rather some-

where on the surface. To facilitate metric learning across
different poses we need to warp each patch into one another.
With warping, each embedding from the original point set
finds its equivalent embedding in the other set to compare.

Lets assume we have a patch Ci from cloud P and we
know pose Tpq to transform point cloud P to Q. Applying
known transformation T to P will move us to P ′, TpqP =
P ′. We find the corresponding patch of Ci, Cj in Q using
nearest neighbors of c′ in P ′ with

Cj = {c ∈ Q : ∃c′ ∈ P ′, c ∈ knn(Q, c′)}. (6)

Where knn(Q, c′) find k nearest neibors of c′ in Q. We fi-
nally utilize k-NN again to find the weight combinations for
corresponding value assignments. The weights are defined
as inverse 3d distance in the k nearest neighbors for value
warping.

4. Experiments and Evaluations

4.1. Implementation details

Our implementation is done with PyTorch Geometric
[20] and PyTorch [47] for graph definition and graph convo-
lutions. To process, sample and operate with point clouds,
we leverage the Open3D library [78]. The evaluation fol-
lows the example implementation provided by [23] and
[68]. We train and evaluate all pipelines on an Intel Core
i7-8700K CPU 3.70GHz× 12 and an Nvidia GeForce RTX
2080 Ti GPU. On this hardware average Graphite calcula-
tion for 100 patches takes 0.018 seconds on GPU.

4.2. Synthetic Primitive Corners

As introduced in Section 3.7 and inspired by the 2D pro-
cessing of MagicPoint [16], we start with synthetic data
training with the aim to guide the network in order to learn
different shapes and primitive differential geometric con-
cepts to locate corners as keypoints. We create a rendering
pipeline with a pair of cameras at random poses pointing
towards a shape corner from the object. The corner of fo-
cus can associate 3-10 faces with varying heights and curva-
tures. Every instance is then rendered from the camera pairs
to simulate different point sampling as it would occur in a
natural scene. The depth maps are then back-projected to a
point cloud given the known camera intrinsics. In total, we
produce 20k random patch pairs. Each pair is grouped with
a random instance which together form a triplet. A random
patch of size n is sampled in the vicinity of the corner. Ev-
ery patch is then converted as explained in Section 3.2 with
a fixed radius r, and the nodes are annotated with a value Y
inverse to the length of their path to a target keypoint node.
The target node is valued with 1. In the supplementary ma-
terial you can find sample triplets from this dataset .



Method MSE RMSE MAE

ICP R 892.60 29.88 23.63
t 8.60 2.93 2.52

Go-ICP R 192.26 13.87 2.91
t 0.05 0.22 0.06

FGR R 97.00 9.85 1.45
t 0.02 0.14 0.02

PointNetLK R 306.32 17.50 5.28
t 0.08 0.28 0.07

DCP-v1 R 19.20 4.38 2.68
t <0.01 0.05 0.04

DCP-v2 R 9.92 3.15 2.01
t <0.01 0.05 0.03

Ours R 7.44 2.73 1.49
t 0.31 0.56 0.38

Ours + ICP R 0.75 0.86 0.11
t 0.09 0.30 0.07

Table 1. Point cloud registration comparison on ModelNet objects
from unseen categories.

4.3. ModelNet Object Registration

Model40 [71] is a dataset consisting of 3D meshes in 40
different categories. For each category it contains synthetic
CAD models. We sample random point clouds uniformly
from the CAD model. For a fair comparison we follow the
repository of [68] to sample 1024 points on the surface. For
registration based on ModelNet objects, we randomly gen-
erate a rotation and translation (pose) and apply it to the
source point cloud as in [68]. A random permutation is ap-
plied to the resulting list of target points. We then generate
uniformly distributed patches with random seeds on three
different scales of the point cloud to learn robust descriptors
across different scales. It is worth mentioning that patches
may not have a (fully) corresponding patch on the other
point cloud. Each patch is then converted to a graph and
sets of graphs are stored for each pose. We normalize the
cloud into unit cube (1m) and apply perturbation augmen-
tation by applying Gaussian noise (σ = 0.1cm) on point
coordinates and normals. For both training and testing, we
generate 70 patches per object to describe.

We compare our registration performance on the Mod-
elNet40 [71] dataset based on the evaluation criteria pro-
vided in [68]. We train our model with the first 20 cate-
gories and evaluate with the 20 unseen categories. We first
calculate Graphite features and keypoints per patch in each
frame and then find correspondences based on Euclidean
feature distance. Pairs of matched keypoints from our de-
tected pool are then used to calculate a pose with an SVD-
based pose estimation. We then calculate the Mean Average
Error (MAE), Mean Squared Error (MSE) and Root Mean
Squared Error (RMSE) on each rotation (in degrees) and
translation (in cm) component. Table 1 compares our reg-
istration errors with state of the art registration methods on
this dataset.

Method MSE RMSE MAE

ICP R 882.56 29.71 23.56
t 8.45 2.91 2.49

Go-ICP R 131.18 11.45 2.53
t 0.05 0.23 0.042

FGR R 607.69 24.65 10.06
t 1.19 1.09 0.27

PointNetLK R 256.16 16.00 4.60
t 0.047 0.216 0.057

DCP-v1 R 6.93 2.63 1.52
t <0.01 0.02 0.02

DCP-v2 R 1.17 1.08 0.74
t <0.01 0.02 0.01

Ours R 17.76 4.21 2.35
t 0.39 0.63 0.44

Ours + ICP R 4.03 2.01 0.31
t 0.10 0.31 0.08

Table 2. Effect of Gaussian noise on point cloud registration on
ModelNet40 dataset

Figure 5. Qualitative evaluation on ModelNet40 [71] dataset reg-
istration in presence of noise. Graphite matching followed by
RANSAC-based pose estimation provide an almost perfect initial
pose for follow-up ICP refinement.

Figure 6. Qualitative evaluation on 3DMatch [76] dataset registra-
tion. Random registration examples from three scenes MIT, Home
1 and Hotel 1.

Methods such as ICP, Go-ICP and DCP are iterative opti-
mization methods. Their convergence is sensitive to the ini-



Handcrafted Trained on 3DMatch
Method FPFH SHOT 3DMatch PPFNet PPF-FoldNet Perfect-Match Perfect-Match CGF Graphite

(33 dim) (352 dim) (512 dim) (64 dim) (512 dim) (16 dim) (32 dim) (32 dim) (32 dim)
Kitchen 43.1 74.3 58.3 89.7 78.7 93.1 97.0 60.3 64.82
Home 1 66.7 80.1 72.4 55.8 76.3 93.6 95.5 71.1 83.97
Home 2 56.3 70.7 61.5 59.1 61.5 86.5 89.4 56.7 68.26
Hotel 1 60.6 77.4 54.9 58.0 68.1 95.6 96.5 57.1 80.77
Hotel 2 56.7 72.1 48.1 57.7 71.2 90.4 93.3 53.8 80.53
Hotel 3 70.4 85.2 61.1 61.1 94.4 98.2 98.2 83.3 96.29
Study 39.4 64.0 51.7 53.4 62.0 92.8 94.5 37.7 82.53
MIT Lab 41.6 62.3 50.7 63.6 62.3 92.2 93.5 45.5 76.62
Average 54.3 73.3 57.3 62.3 71.8 92.8 94.7 58.2 79.22
STD 11.8 7.7 7.8 11.5 9.9 3.4 2.7 14.2 9.10

Table 3. Results on 3DMatch Geometric Registration Benchmark.

tialization. Therefore, the translation components is min-
imized comparably well based on the centroid of the full
cloud, while the rotation estimate is not very robust in cases
of minor overlap or for partial scans. We also add ICP as a
consecutive refinement stage after calculating our pose. We
reach state of the art rotation error with a significant margin
on all estimated metrics.

4.4. Registration under Noise

We also study the robustness of our pipeline in presence
of noise. We add Gaussian noise to the target point cloud
coordinates with a standard deviation of 1 cm. Similar to
[68], we test our approach with unseen test instances from
all trained categories. We detect local keypoints per patch
and measure descriptors to match them. We use an SVD
based solver to predict the pose. Table 2 shows error results
in comparison to the state of the art method on the Model-
Net40 dataset. While the squared errors reflect some minor
outliers, we keep being the method with best performance
on MAE error with 0.31 degrees. Figure 5 shows sample
registration results on ModelNet40[71] dataset. For exten-
sive evaluations you can refer to supplementary material.

4.5. 3DMatch Descriptor Matching

The 3DMatch benchmark [76] is a 3D descriptor and
geometric registration benchmark. It consists of 7 indoor
scenes with multiple point cloud frames each. The point
cloud instances are partial views of a fixed scene captured
with an RGB-D sensors. We evaluate on this benchmark
to assess the real-world applicability of Graphite. For
evaluation, we follow the official repositories of [23, 76]
where 5k keypoint coordinates are provided per frame. As
the scans include a huge set of points, we first sub-sample
points with voxel based sub-sampling and then form
patches around the list of given seed coordinates. We form
patches with n = 225 points to describe the same vicinity
used to describe other features.

Contrary to the state of the art methods such as [76, 13,

14, 23] which have trained their models on 3dMatch data
or other realistic scans, we have trained our model on syn-
thetic point clouds only. This test demonstrates the trans-
fer and generalization capabilities of our method applied on
real data registration task.
Given the pool of stored locations from 3dMatch[76], we
describe each local patch and perform matching with our
descriptors, we then match them based on their Euclidean
distance and perform RANSAC based registration. We
take the same RANSAC iteration and settings as used in
3DSmoothNet [23]. We calculate recall values instructed in
[13, 23] with τ1 = 0.1m and τ2 = 0.05.
In Table 3 we present our results for the 3DMatch bench-
mark. We achieve a high recall rate in most of the scenes
while having a dense representation (with 32 dimension)
and a super lightweight model. In Figure 6 some exam-
ple registrations drawn from the benchmark fragments are
shown. Graphite demonstrate satisfying results even in
cases with very small overlap. Moreover, in contrast to
Perfect Match [23], we do not use a memory-hungry vox-
elization representation, but rely on computationally more
efficient graph operations on point clouds through simple
matrix multiplications presented in Eq. 3. For extensive
qualitative evaluation of 3DMatch we refer the interested
reader to our supplementary material.

5. Conclusion
We propose A lightweight patch descriptor which can

represent point clouds ideal for expensive problems. Our
graph-based model efficiently learns shape features and can
detect salient keypoints given synthetic prior training fol-
lowed by self-supervised metric learning. The extracted
keypoints alongside the condensed descriptor can be used
in the task of point cloud registration. We improve the state
of art on object point cloud registration and prove solid per-
formance and generalization on real indoor scans. Graphite
can enable fast computation and dense representation of
point clouds for modern 3D vision problems, replacing clas-
sical descriptors and sampling techniques.
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