
Guide Me: Interacting with Deep Networks

Christian Rupprecht1,2,*, Iro Laina1,*, Nassir Navab1, Gregory D. Hager2,1, Federico Tombari1

* equal contribution
1 Technische Universität München, Munich, Germany

2 Johns Hopkins University, Baltimore, MD, USA

Abstract

Interaction and collaboration between humans and intel-
ligent machines has become increasingly important as ma-
chine learning methods move into real-world applications
that involve end users. While much prior work lies at the
intersection of natural language and vision, such as image
captioning or image generation from text descriptions, less
focus has been placed on the use of language to guide or im-
prove the performance of a learned visual processing algo-
rithm. In this paper, we explore methods to flexibly guide a
trained convolutional neural network through user input to
improve its performance during inference. We do so by in-
serting a layer that acts as a spatio-semantic guide into the
network. This guide is trained to modify the network’s acti-
vations, either directly via an energy minimization scheme
or indirectly through a recurrent model that translates hu-
man language queries to interaction weights. Learning the
verbal interaction is fully automatic and does not require
manual text annotations. We evaluate the method on two
datasets, showing that guiding a pre-trained network can
improve performance, and provide extensive insights into
the interaction between the guide and the CNN.

1. Introduction
Convolutional neural networks (CNNs) continue to grow

in their breadth of application and in their performance on
challenging computer vision tasks, such as image classifi-
cation, semantic segmentation, object detection, depth pre-
diction and human pose estimation. To date, the majority of
the techniques proposed for these applications train specific
network architectures once and subsequently deploy them
as static components inside an algorithm. However, it is
unlikely that any static network will be perfect at the task
it was designed for. If the deployed CNN were adaptable
to feedback or specifications provided by a human user on-
line, this interaction would hold the potential to improve the
model’s performance and benefit real-world applications.

For example, in photo editing, when a CNN is used to
segment the foreground of an image from the background,
the user might notice that the network has made a mis-
take. Instead of manually repairing the segmentation output
or developing a post-processing algorithm based on some
heuristics, a simpler and more effective way would be for
the user to interact directly with the network through a di-
rected hint, e.g. pointing out that “the child on the bot-
tom left of the image is in the foreground, not in the back-
ground”. The user that was previously presented with a
fixed, black-box prediction is now able to influence and alter
the outcome according to his needs. This property is partic-
ularly useful in high risk domains such as medical image
analysis and computer-assisted diagnosis, where fully auto-
mated segmentation is not always robust in clinical appli-
cations and the experience of trained practitioners matters.
Another relevant example is speeding up labor-intensive
and repetitive labeling tasks, such as those needed to cre-
ate datasets for semantic segmentation, especially those for
which annotations are scarce and expensive to obtain.

We propose a novel idea to allow user-network feedback-
based interaction that aims at improving the performance of
a pre-trained CNN at test time. The core idea is the defini-
tion of a spatio-semantic guiding mechanism that translates
user feedback into changes in the internal activations of the
network, thus acting as a means of re-thinking the inference
process. The user input is modeled via a language-based ap-
proach, that enables interaction with a trained model in the
form of a dialog. The user receives a first estimate, inputs a
text query and the network replies with an updated predic-
tion. Most previous interactive approaches place the user on
the input/data side which means user input is required for
the method to operate. In contrast, in our method, the user’s
input is optional and modifies the network, this means that
the network does not depend on human interaction but can
be adjusted by it.

We showcase this interactive module on the task of se-
mantic image segmentation. One advantage of our method
is that it does not depend on any explicit annotation for text-
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Figure 1. Overview. We introduce a system that is able to refine predictions of a CNN by injecting a guiding block into the network. The
guiding can be performed using natural language through an RNN to process the text. In this example, the original network had difficulties
to differentiate between the sky and the cloud classes. The user indicates that there is no sky and the prediction is updated, without any
CNN weight updates and thus without additional training.

region correspondences. Yet, results indicate that the mod-
ule can successfully transfer semantic information from the
natural language domain to the visual domain, such that the
network eventually produces a more accurate segmentation.
As a side effect, this provides interesting insights into how
CNNs structure their inference with respect to natural cat-
egories, providing an avenue for exploring the relationship
between language and imagery.

2. Related Work

Interaction with neural networks Human-machine in-
teraction is an extensively researched field. In [9] the user
and an algorithm work together to solve fine grained recog-
nition tasks, leveraging analytic strengths of the system and
visual recognition power of the human. Prior to deep learn-
ing, several systems have been proposed for semi-automatic
segmentation, that allowed the user to interfere with the
result or to provide hints to the system via seed points
[8, 52], bounding boxes [24, 37, 54], contours or scribbles
[7, 23, 58], eye gaze [26] or in the form of binary yes/no
answers to a set of questions [11, 55].

Most deep learning based segmentation methods, how-
ever, do not have an interface for human input during in-
ference. The model and thus the attainable performance is
fixed after the training phase. Directly integrating a human
into a training loop with thousands of images is challenging.
Nonetheless, some methods towards interactive deep learn-
ing have been proposed, such as weakly-supervised seman-
tic segmentation from scribbles [38], user-provided clicks
and Euclidean distance maps [61] or bounding boxes used
as region initialization [17, 53]. Additionally, a method for
sparse, user-guided colorization of grayscale images is pro-
posed in [63]. In the field of medical imaging, [2] proposes
to interactively improve segmentation by updating a seed-

map given by the user and [57] uses a second network oper-
ating both on the previous prediction and human feedback.

In our system, we integrate online interaction into the
training by substituting the human input with an algorithm
that dynamically generates hints from different modalities
based on previous predictions. The CNN is already trained
and only asks for the user’s directions for the purpose of
conditioned (on-demand) adjustments of an initial estimate.

The intersection of vision and language To enable user
interaction in a natural and intuitive way, we propose a
novel idea that lies in the joint domain of natural language
and vision. A relevant line of work in this field is Visual
Question Answering (VQA). A question is posed and the
answer is based on the image context [1, 45, 64]. Spe-
cialized systems for VQA ground the question in the in-
put image and focus on the relevant parts to answer com-
plex queries with text responses [4, 5, 27, 32, 43, 46].
Other examples include generation of referring expres-
sions [36, 44, 47, 62], segmentation or object retrieval
from referring expressions [19, 29, 28], image captioning
[16, 21, 33, 34, 48, 56] and visual dialog [18]. Most works
focus on the combination of CNN and RNN models, often
building attention mechanisms [3, 42, 59, 60]. Most related
to our approach is the recent method from [20, 50] that pro-
poses the use of a conditional batch normalization layer [30]
and feature-wise adjustment for visual reasoning.

A key distinction between our approach and most of the
summarized literature is that our system’s output is visual
and not textual, i.e. it is neither an answer nor an image
caption. The output of the interactive CNN is in the same
domain as the initial one. Another major difference is that
we do not rely on vision-text correspondences with paired
questions-answers or captions; user interaction is simulated
via textual expressions that we generate automatically.



Semantic segmentation In this paper, we focus on the ap-
plication of semantic image segmentation, which is widely
studied in the computer vision literature and significantly
boosted by the success of deep learning methods [6, 12, 31,
39, 41, 51]. Our goal is to deploy out-of-the-box, state-of-
the-art models [12, 41] as estimators, that are then guided
by our module to improve their former predictions with the
help of a human user (or any given priors as hints).

3. Methods
In this section, we describe how our interaction mod-

ule is integrated into a fixed CNN following two different
approaches: guiding with user clicks and back-propagation
(Section 3.2) or natural language inputs (Section 3.3). A
general overview for the latter case is shown in Figure 1.

We first define the main elements of our framework,
which we refer to throughout this paper. The module we
insert into the CNN is called the guide. The guide inter-
acts with the guided CNN through a guiding block, which
is built to adjust activation maps of the CNN to improve the
final prediction for the given input. The guided CNN is thus
split into two parts: the head, which processes the input un-
til it reaches the guiding block, and the tail, that is the rest
of the guided network up to the final prediction layer. More
formally, by decomposing the network into a head h and a
tail function t, the output prediction ỹ given input x can be
written as t(h(x)) = ỹ . We refer to the information that
the guide uses to modify the guided network as the hint.

The split position is chosen manually. However, a rea-
sonable choice is the (spatially) smallest encoding that the
network produces, as this layer likely contains the most
high-level information in a compact representation.We val-
idate the choice of layers in the Section 4.2.

3.1. Guiding Block

The guiding block is the integral piece of our approach,
it enables feedback to flow from the guide into the guided
network. Essentially, the guide must be able to modify a
set of activations in the guided network. Since activation
maps usually consist of a large number of elements (e.g.
32× 32× 1024 ≈ 1 million), element-wise control is prone
to over-fitting. The intuition behind our guiding block is
that the network encodes specific features in each chan-
nel of a given layer. Thus, a guide that has the ability to
strengthen or weaken the activations per channel, can em-
phasize or suppress aspects of the image representation and
thus adapt the prediction in a semantically meaningful way.

The head predicts a feature representation h(x) = A ∈
RH×W×C with widthW , heightH and number of channels
C. Then, guiding can be expressed as a per feature map
multiplication with a vector γ(s) ∈ RC and bias γ(b) ∈ RC ,

A′c = (1 + γ(s)c )Ac + γ(b)c , (1)

where c ∈ [1, . . . , C] indexes the channels of the feature
volume A and the corresponding elements of the guiding
vector γ = (γ(s), γ(b)). Given this formulation, we are able
to adjust a set of feature maps by emphasizing or hiding in-
formation per channel. Equation (1) can also be interpreted
as the guide predicting a residual update (similar to ResNets
[25]) for the activation map Ac. γ plays the role of a filter
on the feature maps. When γ = 0, our guiding block re-
produces the input feature map and thus has no effect in
guiding the network. When γ(s)c = −1, channel c would
become suppressed as all its units would be set to 0. Con-
versely, for γ(s)c = 1, the activation strength of that feature
channel is doubled. Values smaller than −1 invert a feature
map, emphasizing aspects that would have been otherwise
cut-off by the ReLU unit that typically follows the weight
layer (or vice versa).

While this approach, which is similar to the condition-
ing layer in [20, 50], supports per-channel updates and fea-
ture re-weighting via γ, it is not flexible enough to adjust
features spatially since it modifies the whole feature map
with the same weight. In other words, it is impossible for
this module to encourage spatially localized changes in each
feature map (“On the top left you missed ...”). To overcome
this limitation, we extend the approach to the spatial dimen-
sions H and W of the feature map, i.e. we introduce two
additional guiding vectors α ∈ RH and β ∈ RW to modify
the feature map A with spatial attention. In the following,
we will indexAwith h,w and c to uniquely identify a single
element Ah,w,c ∈ R of A

A′h,w,c = (1 + αh + βw + γ(s)c )Ah,w,c + γbc (2)

The overall function that the guided network computes is
thus modified to

y∗ = t
[
(1⊕ α⊕ β ⊕ γ(s))� h(x)⊕ γ(b)

]
, (3)

where the tiling of the vectors α, β, γ along their appropri-
ate dimensions is denoted with ⊕ and the Hadamard prod-
uct with �. This way α and β have spatial influence and
γ controls the semantic adjustment. Guiding with Equation
3 reduces the number of parameters from H ×W × C to
H + W + C = 1088 in the previous example, which is
manageable to predict with a small guiding module.

Since fully convolutional architectures are a common
choice for image prediction tasks, we employ linear inter-
polation of α and β when the feature map spatial resolution
varies. This choice reflects two properties of the guiding
block. First, α and β do not depend on fixed H and W .
Second, one can select the granularity of the spatial resolu-
tion by changing the dimensionality of α and β to match the
spatial complexity of the hints that the guide follows.

We describe two fundamentally different ways to em-
ploy the guiding block. The first one – guiding by back-



propagation (Section 3.2) – can be directly applied on a pre-
trained CNN that is kept constant. The second one aims at
online interaction with neural networks via user feedback.
The network should be able to deal with hints from differ-
ent modalities, such as natural language – “the dog was mis-
taken for a horse”. We describe how the guiding parameters
α, β and γ can be predicted with an appropriate module
given a hint from a different input domain in Section 3.3,
which also speeds up processing.

3.2. Guiding by Back-propagation

In this setup, our goal is to optimize the guiding param-
eters such that the network revises its decision making pro-
cess and, without further learning, improves its initial pre-
diction for the current input. The guiding block is placed
between head and tail, and the guiding parameters are ini-
tialized to 0. For a given sample x, we formulate an en-
ergy minimization task to optimize α, β and γ. The hint
will be given as a sparse input ŷ associated to a mask m̂.
ŷ and m̂ have the same dimensionality as the prediction ỹ
and the ground truth y. m̂ is a binary mask that indicates
the locations where a hint (i.e. prior knowledge) is given.
Prior knowledge can be either directly given by the user or
it could be a prior computed by another source.

In semantic segmentation, one can think of the hint as
a single (or more) pixel(s) for which the user provides the
true class – “this [pixel] is a dog” as additional informa-
tion. Prior to guiding, a certain loss L(t(h(x)), y) has been
minimized during training of the network for a given task.
We now optimize towards the same objective, e.g. per-pixel
cross entropy for segmentation, but use the mask m̂ to only
consider the influence of the hint and minimize for the guid-
ing parameters, as opposed to the network’s parameters, i.e.

α∗, β∗, γ∗ = argmin
α,β,γ

[m̂� L(y∗, ŷ)] . (4)

In this case, we only update the guiding variables for the
current specific input x and hint ŷ, whereas the network’s
weights are not trained further. The minimization finds the
best parameters α∗, β∗, γ∗ conditioned on the hint. The key
insight is that this results in an overall adjusted prediction.

Since the guiding block and the network t(h(x)) are
differentiable, we can minimize (4) using standard back-
propagation and gradient descent with momentum. Intu-
itively, the tendency of gradient descent to fall into local
optima is desirable here. We are looking for the smallest
possible α, β and γ that brings the guided prediction closer
to the hint while avoiding degenerate solutions such as pre-
dicting the whole image as the hinted class.

3.3. Learning to Guide with Text

While the previous idea is straightforward and simple to
apply to any network, it requires the hint to be given in the
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Figure 2. Query Generator. We illustrate the process to automat-
ically generate queries to substitute the user during training.

same domain as the network’s output. We now explore a
more natural way of human-machine interaction, in which
the user can give hints to the network in natural language
and the guiding mechanism is trained to update its parame-
ters after parsing the user’s inputs. To the best of our knowl-
edge, this is a topic that has not been previously studied.

Training with queries Similar to prior work in related
fields, we use a recurrent neural network (RNN) for pro-
cessing natural language inputs. We first encode the in-
put query using a word embedding matrix, pre-trained on
a large corpus, to acquire a fixed-length embedding vector
per word. The embedded words are fed as inputs to a Gated
Recurrent Unit (GRU) [14, 15] at each time step. We freeze
and do not further train the word embedding alongside our
guiding module, to retain a meaningful word representation.
The guiding parameters α, β and γ are predicted as a linear
mapping from the final hidden state of the GRU.

The language-guided module is trained as follows. We
first generate an initial prediction with the fixed, task-
specific CNN, without influence from the guide. We then
feed prediction and ground truth into a hint generator, which
produces a query (e.g. “the sky is not visible in this image”,
thus mimicking the user. The query is then encoded into a
representation that becomes responsible for estimating α, β
and γ that will guide the feature map using (3) and sub-
sequently update the prediction. The standard loss for the
given task (pixel-wise cross entropy loss for semantic seg-
mentation) is re-weighted giving positive weight (1) to the
class(es) mentioned in the query to encourage changes in
the prediction that coincide with the given hint. All wrongly
predicted pixels are given a zero weight to prevent hints
from being associated with other visual classes. Initially
correct pixels are weighted 0.5 to discourage corrupting cor-
rectly classified regions.

Generating queries Previous work mostly relies on
human-annotated queries, which make them rich in variety;



however, in this case they would limit the model to a single
interaction, since new annotations cannot be recorded adap-
tively during training. Instead, our approach uses vision-
only datasets and does not require visual/textual annota-
tions, such as captions [40], referring expressions [28, 35]
and region-description correspondences [47]. Our method
aims at aiding the network to correct predictions with var-
ious mistakes, rather than producing a segmentation result
on demand given an input expression. Therefore, it requires
textual expressions that are synthesized on-the-fly from vi-
sual categories, by comparing the initial prediction and the
ground truth segmentation map.

For the generation of the queries we use a combination
of functionality, semantic categories and spatial layouts (see
Figure 2). Functional categories are defined by a set of op-
erations that can be carried out on the output to improve
it, such as discovering missing semantic classes, suppress-
ing noise or replacing wrongly predicted pixels with another
class. The set we used in our experiments consists of two
operations, i.e. find to handle classes missing in the initial
prediction and remove to correct wrongly predicted labels.

Each query is built by its function and two placeholders,
the entries of which are randomly selected at each training
step from a set of plausible combinations based on predic-
tion and the ground truth. We first divide the output of the
network into a N × N grid. In each grid cell, we search
for all erroneous classes, either missing or mistaken, while
ignoring tiny spurious regions comprised of only a few pix-
els. Next, we randomly sample a class from the generated
list of possible choices and use its semantic name for the
textual expression (e.g. “find the person”). The sampling
probability is proportional to the potential improvement in
the prediction. We then track the class position in the image
based on the cells where it was found. Different combina-
tions of cells define different spatial attention areas which
can be then converted into text phrases such as “on the top
left”, “on the bottom”, “in the middle”.

Eventually, the proposed approach can generate textual
phrases automatically and online. The guide is thus trained
to understand language using vision-only annotations, i.e.
segmentation masks. The guiding block is able to discover
semantic and spatial correspondences between the text in-
put and the visual feature representation. During testing the
guide can then interpret the commands of a real user.

4. Experiments

We evaluate our guiding framework under multiple as-
pects. First, we guide semantic segmentation by back-
propagation. This allows us to directly evaluate the per-
formance of the guiding and show how it can be deployed
into a model without any additional training. Second, we
thoroughly investigate guiding with textual hints.

#questions 0 1 5 10 15 20

FCN-8s
mIoU 62.6 65.3 73.1 76.9 77.3 81.0
p.accuracy 91.1 91.8 94.1 95.3 96.0 96.3

Table 1. Performance after a number of questions. We guide
a pre-trained FCN-8s [41] on PascalVOC 2012 val set [22] di-
rectly, using back-propagation. We report the mean intersection
over union (mIoU) score and pixel accuracy. Every interaction
with the user improves the result.

4.1. Guiding by Backpropagation

We investigate the performance gain by employing our
guiding block directly on a fixed, pre-trained CNN. The task
is semantic segmentation on the PascalVOC 2012 dataset
[22]. We use a pre-trained FCN-8s network [41] and insert
a guiding block in the smallest encoding layer.

A user interaction scheme similar to the 20-question
game of [55] is set up. After an inference step, the network
is allowed to ask the user for the class of a single pixel and
the guiding layer updates the feature representation using
(4). The queried pixel is the one with the smallest poste-
rior probability difference between the two most confident
classes. This pixel has the highest interclass uncertainty,
meaning that it is the most likely to flip. After each ques-
tion the prediction is updated and the mean intersection over
union (mIoU) is computed.

We have intentionally chosen a somewhat “outdated” ar-
chitecture since we believe that user interaction is mostly
necessary in tasks in which the performance is not close
to optimal. We list the performance after 0, 1, 5, 10, 15
and 20 questions in Table 1, where 0 denotes the initial
performance of FCN-8s without guiding. Over the course
of 20 interactions with the user, a significant improvement
of the performance from 62.6% to 81.0% is recorded. It
is noteworthy that the top entry on the PascalVOC leader-
board (DeepLab-v3 [13]) currently scores 86.9% mIoU,
when trained with additional data. This demonstrates the
benefit of guiding by back-propagation: it can be directly
incorporated into a pre-trained CNN and, without any fur-
ther training, it boosts a comparably low performance to
reach the state of the art.

4.2. Guiding with Text Inputs

Due to the high accuracy of current methods on the Pas-
calVOC semantic segmentation task, bringing a human into
the loop to request improvements was not found to be mean-
ingful with state-of-the-art models. We wish to evaluate our
guiding module under a more challenging setting, in which
even the performance of a state-of-the-art model is not sat-
isfactory and interaction with a user can be beneficial.

For this purpose, we have chosen to use a dataset with



guiding module mIoU mIoU
w/ res-blk w/o res-blk

FiLM [50] 33.08 33.31
ours 33.11 33.56

Table 2. Guiding Block Variants. We evaluate mIoU perfor-
mance when guiding res4a using find queries, in comparison to
the conditioning layer of [50].

res3a res4a res5a res5c

mIoU 32.21 33.56 35.97 36.50

Table 3. Location of the guiding block. We evaluate mIoU per-
formance when guiding different layers inside the CNN using
find queries.

a limited number of images but rich categorical context.
COCO-Stuff [10] is a subset of the popular MS Common
Objects in Context (COCO) dataset [40] and consists of 10k
images from the train 2014 set, further split into 9k training
and 1k testing images. The images are labeled with pixel-
level annotations of 91 “things” and 91 “stuff” classes.

Implementation Details. We first split the training set
into two halves and use the first part for pre-training a
DeepLab model [12] with a ResNet-101 [25] as back-end.
The input dimensions are 320 × 320 × 3. On this small,
challenging dataset, this model scores only 30.5% mIoU.
Next, we keep the weights of the semantic segmentation
model fixed and only train the guiding mechanism using
the remaining 4,500 images that were unseen during the
pre-training phase. The guide is trained to translate em-
bedded text queries through a recurrent model into relevant
guiding parameters, as described in Section 3.3. For the
word embedding we used a pre-trained matrix based on the
GloVe implementation [49] that projects each word into a
50-dimensional vector space. The GRU consists of 1024
hidden units. A dense weight layer maps the last state to
the vectors α and β, that match respectively the height and
width of the succeeding activations of the semantic segmen-
tation model, and the weights and biases that are used as the
scale and offset update for each activation map. We have
experimented with two ways of applying the guide. The
first one alters the CNN’s activations directly, therefore the
weight vector size depends on the CNN layer that is being
guided. The second wraps the predicted weights inside a
residual block with 256 channels, as in [50]. For the hint
generation process, instead of uniquely defining an oper-
ation as “find the . . . ” we randomly select from a set of
variations with similar meaning such as “the . . . is missing”,
or “there is a . . . in the image”. The grid size N is set to 3,
resulting in 9 cells that specify the spatial location for the
query. All experiments are averaged over five evaluation

guiding location
hint complexity res4a res5a

remove 31.53 32.56
find or rmv 32.22 33.73
find 33.56 35.97

Table 4. Complexity of Hints. We show performance of the
method using two different types of hints.

# hints 0 1 2 3 4

mIoU 30.53 34.04 35.01 34.24 31.44

Table 5. Guiding multiple times. We guide iteratively with mul-
tiple find or rmv hints. After three hints performance de-
creases due to the guide over-amplifying certain features.

runs to account for the randomness in the queries.
Our best guided model improves the overall score from

30.5% to 36.5% with a single hint. We note that training
DeepLab on the full train set is only marginally better than
on the half, reaching 30.8% mIoU. Exemplary CNN predic-
tions before and after guidance are shown in Figure 3. The
guiding module was trained with find queries and does not
modify the original CNN permanently, but only conditioned
on the hints. We observed that our method helped resolving
typical problems with the initial predictions, such as con-
fusions between classes (columns 1, 2), partially missing
objects (column 3, 4) and only partially visible objects in
the background (column 6).

In the following, we compare our guiding block to the
conditional batch normalization layer of [50]. Then, we ex-
plore the effect of guiding location by inserting the guide at
different layers of the CNN. Further, we evaluate hint com-
plexity using different query operations and apply repeated
guiding to further improve the result. Finally, we provide
some insights, by analyzing failure cases through heat map
visualization and embeddings of the guiding vectors.

Guiding Block Evaluation. In a set of experiments we
investigate different variants of the guiding block. The per-
formance can be seen in Table 2. We analyze variants with
and without an encompassing res-block around the guiding
layer. We compare to the FiLM layer from Perez et al. [50].
The difference to our guiding block are the guiding compo-
nents α and β, that translate location information from the
text to spatial attention in image space.

Guiding Location. Due to the flexibility of the guiding
block, it can be plugged into the network at any location.
In general, in our experiments we observe that a location
that is very late - close to the prediction - inside the network
often results in small, local changes in the output. Moving
the block earlier results in more global changes that affect
a bigger region and sometimes multiple classes. When the



Figure 3. Qualitative Results. We show qualitative results using find hints for missing classes. In the first example, we resolve a
confusion between ground and playing field. In the second example, we show that the often occurring spurious predictions can
also be handled. The third column shows that the network get the hint to find the banner, although it bleeds slightly into the building
below. In the fourth and the last column, classes that are heavily occluded can be discovered too after guiding. The black ground truth label
stands for unlabeled thus any prediction is allowed there. Please see the supplementary material for additional examples.

guide is placed too early in the network the feature maps
that it guides do not contain enough high-level information
to guide appropriately. This can be observed in Table 3,
where we compute the mIoU score for guides in different
locations inside the network.

Complexity of Hints. Automatically generating hints
during training alleviates the need for manual vision-text
annotations and also enables direct control of the query
complexity. We differentiate between two distinct hints:
find and remove. A find hint tells the network that it
had missed a class: ”There is a person in the top right”.
remove is the opposite problem - the network had pre-
dicted a class that is not there or incorrect.

In Table 4 we show the performance for the different
hint types. We observe that remove generally yields a
lower performance gain than find. This is explained
by the fact that remove is a more ambiguous query
than find. When the network is told to remove a class
from the prediction it does not know what to replace it
with. Training with both queries simultaneously(find or
remove), randomly selecting one each time, achieves av-
erage performance between the two types.

Guiding multiple times. We have conducted an experi-
ment, similar to the one in Section 4.1 and Table 1, to show-

case an interesting property of the guiding module. Since it
is trained to adjust the feature space in a way that improves
the prediction, we hypothesize that the guided network can
be guided repeatedly. The insight is that the guiding block
will still result in a valid feature map. We iteratively direct
the network (guided at layer res5a) to correct its mistakes
via find or rmv queries, although it is not trained with
subsequent hints, and report prediction accuracy in Table
5. We observe that the performance has further increased
with a second hint. With three or more the guide starts
to over-amplify certain features, causing noise in the pre-
dictions and decreasing performance. Nonetheless, we still
observe a good gain over the non-guided model.

4.3. Insights into the Model

We provide further insight into learned models by exam-
ining failure cases and the learned joint embedding.

Failure Cases. When the initial prediction is particularly
noisy, the guide has difficulties to fully repair the mistakes,
as shown in Figure 4. Given a hint that a building is
missing, the network can partly recover it, but a lot of spu-
rious regions remain. We assume that the relevant features
that would be needed for successful guiding, cannot be fully
recovered from the noise in the guided activation map or are



Figure 4. Failure case.. Hint: ”there is a building in the top” When
the initial prediction fails, our method has difficulties recovering
the mistakes. The refinement includes the building only par-
tially and it bleeds into stone-wall below.

Figure 5. Failure Case Visualization. In the first example a) the
refined prediction is correct. In b) the heatmap indicates that the
guide has the right focus but it is not enough to change the output.

not present at all.
To understand how the activation map is influenced by

the guide, we visualize a heatmap for different queries in the
same image and investigate a failure case in Figure 5. In this
visualization we can see that the system understands the hint
about the sky (a). However, given the refined prediction
for the surfboard hint (b), we would assume that it did
not understand the query correctly. The heatmap shows that
the guide indeed does emphasize the right parts of the im-
age, but not strong enough to overpower the sea label. Po-
tentially more precise queries during training could fix this
problem. ”There is a surfboard where you predicted sea”
would let the guide not only emphasize surfboard re-
lated activations but simultaneously dampen the sea class,
leading to better results in these cases.

Semantic Analysis of the Learned γ-vectors. We ana-
lyze the mapping from text to guiding vectors. To this end,
we predict a γ vector for each class using a find query.

Figure 6. Visualizing γ. We visualize the learned γ vector for
every class using t-SNE. The colors correspond to the higher level
categories which are present in the dataset but not used in training.
Best viewed in digital version.

In Figure 6 we display the t-SNE projection of these 256 di-
mensional vectors. The color categories that the 182 classes
are grouped into, are set from higher level categories. The
grouping into categories was never used during training.
This space is the intersection between features learned from
the CNN for segmentation and text representation learned
by the RNN. The fact that semantically similar words clus-
ter means that the joint embedding successfully correlates
text and image features. A stronger clustering would mean
that the γ-vectors are very similar inside the cluster, thus the
network would have more difficulties guiding these classes.
This can still be seen in a few cases such as the very close
sand and mud classes, which are visually very similar and
often do not improve after guiding.

5. Conclusion

In this paper, we have presented a system that allows for
natural interaction of a human user with neural networks.
The idea is to enable feedback from the user to guide the
network by updating its feature representations on-the-fly,
conditioned by the user’s hint, without further training the
network’s parameters. An intuitive way of interaction is via
text queries, sent by the human to the network, which aim
at improving some initial estimation on a specific task.

We have created queries automatically with a special-
ized algorithm. In the future we would like to explore the
possibility of generating queries with a second network that
learns the role of the user, giving hints to the first. Further,
image-guided attention mechanism can be incorporated into
the RNN to improve the interaction mechanism.
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