
Sticky Projections -
A New Approach to Interactive Shader Lamp Tracking

Christoph Resch∗

EXTEND3D GmbH
Peter Keitler †

EXTEND3D GmbH
Gudrun Klinker‡

TU München

ABSTRACT

Shader lamps can augment physical objects with projected vir-
tual replications using a camera-projector system, provided that the
physical and virtual object are well registered. Precise registration
and tracking has been a cumbersome and intrusive process in the
past. In this paper, we present a new method for tracking arbitrarily
shaped physical objects interactively. In contrast to previous ap-
proaches our system is mobile and makes solely use of the projec-
tion of the virtual replication to track the physical object and “stick”
the projection to it.

Our method consists of two stages, a fast pose initialization
based on structured light patterns and a non-intrusive frame-by-
frame tracking based on features detected in the projection. In the
initialization phase a dense point cloud of the physical object is re-
constructed and precisely matched to the virtual model to perfectly
overlay the projection. During the tracking phase, a radiometrically
corrected virtual camera view based on the current pose prediction
is rendered and compared to the captured image. Matched features
are triangulated providing a sparse set of surface points that is ro-
bustly aligned to the virtual model. The alignment transformation
serves as an input for the new pose prediction. Quantitative exper-
iments show that our approach can robustly track complex objects
at interactive rates.

1 INTRODUCTION

Projector based illumination and augmentation has become an im-
portant area in Spatial Augmented Reality (SAR) in the last decade,
not least because powerful projector devices are getting smaller and
cheaper. The usage of projectors in SAR in the past can be cat-
egorized mainly in two types. On the one hand, (mostly) planar
objects are augmented with two-dimensional content such as text,
image and videos to act as an innovative display. From early ap-
plications such as the “Luminous Room” [17] where each surface
of the environment could possibly serve as an interactive display,
this concept has undergone thorough research in terms of projec-
tion surface complexity, view-dependent rendering, tracking, geo-
metric and radiometric calibration and compensation and multiple
projector setups. Indispensable in all applications is one or several
cameras to complement the projection system and allow for a close
feedback-loop. Raskar’s “iLamp” concept [13] for instance enabled
clusters of mobile projector systems to create a seamless projection
by using cameras that were mounted to the projectors.

However, there has been little research on augmenting real 3D
objects. In contrast to 2D approaches that project arbitrary informa-
tion which is not related to the projection surface, 3D methods ex-
plicitly try to alter the appearance of arbitrary, complex objects by
projecting an aligned rendering of an exact virtual replication with

∗e-mail: christoph.resch@extend3d.de
†e-mail: peter.keitler@extend3d.de
‡e-mail: klinker@in.tum.de

modified texture on it. This shader lamp concept was first intro-
duced by Raskar et. al. [14] and further worked out with respect to
e.g. animation [15] or radiometric-realistic appearance [10]. Mostly
designers, architects and artists profit from this technology, as they
can - once a neutral “mockup” is produced - spatially visualize de-
sign variants without actually creating them physically.

Whereas the manual creation of those virtual models by scan-
ning or manual tactile measuring seemed costly in the past and has
discouraged people to work with this technology, the rapidly declin-
ing cost of 3D printers and their entrance to the consumer level have
started to solve this problem since first the virtual model is designed
and then physically replicated. In general we think that the concept
of shader lamps is currently revived by affordable 3D printers and
is a perfect addition as the mostly neutral white printer’s output is
well suited as a projection surface.

More than in any other AR modality such as HMDs it is of vi-
tal importance in the shader lamp concept that the rendered model
precisely overlays the physical object - the illusion is quickly de-
stroyed even with small misalignments. Thus a precise registration
technique is crucial, that ideally is at the same time mobile and in-
teractive and does not require any modifications to the scene. This
paper deals with the problem of tracking such illuminated objects
while they are moved - in particular with no auxiliary means than
the projection itself. We motivate our approach in the following by
quickly summarizing current registration approaches.

2 PREVIOUS WORK

In the original shader lamp [14] concept, a cumbersome static reg-
istration was performed by manually moving a cross hair in the
projector view to pixels that illuminate known object points. In [4],
standard square marker tracking was used to steer the projection to
the right location. Bandyopadhyay [2] equipped the illuminated ob-
jects with infrared and magnetic sensors which allowed interactive
tracking but suffered from low working distances. In DisplayOb-
jects [1] the authors used a VICON tracking system to track the dis-
play objects. Even though the latter two examples allow the illumi-
nated object to move freely, the projector and its tracking hardware
are mounted at a fixed position. However, in many situations the
reverse scenario is desired and a mobile projection system should
move around the illuminated object. Furthermore, dedicated, pro-
fessional tracking hardware is expensive and requires a sophisti-
cated and complex calibration to the projection devices.

Tracking algorithms based on commercial, lightweight depth
cameras such as the Kinect are suitable only to a limited extent,
since the required pixel precise overlay in a shader lamp applica-
tion suffers from the low resolution of the depth sensor [8]. One
should still observe the development of such commercial products
as they might be a sound alternative in the near future. Feature or
model based tracking algorithms are also able to track objects for
being correctly illuminated [11]. The obvious problem with such
methods are the unfavorable lighting conditions in a projection sce-
nario, where ambient light is usually low. Also, the projection itself
can heavily interfere with the features found on the physical object.

More promising are methods that use the projector not only for
augmenting the scene but also as an active light sensor to recover
the projection surface and/or track the projector with respect to this

151

IEEE International Symposium on Mixed and Augmented Reality 2014
Science and Technology Proceedings
10 - 12 September 2014, Munich, Germany
978-1-4799-6184-9/13/$31.00 ©2014 IEEE

Feature matching
& triangulation

Structured light pattern projection Dense ICP

Sparse ICP

Initialization/Reinitialization

Incremental tracking stage

Pose filter

Model preprocessing

Startup

Radiometric calibration

Offline

Geometric calibration

Tracking lost

Render-pose update Camera prediction and capture

Figure 1: Sequence diagram of the proposed method. Having calibrated the system geometrically and radiometrically once offline, the system
samples the virtual model surface to get an accurate and occlusion-corrected point cloud at start up. In the initialization phase a dense point
cloud of the physical mockup is acquired by means of structured light and the exact pose is computed by matching the sampled model point
cloud with the point cloud of the scan. Once the virtual model is projected on the physical object, the continuous frame-by-frame tracking starts,
in which first the illuminated object is captured by the camera. At the same time, the camera view is also rendered virtually, given the current
object pose. Features are found in the predicted image and matched in the captured image. After triangulating the correspondences the sparse
set of 3D feature points is aligned to the sampled virtual model via ICP and the transformation is used for correcting the new render pose. A filter
ensures smooth pose updates over time. Should the incremental tracking fail, the user can trigger the initialization stage again.

surface.
When focusing on the approaches that do not interrupt projected

user imagery we can distinguish between methods that inject imper-
ceptible codes in the projection and methods that use projection-
inherent features. For the former, Cotting et. al. [3] modified the
modulation pattern of a DLP projector to embed a gray-code pattern
sequence in the projected content that was used for reconstructing
the projection surface. However, this approach required complex
modifications to hardware to account for synchronization timings
and resulted in a loss of image contrast. Also, spatial encoding
techniques such as gray codes require multiple patterns to be pro-
jected over time during which the projector-surface relation must
remain static.

Another way of tracking the projector is to use the user imagery
itself. A very general, model-based approach was provided by
Zheng et. al. [19] that iteratively optimizes the pose of the projected
content to minimize the 2D image differences between the real and
expected image. Unfortunately, they tested their projection-based
scenario only with flat surfaces and not with a shader lamp typical
complex object. Instead of using the whole image, concepts based
on discrete features found in the camera and projector image were
first introduced by Yang and Welch [18] and later refined by John-
son and Fuchs [7]. The latter setup consisted of a static camera and
a mobile projector. Offline, the 3D coordinates of the projection
surface for each camera pixel were computed by a stereo structured
light method. Online, a feature matching algorithm provided a set
of 2D-2D correspondences between camera and projector image
and thus - with the previous offline calibration - indirectly a set of
2D-3D correspondences in projector space which allowed for track-
ing the projector continuously. Nevertheless, the camera as well as
the projection surface had to remain static which is not suitable for
a dynamic shader lamp scenario.

Our approach extends this method to work also in a scenario,
where the object or the projection device can be moved arbitrarily
around in space. We therefore carry out two modifications to [7]:
Firstly, the camera is rigidly attached to the projector. Secondly,
the projector pose estimation based on 2D-3D correspondences is
replaced by a point cloud registration technique, using triangulated
3D points from the 2D-2D correspondences on the real surface and
the geometry of the virtual model as a matching target. The incre-
mental nature of our tracking approach enables interactivity close to
real-time, not least because we are utilizing the computation power
of the GPU.

3 OVERVIEW OF OUR APPROACH

Our system consists of a standard video projector with a rigidly
attached camera. Provided a physical object and a corresponding

virtual 3D model our system can simultaneously track and correctly
illuminate the object with the projection of the virtual model itself.
Figure 1 depicts the flow chart of our method. Online, it consist of
two phases: A fast initialization of the object pose and a continuous
incremental tracking based on the projection of the virtual model
only. If the tracking is lost, the initialization phase can be triggered
again. Section 4 will explain this incremental concept in detail.

Offline, the camera-projector system must be calibrated once ge-
ometrically to compute the intrinsic and extrinsic parameters of the
optical components. We calibrated our system with a planar cal-
ibration board approach similar to [12] that is projecting a white
circle pattern interleaved with the black printed circles of the cali-
bration board. Considering the OpenCV distortion model also for
the projector, we reached a system calibration accuracy of 0.25 px
reprojection RMS error. The radiometrical calibration described in
[7] was carried out, too.

Finally, each virtual model that should be visualized on its cor-
responding physical object, must be preprocessed for the later reg-
istration step, which is done automatically when a new design is
loaded. The preprocessing step is explained in section 4.3.

4 INCREMENTAL TRACKING

The core component of our concept is the incremental tracking
stage in which features of the projected texture are reconstructed
(Section 4.1) and matched to the virtual model to update the model
pose (Section 4.2). Although an incremental approach comes with
inherent restrictions to fast object movement, it has the advantage of
locality and allows us to make assumptions on the feature position
and the surroundings in image and world space.

4.1 Feature extraction and triangulation
In the first part of our incremental tracking stage, we apply the fea-
ture extraction and correspondence estimation method of [7] to find
matching points between the camera and projector image. Whereas
in their approach the virtual content was an ordinary video stream,
our content is the texture of the virtual model itself. As the feature
detection is carried out for each frame separately, the texture of the
virtual model can also be animated and need not remain static. After
correspondences have been found by the Lucas-Kanade tracker, we
reject wrong matches based on epipolar constraints and triangulate
the remaining point pairs using the direct linear transform method
proposed in [5]. These points might represent valid surface points
that shall be registered to the virtual model in the next section.

4.2 Pose estimation by point cloud registration
Having access to a virtual replication of our real model by means of
a geometric surface description allows us to use point cloud regis-

152

tration techniques to calculate a rigid transformation that aligns re-
constructed feature points to virtual surface points. There has been
an abundance of research on point cloud registration in the past in
terms of local and global optimization, rigidness of objects, fea-
ture space and many more. Among them the ICP (Iterative Closest
Point) algorithm has proven to be an efficient and fast registration
method if a good initial relative pose is known, which is true in
our case as our incremental tracking approach assumes small ob-
ject movements in each frame so that the previous pose can serve
as initial pose. One prominent example using the same local as-
sumption is the KinectFusion algorithm [6] that also incrementally
registers range images of the sensor in an ICP like manner.

Rusinkiewicz [16] has surveyed many variants of the ICP with
respect to correspondence point-pair selection, weighting, assign-
ing error metrics and minimizing them. The author noted that the
point-to-plane metric converges orders of magnitude faster as it al-
lows faster tangential movement. This is particularly important for
flat surfaces where one surface must “slide” over another. Our reg-
istration algorithm is based on this particular ICP variant. Given
a source and target surface with already estimated corresponding
point-pairs (si, ti), whereas for each target point additionally its sur-
face normal ni is known, the error ε that is minimized in each ICP
iteration for the point-to-plane metric is

ε = ∑
i
〈[R t] si− ti,ni〉 (1)

where 〈,〉 denotes the inner product and [R t] the transformation
that minimizes ε in the current iteration. As shown by Low [9],
the nonlinear minimization problem for Equation 1 can be approx-
imated by a linear least squares solution if the expected rotation
angles are small. Again, the above mentioned locality allows us to
justify this approximation.

Although we already integrated several outlier detection mecha-
nism in our feature matching stage, it might be possible that some
3D points still are wrongly triangulated and passed to the ICP iter-
ations. To deal with such outliers inside the ICP iterations we used
a simple RANSAC scheme where various randomly-selected sub-
sets of the closest corresponding point pairs are evaluated using the
above error metric and the optimal subset defines the inliers for the
final transformation estimation.

At the end, single exponential smoothing, that incorporates only
a certain fraction of the new pose in the current object pose, was im-
plemented. Although smoothing reduces the responsiveness of the
system we noted a considerable improvement in tracking stability,
in particular with difficult virtual textures.

4.3 Model preprocessing

Usually the virtual model is not stored as a point cloud but instead
as a triangulated mesh. Since our registration algorithm expects
a point cloud with normal information, the virtual model must be
preprocessed at start up. As our feature extraction algorithm may
reconstruct possibly any point on the surface, simply using the face
corners of the mesh is not enough - we need a dense sampling of
the virtual mesh up to a certain accuracy ε that is dependent on
the working distance, camera/projector resolution, and calibration
quality.

We accomplish such a sampling by rendering the object from
multiple points of view with the virtual camera introduced above
into a geometry buffer that stores object position and normal in ob-
ject space for each pixel that the renderer generated. The virtual
camera is thereby moving on a sphere centered at the object center
with a radius that roughly equals to the later working distance (cf.
Figure 2). Limiting the working distance is not a restriction as the
fixed focus of the projector only allows for sharp projections at a
certain distance range.

After each rendered view, we read out the buffer and accumu-
late the sampled points. A final voxel filter operation with a voxel
size of ε eliminates duplicate points and assures that our mesh is
equally sampled. Our sampling strategy has also another advan-
tage: Occluded areas, such as the inside of an object that might be
modeled in the virtual data, are automatically sorted out by the ren-
derer and will not create any sample points. Without an occlusion
handling those areas would complicate the registration process, as
reconstructed feature points that always lie on non-occluded areas
could be wrongly matched to occluded points.

We want to point out that our concept of a virtual camera is not
limited to triangulated meshes as long as the renderer supports writ-
ing to a geometry buffer.

d

Figure 2: Sampling scheme in our point cloud creation process.
Given a working distance d the virtual camera is placed on equally
distributed locations on a sphere and the object coordinates are ren-
dered to the geometry buffer. Note that some object points might
be seen by two cameras at the same time (red areas). The voxel
filter operation will eliminate these duplicates and assure equally dis-
tributed points.

4.4 Initialization and reinitialization
So far our incremental tracking algorithm assumed that the object
pose in the previous frame was known. For the very first frame or
when tracking is lost, a different object tracking strategy must be
used. In detail, the correspondence matching of 4.1 is replaced by
a combination of gray code patterns and a phase shifting technique
to calculate a dense correspondence map. Although the physical
object must remain static throughout the pattern acquisition (≈ 5
sec.), the density of the generated correspondence map and triangu-
lated point cloud guarantees a convergence of the ICP to the correct
object pose, provided that a good guess of the initial pose is given.
Specifying an initial rotation manually and centering the centroid
of the scanned point cloud with the virtual sampled point cloud
automatically provided good results throughout our whole evalua-
tion and does not burden the user with too much manual alignment.
There is space for a lot of improvement at this stage. Basically
any advanced coarse alignment method could be incorporated at
this point. Using imperceptible patterns [3] encoded in the virtual
model projection would not break the visual coherence. In future
the dense point cloud would also allow to measure deviations be-
tween the real model and virtual model. The deviation could be
incorporated in the tracking pipeline to further reject 3D points that
do not fit the virtual model.

If tracking is lost during the continuous tracking phase, often it
is sufficient to move the object to the last successfully tracked pose
and therefore enable the ICP to converge again. This is in particular
easy as the projector will show the virtual texture at that pose. The
user can alternatively trigger the full initialization described above,
if a manual adjustment is not possible for certain constellations.

5 IMPLEMENTATION NOTES

Many parts of our algorithm are utilizing the parallel processing
power of the GPU. We used the OpenCV GPU module that imple-
ments CUDA kernels for the corner detector and LK optical flow

153

tracker. Image undistortion and predistortion, as well as the ra-
diometric compensation, are realized by pixel shaders. Memory
transfers between CPU and GPU can be costly, however, we could
avoid them to a great extent in our approach since the rendered, pre-
dicted camera view is already in GPU memory. Only the captured
image must be uploaded to GPU memory in each frame. Feature
detection, feature matching and triangulation can be carried out
completely on the GPU. Thereafter, the triangulated points must
be transferred back to the CPU, as the current ICP implementation
using the Point Cloud Library (PCL)1 takes place on the CPU. Al-
though using a kd-tree search structure, this operation is still the
performance bottleneck of the whole application but could, similar
to the approach in KinectFusion [6], be implemented for the GPU
in future. Figure 3 summarizes our CPU-GPU implementation.

CPU GPU

Camera

Projector

Image capture

Radiometric correction

Undistortion

Pose update Projector view rendering

Predistortion

Feature detection

Feature matching

TriangulationICP

Filter

Camera view rendering

Figure 3: Dataflow diagram of our algorithm and distribution on CPU
and GPU.

6 EXPERIMENTS

To prove that our incremental tracking can robustly track objects
with the projection of the virtual replication only, we carried out
several experiments. In the following we briefly describe the eval-
uation setup and the scenarios that we have tested.

6.1 Hardware setup

Figure 4: Left: Our mobile camera-projector system, mounted on a
tripod. Right: Evaluation setup with marker board and temporarily
fixed evaluation object.

For our mobile camera-projector system, we solidly mounted
an IDS CMOSIS USB 3.0 grayscale camera with a resolution of
2048× 2048 pixels and a Full HD ProjectionDesign Avielo video
projector on a carbon board (cf. Figure 4 left). The baseline is ap-
proximately 40 cm and camera and projector were focused and cal-
ibrated for a working distance of around 1.5m. At this distance,
the projector can illuminate a volume of around 50× 50× 50 cm.
The sampling distance in 4.3 was also set to this distance. We
synchronized camera and projector by simply tapping the VGA V-
Sync signal from a HDMI-to-VGA converter that was connected
to an HDMI splitter. The other output of the splitter was directly

1http://www.pointclouds.org/

connected to the projector. The tapped signal serves as trigger in-
put to our camera. Note that due to the incremental nature of our
tracking algorithm, hardware synchronization is not necessarily re-
quired but greatly increases the frame rate of our application since
the additional “safety time” between projection update and image
capture can be minimized. Our setup ran on an Intel Core i7 plat-
form equipped with 32GB memory and an NVIDIA Quadro K5000
graphics card.

To evaluate the performance of our algorithm, we compared it
with “ground truth“ data created by an accurate marker tracking
method that is running in parallel and is using the same camera.
The marker tracker is based on bundle adjustment methods from
photogrammetry and has submillimetric accuracy for a given alu-
minium board with printed circular markers. The test object was
temporarily fixed to this board (cf. Figure 4 right). When moving
the board around in space, the relative pose between our tracking
result and the result from the marker tracker should remain con-
stant.

6.2 Evaluation procedure
For each single test the board with the fixed model was initially
placed at a location that was known to our incremental tracker so
that the initialization step could be skipped. The system records
both tracker poses and the number of features during each step of
our algorithm while the marker board was moved manually inside
the projection volume along its primary plane. To make results
comparable, the offset between the car coordinate system and the
marker board system was registered once before evaluation. The
object velocity was limited so that tracking is not lost during the
test.

We carried out the evaluation for one 3D printed model car with
two different design variants. The first, quite artificial “Grid” de-
sign consists of a grid structure that was UV-mapped on the car
model. This design inhibits strong corners and facilitates feature
reconstruction. It allowed us to benchmark particularly the perfor-
mance of our ICP algorithm. The second “Fancy” design contains
a variety of random colored geometric primitives.

We also created a pseudo-animation for each design by simply
shifting texture coordinates across the surface. To test robustness
against outliers we placed modeling clay on the car so as to cre-
ate partial, artificial deviations of the actual object from the virtual
model. Table 2 lists all test cases in our evaluation.

6.3 Results
The recorded poses are shown in Figure 5. For the sake of clar-
ity, we plotted the results over time only for the basic “Grid” and
“Fancy” test case without animation and artificial outliers. For these
scenarios, we also evaluated the difference between our tracking re-
sult and the marker tracking result and plotted mean and standard
deviation in Table 1. It is clearly visible that the pose stability is
higher for the “Grid” design during both translational and rotational
movement. Looking at the recorded average feature numbers in Ta-
ble 2 this seems reasonable, as far less features are finally taken for
pose estimation in the “Fancy” case (cf. Figure 6). The more sparse
the feature point cloud becomes, the less stable is the convergence
behavior of the ICP algorithm. For the “Grid” case, an average er-
ror of around one to two pixel was measured based on the ground
truth of the marker tracking method.

Further notable is the fact that our incremental tracker converges
to the ground truth pose only after a certain number of frames,
which is proportional to the object’s velocity. This observation can
be explained by the geometry of our car. With sudden, especially
translational movements, large parts of the car become unlit, as the
projection has not updated yet and consequently only features at
the remaining lit part of the car are used for pose estimation in the
next frame. Hence the estimated pose will not completely correct

154

(a) “Grid”, translation

(b) “Fancy”, translation

(c) “Grid”, rotation (Euler angles)

(d) “Fancy”, rotation (Euler angles)

Figure 5: Motion curves for marker tracker (ground truth, “GT”) and
our approach (“OA”) for the basic “Grid” design (a),(c) and the basic
“Fancy” design (b),(d) test cases. Diagrams (a) and (b) plot the rela-
tive movement of the object’s center over time. Diagrams (c) and (d)
show rotational movement along the object’s coordinate axes. The
offset between car origin and marker board origin is already compen-
sated. Note that the object was moved along the primary plane of the
marker board only so that translation along Z and rotation around X
and Y were almost constant. Green areas mark frames where the
object was not moved. This data is evaluated separately in Table
1 (“Rest”). Clearly visible is the response time of our method after
translational movement (for instance in diagram (a), frame 140-160
and 190-210). The ICP algorithm temporally diverged for the “Fancy”
test case (red areas).

Table 1: Mean and standard deviation for measured absolute trans-
lation and rotation difference of our approach compared to ground
truth data. Entries marked with “Rest” were computed by taking only
values into account for which the object was not moved (green areas
in Figure 5).

Translation (mm) Rotation (◦)
x y z x y z

“Grid” µ 3.2 4.0 2.1 0.23 0.18 0.42
“Grid” σ 3.5 4.7 2.3 0.23 0.23 0.58
“Grid” µ (Rest) 1.2 1.6 1.4 0.13 0.08 0.14
“Grid” σ (Rest) 0.9 1.4 1.3 0.13 0.14 0.15
“Fancy” µ 19.7 16.6 6.3 0.62 0.53 2.18
“Fancy” σ 31.6 27.1 7.4 0.79 0.75 3.93
“Fancy” µ (Rest) 4.2 4.0 3.5 0.33 0.15 0.31
“Fancy” σ (Rest) 4.5 3.5 3.3 0.30 0.12 0.44

the projection in one frame but increase the percentage of the lit
surface part and enable more precise pose estimation in the consec-
utive frame (cf. Figure 5, diagram (a), frame 140-160). To account
for this delay in the comparison of Table 1, we additionally eval-
uated the differences between both tracking results only when the
object was not moved (green areas in Figure 5).

This iterative behavior can also fail under certain circumstances.
In diagram b) and d) of Figure 5 the object movement at frame
85 causes an unfavorable constellation of feature points that let the
ICP algorithm converge to a wrong pose. In the next frame, an
even worse feature constellation is present and the pose diverges.
After twenty frames, a good constellation is found and the pose
approximates the ground truth pose again. Temporal divergence
can also be observed between frame 450 and 565, which explains
the high difference values in Table 1 in that case.

Turning on texture animation had different effects on the perfor-
mance with respect to the used texture. For the “Grid” design, the
number of features only marginally decreased compared to the case
with no animation. Also the tracking performance was comparable.
However, feature numbers dropped notably for the “Fancy” design.
Only 20% of the detected features were finally used for pose es-
timation and led to noisy pose updates. The reason for the bad
performance is not the motion of the texture by itself but the fact
that through animation sometimes texture parts with less features
are exposed to the camera. As long as there are enough features
in every frame such as in the “Grid” case, there is no decrease in
performance observable.

The outlier test based on the car model deformed by modeling
clay (cf. Figure 7) also showed comparable tracking performance
in the “Grid” case. The effectiveness of RANSAC in our ICP al-
gorithm is clearly visible, rejecting about 17% of the reconstructed
features (cf. Table 2, first row). For the “Fancy” test case, tracking
performance was still acceptable although the RANSAC method
was less effective.

Concerning tracking speed, we achieved an update rate of around
10 Hz with the current system setup. As mentioned above, most
of the time is consumed by the ICP algorithm, which is currently
implemented on the CPU and consuming approximately 50% of
the overall processing time. By porting it to the GPU, we expect a
performance boost that would make our approach realtime-capable.

7 CONCLUSION

In this work, we have presented a new tracking approach for the
shader lamp concept that works with the projection of the virtual
content only. Our system is mobile and does not require any mod-
ifications to the scene, the tracked object or the virtual projection.
By exploring a new combination of feature reconstruction provided
by [7] and point cloud registration, our system can track a moving

155

Figure 6: Our car model with the “Grid” (top) and “Fancy” (bottom)
design. The first column depicts the virtual model with the texture
applied. The second column shows the captured image along with
detected and triangulated (green) and detected but finally rejected
feature point pairs (magenta and red). The last column shows pic-
tures of the lit object taken from an external camera. It is obvious
that the texture has a huge impact on the performance of the feature
matching.

Table 2: Average number of features during detection (D), triangula-
tion (R) and point cloud registration (M) phase, absolute and relative
to the number of detected features.

Test case D R M R % M %
“Grid” 250 177 162 0.70 0.65
“Grid” animated 249 173 159 0.70 0.64
“Grid” outlier 248 150 125 0.60 0.50
“Fancy” 254 75 65 0.29 0.26
“Fancy” animated 214 49 42 0.23 0.20
“Fancy” outlier 250 65 61 0.26 0.24

object and “stick” the projection to it interactively.
We verified our approach quantitatively in a realistic 3D-printing

scenario with different textures, animation and outlier simulation.
We believe it is relevant also for applications in fields such as in-
dustrial design, rapid prototyping and AR showcases. The full po-
tential of the method has by far not been exploited yet. Still, there
are two major limitations to our approach: Firstly, the texture that
is projected, must inhibit enough distinct features which might not
be fulfilled for some shader lamp scenarios. Secondly, the physi-
cal model itself must provide enough surface details for a unique
matching. Almost planar surfaces for instance may not be suited
for our ICP registration approach.

In future, we will concentrate on the feature detection pipeline
which is currently very basic and could for instance incorporate
color in the feature description to improve performance. Further-
more, both frame rate and latency could be reduced by a faster,
GPU-based implementation of the ICP algorithm. At the same time,
this would also increase robustness against faster movements. Ad-
vanced filtering and extrapolation concepts would further increase
the robustness. Lastly, the sparse ICP registration concept could be
extended by more sophisticated 3D feature matching concepts that
explore the spatial structure of the virtual model at a higher extent
and allow for tracking of even more complex objects.

In conclusion we believe that our approach is very promising
and could in the future offer a new kind of interactivity in the SAR
context.

ACKNOWLEDGEMENTS

We would like to thank Beatriz Frieden and Andres Sanchez for
their invaluable help during the assembly of the hardware com-
ponents. This work was supported by the German Federal Min-
istry of Education and Research (ARVIDA project, grant no.
01IM13001N).

REFERENCES

[1] E. Akaoka, T. Ginn, and R. Vertegaal. Displayobjects: prototyping
functional physical interfaces on 3d styrofoam, paper or cardboard
models. In Proceedings of the fourth international conference on
Tangible, embedded, and embodied interaction, pages 49–56. ACM,
2010.

[2] D. Bandyopadhyay, R. Raskar, and H. Fuchs. Dynamic shader lamps:
Painting on movable objects. In Augmented Reality, 2001. Proceed-
ings. IEEE and ACM International Symposium on, pages 207–216.
IEEE, 2001.

[3] D. Cotting, M. Naef, M. Gross, and H. Fuchs. Embedding impercep-
tible patterns into projected images for simultaneous acquisition and
display. In Mixed and Augmented Reality, 2004. ISMAR 2004. Third
IEEE and ACM International Symposium on, pages 100–109. IEEE,
2004.

[4] J. Ehnes, K. Hirota, and M. Hirose. Projected augmentation - aug-
mented reality using rotatable video projectors. In Mixed and Aug-
mented Reality, 2004. ISMAR 2004. Third IEEE and ACM Interna-
tional Symposium on, pages 26–35, Nov 2004.

[5] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, ISBN: 0521540518, second edi-
tion, 2004.

[6] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli,
J. Shotton, S. Hodges, D. Freeman, A. Davison, and A. Fitzgibbon.
Kinectfusion: Real-time 3d reconstruction and interaction using a
moving depth camera. In Proceedings of the 24th Annual ACM Sym-
posium on User Interface Software and Technology, UIST ’11, pages
559–568, New York, NY, USA, 2011. ACM.

[7] T. Johnson and H. Fuchs. Real-time projector tracking on complex
geometry using ordinary imagery. In Computer Vision and Pattern
Recognition, 2007. CVPR’07. IEEE Conference on, pages 1–8. IEEE,
2007.

[8] K. Khoshelham and S. O. Elberink. Accuracy and resolution of kinect
depth data for indoor mapping applications. Sensors, 12(2):1437–
1454, 2012.

[9] K.-L. Low. Linear least-squares optimization for point-to-plane icp
surface registration. Technical report, Department of Computer Sci-
ence, University of North Carolina at Chapel Hill, 2004.

[10] C. Menk, E. Jundt, and R. Koch. Visualisation techniques for using
spatial augmented reality in the design process of a car. Computer
Graphics Forum, 30(8):2354–2366, 2011.

[11] D. Molyneaux and H. Gellersen. Cooperatively augmenting smart ob-
jects with projector-camera systems. In Proceedings of 3rd IEEE In-
ternational Workshop on Camera-Projector Systems (ProCams 2006),
pages 13–14, 2006.

[12] J.-N. Ouellet, F. Rochette, and P. Hebert. Geometric calibration of
a structured light system using circular control points. In 3D Data
Processing, Visualization and Transmission, pages 183–190, 2008.

[13] R. Raskar, J. van Baar, P. Beardsley, T. Willwacher, S. Rao, and C. For-
lines. ilamps: geometrically aware and self-configuring projectors. In
ACM SIGGRAPH 2006 Courses, page 7. ACM, 2006.

[14] R. Raskar, G. Welch, K.-L. Low, and D. Bandyopadhyay. Shader
lamps: Animating real objects with image-based illumination. In Ren-
dering Techniques 2001, pages 89–102. Springer, 2001.

[15] R. Raskar, R. Ziegler, and T. Willwacher. Cartoon dioramas in motion.
In ACM SIGGRAPH 2006 Courses, page 6. ACM, 2006.

[16] S. Rusinkiewicz and M. Levoy. Efficient variants of the icp algorithm.
In 3-D Digital Imaging and Modeling, 2001. Proceedings. Third In-
ternational Conference on, pages 145–152, 2001.

[17] J. Underkoffler. A view from the luminous room. Personal Technolo-
gies, 1(2):49–59, 1997.

[18] R. Yang and G. Welch. Automatic and continuous projector display
surface calibration using every-day imagery. In Proceedings of 9th
International Conf. in Central Europe in Computer Graphics, Visual-
ization, and Computer Vision WSCG, 2001.

[19] F. Zheng, R. Schubert, and G. Welch. A general approach for closed-
loop registration in ar. In Mixed and Augmented Reality (ISMAR),
2012 IEEE International Symposium on, pages 335–336, Nov 2012.

156

