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Abstract

Lineage tracing, the joint segmentation and tracking of liv-
ing cells as they move and divide in a sequence of light mi-
croscopy images, is a challenging task. Jug et al. [21] have
proposed a mathematical abstraction of this task, the moral
lineage tracing problem (MLTP), whose feasible solutions
define both a segmentation of every image and a lineage
forest of cells. Their branch-and-cut algorithm, however,
is prone to many cuts and slow convergence for large in-
stances. To address this problem, we make three contri-
butions: (i) we devise the first efficient primal feasible local
search algorithms for the MLTP, (ii) we improve the branch-
and-cut algorithm by separating tighter cutting planes and
by incorporating our primal algorithms, (iii) we show in ex-
periments that our algorithms find accurate solutions on the
problem instances of Jug et al. and scale to larger instances,
leveraging moral lineage tracing to practical significance.

1 Introduction

Recent advances in microscopy have enabled biologists to
observe organisms on a cellular level with higher spatio-
temporal resolution than before [12, 16, 44]. Analysis of
such microscopy sequences is key to several open ques-
tions in biology, including embryonic development of com-
plex organisms [25, 26], tissue formation [17] or the under-
standing of metastatic behavior of tumor cells [50]. How-
ever, to get from a sequence of raw microscopy images to
biologically or clinically relevant quantities, such as cell
motility, migration patterns and differentiation schedules,
robust methods for cell lineage tracing are required and
have therefore received considerable attention [2, 3, 13, 32,
33, 34].

Cell lineage tracing is typically considered a two step
problem: In the first step, individual cells are detected and
segmented in every image. Then, in the second step, in-
dividual cells are tracked over time and, in case of a cell
division, linked to their ancestor cell, to finally arrive at the
lineage forest of all cells (Fig. 1). The tracking subproblem
is complicated by cells that enter or leave the field of view,
or low temporal resolution that allows large displacements
or even multiple consecutive divisions within one time step.

∗Authors contributed equally.

Figure 1 Depicted above is a lineage forest of cells from a se-
quence of microscopy images. The first image of the sequence
is shown on the left. The last image is shown on the right. Cell
divisions are depicted in black.

In addition to this, mistakes made in the first step, leading
to over- or undersegmentation of the cells, propagate into
the resulting lineage forest and cause spurious divisions or
missing branches, respectively. The tracking subproblem is
closely related to multi-target tracking [11, 42, 47, 20, 43]
or reconstruction of tree-like structures [15, 39, 37, 45, 46].
It has been cast in the form of different optimization prob-
lems [22, 24, 36, 40, 41] that can deal with some of the
mentioned difficulties, e.g., by selecting from multiple seg-
mentation hypotheses [40, 41].

Jug et al. [21], on the other hand, have proposed a rig-
orous mathematical abstraction of the joint problem which
they call the moral lineage tracing problem (MLTP). It is a
hybrid of the minimum cost multicut problem (MCMCP),
which has been studied extensively for image decompo-
sition [4, 5, 6, 7, 8, 9, 10, 23, 28, 29, 48, 49], and the
minimum cost disjoint arborescence problem, variations
of which have been applied to reconstruct lineage forests
in [22, 24, 36, 41, 40] or tree-like structures [15, 46, 45].
Feasible solutions to the MLTP define not only a valid
cell lineage forest over time, but also a segmentation of the
cells in every frame (cf. Fig. 2). Solving this optimization
problem therefore tackles both subtasks – segmentation and
tracking – simultaneously. While Jug et al. [21] demon-
strate the advantages of their approach in terms of robust-
ness, they also observe that their branch-and-cut algorithm
(as well as the cutting-plane algorithm for the linear relax-
ation they study) is prone to a large number of cuts and ex-
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hibits slow convergence on large instances. That, unfortu-
nately, prevents many applications of the MLTP in practice,
since it would be too computationally expensive.

Contributions. In this paper, we make three contribu-
tions: Firstly, we devise two efficient heuristics for the
MLTP, both of which are primal feasible local search al-
gorithms inspired by the heuristics of [28, 31] for the
MCMCP. We show that for fixed intra-frame decomposi-
tions, the resulting subproblem can be solved efficiently via
bipartite matching.

Secondly, we improve the branch-and-cut algorithm [21]
by separating tighter cutting planes and by employing our
heuristics to extract feasible solutions.

Finally, we demonstrate the convergence of our algo-
rithms on the problem instances of [21], solving two (previ-
ously unsolved) instances to optimality and obtaining accu-
rate solutions orders of magnitude faster. We demonstrate
the scalability of our algorithms on larger (previously inac-
cessible) instances.

2 Background and Preliminaries

Consider a set of T = {0, . . . , tend} consecutive frames of
microscopy image data. In moral lineage tracing, we seek to
jointly segment the frames into cells and track the latter and
their descendants over time. This problem is formulated by
[21] as an integer linear program (ILP) with binary variables
for all edges in an undirected graph as follows.

For each time index t ∈ T , the node set Vt comprises all
cell fragments, eg. superpixels, in frame t. Each neighbor-
ing pair of cell fragments are connected by an edge. The
collection of such edges is denoted by Et. Between consec-
utive frames t and t + 1, cell fragments that are sufficiently
close to each other are connected by a (temporal) edge. The
set of such inter frame edges is denoted by Et,t+1. By con-
vention, we set Vtend+1 = Etend+1 = Etend,tend+1 = ∅. The
graph G = (V,E) with V =

⋃
t∈T Vt and E =

⋃
t∈T (Et∪

Et,t+1) is called hypothesis graph and illustrated in Fig. 2.
For convenience, we further write Gt = (Vt, Et) for the
subgraph corresponding to frame t and G+

t = (V +
t , E+

t )
with V +

t = Vt ∪ Vt+1 and E+
t = Et ∪ Et,t+1 ∪ Et+1 for

the subgraph corresponding to frames t and t + 1.
For any hypothesis graph G = (V,E), a set L ⊆ E is

called a lineage cut of G and, correspondingly, the subgraph
(V,E \ L) is called a lineage (sub)graph of G if

1. For every t ∈ T , the set Et ∩ L is a multicut2 of Gt.
2. For every t ∈ T and every {v, w} ∈ Et,t+1 ∩ L,

the nodes v and w are not path-connected in the graph
(V +
t , E+

t \ L).
3. For every t ∈ T and nodes vt, wt ∈ Vt, vt+1, wt+1 ∈

Vt+1 with {vt, vt+1}, {wt, wt+1} ∈ Et,t+1 \ L
and such that vt+1 and wt+1 are path-connected in
(V,Et+1 \L), the nodes vt and wt are path-connected
in (V,Et \ L).

For any lineage graph (V,E \ L) and every t ∈ T , the
non-empty, maximal connected subgraphs of (Vt, Et \ L)

time

Figure 2 The moral lineage tracing problem (MLTP)1: Given a
sequence of images decomposed into cell fragments (depicted as
nodes in the figure), cluster fragments into cells in each frame and
simultaneously associate cells into lineage forests over time. Solid
edges indicate joint cells within images and descendant relations
across images. Black nodes depict fragments of cells about to
divide.

are called cells at time index t. Furthermore, Jug et al. call
a lineage cut, respectively lineage graph, binary if it addi-
tionally satisfies

4. For every t ∈ T , every cell at time t is connected to at
most two distinct cells at time t + 1.

According to [21], any lineage graph well-defines a lineage
forest of cells. Moreover, a lineage cut (and thus a lineage
graph) can be encoded as a 01-labeling on the edges of the
hypothesis graph.

Lemma 1 ([21]). For every hypothesis graph G = (V,E)
and every x ∈ {0, 1}E , the set x−1(1) of edges labeled 1 is
a lineage cut of G iff x satisfies inequalities (1) – (3):

∀t ∈ T ∀C ∈ cycles(Gt)∀e ∈ C :

xe ≤
∑

e′∈C\{e}

xe′ (1)

∀t ∈ T ∀{v, w} ∈ Et,t+1∀P ∈ vw-paths(G+
t ) :

xvw ≤
∑
e∈P

xe (2)

∀t ∈ T ∀{vt, vt+1}, {wt, wt+1} ∈ Et,t+1(with vt, wt ∈ Vt)

∀S ∈ vtwt-cuts(Gt)∀P ∈ vt+1wt+1-paths(Gt+1) :

1−
∑
e∈S

(1− xe) ≤ xvtvt+1 + xwtwt+1 +
∑
e∈P

xe (3)

Jug et al. refer to (1) as space cycle, to (2) as space-time
cycle and to (3) as morality constraints. We denote by X ′G
the set of all x ∈ {0, 1}E that satisfy (1) – (3). For the
formulation of the additional bifurcation constraints, which
guarantee that the associated lineage cut is binary, we refer
to [21, Eq. 4]. The set XG collects all x ∈ X ′G that also
satisfy the bifurcation constraints.

Given cut costs c : E → R on the edges as well as birth
and termination costs c+, c− : V → R+

0 on the vertices

1The figure is a correction of the one displayed in [21].
2A multicut of Gt = (Vt, Et) is a subset M ⊆ Et such that for every

cycle C in Gt it holds that |M ∩ C| 6= 1, cf. [19].
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G = (V,E)

t

⇒

G = (V,A)

u

v

w a b

Figure 3 For a fixed decomposition of the frames (depicted with
black solid/dashed cut edges), we associate a directed graph G
over the components V . The arcs A bundle all edges going from
any node of one cell to any node of another cell in the successive
frame. For example, the components Va = {u} and Vb = {v, w}
are linked by the arc ab which corresponds to the set of edges
Eab = {uv, uw}. Determining the optimal state of the temporal
edges (grey) given a decomposition into cells boils down to finding
an optimal branching in G.

of the hypothesis graph, [21] defines the following moral
lineage tracing problem (MLTP)

min
x,x+,x−

∑
e∈E

cexe +
∑
v∈V

c+v x
+
v +

∑
v∈V

c−v x
−
v (4)

subject to x ∈ XG, x+, x− ∈ {0, 1}V , (5)

∀t ∈ T ∀v ∈ Vt+1∀S ∈ Vtv-cuts(G+
t ) :

1− x+
v ≤

∑
e∈S

(1− xe), (6)

∀t ∈ T ∀v ∈ Vt∀S ∈ vVt+1-cuts(G+
t ) :

1− x−v ≤
∑
e∈S

(1− xe). (7)

The inequalities (6) and (7) are called birth and termina-
tion constraints, respectively.

3 Local Search Algorithms

In this section, we introduce two local search heuristics for
the MLTP. The first builds a lineage bottom-up in a greedy
fashion, while the second applies Kernighan-Lin [27] up-
dates to the intra-frame components. The latter requires
repeatedly optimizing a branching problem, given a fixed
intra-frame decomposition, for which we discuss an effi-
cient combinatorial minimizer.

Both algorithms maintain a decomposition of the graph
(V,
⋃
t∈T Et), ie. the components within each frame Gt that

represent the cells. We denote the set of all cells with V .
For each set of edges going from a component a ∈ V at
time point t to a component b at t + 1, we associate an
arc ab ∈ A. This gives a directed graph G = (V,A), as
illustrated in Fig. 3. We write Va for the set of vertices v in
component a ∈ V and Eab for the set of edges represented
by arc ab ∈ A. They further maintain a selection of the
arcs A(y), where y ∈ {0, 1}A, to represent which temporal
edges are cut.

Algorithm 1 Greedy Lineage Agglomeration (GLA)

while progress do
(a, b)← arg minab∈E∪A∆transform

ab

if ∆transform
ab < 0 then
applyTransform(G, a, b) . updates partitions

of G and selects
arcs A(y).

else
break

end if
end while
return edgeLabels(G) . cut-edge labeling x∗

from V and A(y).

3.1 Greedy Lineage Agglomeration (GLA)

The first algorithm takes an MLTP instance and constructs
a feasible lineage in a bottom-up fashion. It is described
in Alg. 1 and follows a similar scheme as the GAEC [28]
heuristic for the MCMCP in the sense that it always takes
the currently best possible transformation, starting from
V = V . It applies three different types of transformations:
1) a merge contracts all edges between two components of
the same time point t, combining them into one single com-
ponent. 2) setParent selects an arc ab ∈ A and thereby
sets a of Vt as the (current) parent of b ∈ Vt+1, while 3)
changeParent de-selects such (active) arc ab and instead
selects an alternative cb. While final components V deter-
mine intra-frame cuts, the final selection of arcs then deter-
mines which temporal edges are cut edges (xe = 1). Unlike
GAEC, transformations concerning the temporal edges are
reversible due to changeParent. All allowed transforma-
tions, merge, setParent and changeParent, are depicted
in Fig. 4. The change in objective (4) caused by a par-
ticular transformation involving a and b is denoted with
∆transform
ab . In order to determine the cost or reward of a

particular transformation, we have to examine not only the
edge between the involved components a and b, but also
whether they have an associated parent or child cell already.
For a merge, we have to consider arcs going to children or
parents of either component, since they would be combined
into an active arc and therefore change their state and af-
fect the objective. The detailed, incremental calculation of
these transformation costs ∆transform

ab can be found in the
appendix. We maintain feasibility at all times: two com-
ponents with different parents cannot be merged (it would
violate morality constraints (3)), and similarly, a merge of
two partitions with a total of more than two active outgo-
ing arcs is not considered (as it would violate bifurcation
constraints). The algorithm stops as soon as no available
transformation decreases the objective.

Implementation. We use a priority queue to efficiently
retrieve the currently best transformation. After applying it,
each affected transformation is re-calculated and inserted
into the queue. We invalidate previous editions of trans-
formations indirectly by keeping track of the most recent
version for all E . For each component, we actively main-
tain the number of children and its parent to represent the
selected arcs A(y).

3



M. Rempfler, J.-H. Lange et al. Efficient Algorithms for Moral Lineage Tracing

a b

a

b

c

c

a

b d

set parent change parent merge components

t t+ 1 t t+ 1 t− 1 t t+ 1

Figure 4 The three transformations of GLA: set a as parent of b
(left), change the parent of b from c to a (middle) or merge two
components a and b into one (right). The major arc along which
the transformation occurs is depicted in red, while other arcs that
affect the transformations cost are blue. When changing a parent,
for example, the presence of other active arcs originating from a
and c determine whether termination costs have to be paid. For
a merge, we have to consider arcs to parents or children, which
would be joined with an active arc and therefore change their state.

t t

7→

Figure 5 Depicted above is a transformation carried out by the
KLB algorithm. One node in the middle image is moved from the
blue component to the red component. Consequently, the optimal
branching changes.

Algorithm 2 KL with Optimal Branchings (KLB)

while progress do
for a, b ∈ V do

if 6 ∃uv ∈ Et : u ∈ Va ∧ v ∈ Vb then
continue

end if
improveBipartition(G, a, b) . move nodes

across border
or merge.end for

for a ∈ V do
splitPartition(G, a) . split partition.

end for
end while
return cutEdgeLabels(G) . cut-edge labeling x∗

from V and A(y∗).

3.2 Kernighan-Lin with Optimal Branchings (KLB)

Algorithm 2 takes an MLTP instance and an initial decom-
position, eg. the result of GLA, and attempts to decrease the
objective function (4) in each step by changing the intra-
frame partitions in a Kernighan-Lin-fashion [27], an exam-
ple is illustrated in Fig. 5. Like the algorithm proposed
by [28] for the related MCMCP, it explores three differ-
ent local transformations to decrease the objective function
maximally: a) apply a sequence of k node switches between
two adjacent components a and b, b) a complete merge of
two components, and c) splitting a component into two.
Transforms that do not decrease the objective will be dis-
carded. In contrast to the setting of a MCMCP, judging the

effect of such local modifications on the objective is more
difficult, since it requires according changes to the temporal
cut-edges. This can be seen when reordering the terms of
the MLTP objective fMLTP (4):

fMLTP(x) =
∑

e∈
⋃

t∈T Et,t+1

ce +
∑

e∈
⋃

t∈T Et

cexe + fMCBP(x) , (8)

where we identify the first sum to be an instance-dependent
constant, the second sum is the contribution from intra-
frame edges (ie. the decomposition into cells) and the last
term, summarized with fMCBP is the sum over all inter-
frame edges as well as birth and termination costs. Given
a particular KLB-transformation, the change to the intra-
frame part is straight-forward to calculate, while the change
of the inter-frame part involves solving min fMCBP(.)
anew. This sub-problem turns out to be a variant of a min-
imum cost branching problem (MCBP), which we discuss
next. Afterwards, we describe a combinatorial optimizer
for this MCBP, and finally provide additional details on its
usage within KLB.

Minimum Cost Branching on G. Given a fixed decom-
position into cells V , ie. is a fixed value for all intra-frame
cut-edge variables xe, we can reduce the remaining (partial)
MLTP to the following MCBP over G = (V,A):

min
y,y−,y+

∑
ab∈A

cabyab +
∑
a∈V

c+a y
+
a +

∑
a∈V

c−a y
−
a (9)

subject to ∀a ∈ V : (1− y+a ) =
∑

b∈δ−(a)

yba (10)

∀a ∈ V : (1− y−a ) ≤
∑

b∈δ+(a)

yab ≤ 2 (11)

y ∈ {0, 1}A, y−, y+ ∈ {0, 1}V , (12)

where y, y−, y+ are substitutes for those original cut vari-
ables x, x+, x− that are bundled within an arc or com-
ponent in G. The objective (9) is exactly fMCBP of (8).
Each yab indicates whether arc ab is active (yab = 1) or
not (yab = 0). The equality constraint (10) ensures that
at most one incoming arc is selected (preventing a viola-
tion of morality) and, if none is chosen, the birth indicator
y+a is active. In the same sense, (11) enforces the penalty
for termination if necessary, and its upper bound limits
the number of children to 2, which enforces the bifurca-
tion constraint. Since G is acyclic by construction, we do
not require cycle elimination constraints that are typically
present in general formulations of MCBPs. Observing that
∀e ∈ Eab : 1 − yab = xe, ie. all edges in an arc need
to have the same state to satisfy space-time constraints, we
derive the weights cab = −∑e∈Eab

ce. With a similar rea-
soning, all vertices of a component a need to be in the same
birth/termination state, ∀v ∈ Va : y+a = x+

v , hence we de-
rive c+a =

∑
v∈Va

c+v (and analogous for termination costs
c−a ). The derivation is found in the supplement.

Matching-Based Algorithm for the MCBP. We now
show that the MCBP (9)-(11) can be solved efficiently by
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t

⇒
a b

Gt,t+1

a

a′

a−

b
b+

Figure 6 Illustration of the constructed bipartite matching problem
(right) for an MCBP in the subgraph of two consecutive frames
t, t + 1 (left). The matching problem graph consists of the orig-
inal nodes and edges, duplicates a′ for a ∈ Vt, auxiliary termi-
nation nodes a− and auxiliary birth nodes b+. Auxiliary edges
which have zero cost by construction are gray. For simplicity,
we illustrate only two edges between termination and birth nodes.
Matched nodes correspond to active arcs in the original Gt,t+1.

reducing it to a set of minimum cost bipartite matching
problems (MCBMPs).

To this end, observe that the graph G = (V,A) is
acyclic by construction, cf. Fig. 3. Denote by Gt,t+1 =
(Vt ∪ Vt+1,At,t+1) the subgraph of G that corresponds to
the consecutive frames t and t + 1.

Lemma 2. For every G = (V,A) arising from a fixed intra-
frame decomposition, the solution of the MCBP on G can
be found by solving the MCBP for all Gt,t+1 individually.

Proof. The constraints (10) only couple birth variables y+a
for a ∈ Vt+1 with arc variables yba where ba ∈ At,t+1.
Similarly, the constraints (11) only couple termination vari-
ables y−a for a ∈ Vt with arc variables yab where ab ∈
At,t+1. Thus, the objective function and the constraints
split into a set of MCBPs corresponding to the subgraphs
Gt,t+1 of G. Hence, solving |T | − 1 many sub-MCBPs in-
dividually gives the solution of the MCBP on G.

Lemma 3. An MCBP on Gt,t+1 can be transformed into
an equivalent minimum cost bipartite matching problem
(MCBMP).

Proof. For a given MCBP on Gt,t+1, we construct an
MCBMP as follows (illustrated in Fig. 6): 1) insert a du-
plicate a′ for each node a ∈ Vt and add an arc a′b for each
original arc ab ∈ At,t+1 with identical cost ca′b = cab. 2)
For each node a ∈ Vt, insert a node a− and an arc aa− with
its cost being c−a , ie. the cost of terminating in a. Repeat this
for all duplicate nodes a′ but set the according cost c−a′ = 0.
Similarly, add a node b+ for each b ∈ Vt+1 and an arc b+b
with a cost of c+b . 3) Connect each pair of auxiliary nodes
b+ and a− (or a′−) with an arc if ab ∈ At,t+1 with a cost
of 0. The resulting graph is clearly bipartite.

Now, consider the MCBMP on this graph: A match
(a, b) or (a′, b) corresponds to yab = 1, respectively ya′b =
1, a match of (a, a′) to y−a = 1 and vice versa for birth
variables y+b . Exactly one incoming arc for each node of
Vt+1 or the link to its birth node b+ is matched, satisfy-
ing (10). In the same fashion, each a ∈ Vt is assigned to a
node b ∈ Vt+1 or its termination node a−, satisfying the left

hand side of (11). Assigning a duplicate node a′ to a node
b ∈ Vt+1 allows having bifurcations, ie. satisfies the right-
hand side of (11), while its alternative choice, matching it
to its zero-cost termination node has no effect on the cost.
Finally, the zero-cost arcs between the auxiliary birth and
termination nodes a− and b+ are matched whenever a pair
of a or and b is matched (due to lack of alternatives).

The MCBMP can be solved in polynomial time by the
hungarian algorithm [30, 35]. Applying it to each of the
|T | − 1 subgraphs of Gt,t+1 thus leaves us with an efficient
minimizer for the MCBP.

Implementation of KLB. The algorithm maintains the
weighted G = (V,A), the current objective in terms of
each of the three parts of (8), and solves the MCBP on
G by the matching-based algorithm described in the pre-
vious section. We initially solve the entire MCBP, but
then, within both methods that propose transformations,
improveBipartition and splitPartition, we exploit the lo-
cality of the introduced changes. By applying Lemma 2, we
note that for a given V , modifying two of its cells a and b in
frame t will only affect arcs that go from t−1 to t and from
t to t + 1. In other words, ∆fMCBP can be computed only
from the subproblems of (t − 1, t) and (t, t + 1). In prac-
tice, we find that the effect is often also spatially localized,
hence we optionally restrict ourselves to only updating the
MCBP in a range of dMCBP (undirected) arc hops from a
and b, where the modification occured. This dMCBP param-
eter should be explored and set depending on the instance,
since choosing it too small may result in misjudged moves
and thus, in wrong incremental changes to the current ob-
jective. Note, however, that feasibility is still maintained in
any case. We handle this by solving the entire MCBP once
at the end of every outer iteration. Doing so ensures that
the final objective is always correct and allows us to detect
choices of dMCBP that are too small. Since we observe that
it takes relatively few outer iterations, we find the overhead
by these extra calls to be negligible.

To reduce the number of overall calculations in later it-
erations, we mark components that have changed and then,
in the next iteration, attempt to improve only those pairs
of components which involve at least one changed compo-
nent. To account for changes that affect moves in previous
or subsequent frames, we propagate these changed flags to
all potential parents or children of a changed component.

4 Improved Branch-and-Cut Algorithm

Jug et al. propose to solve the MLTP with a branch-and-
cut algorithm, for which they design separation procedures
for inequalities (1) – (3), (6) – (7) and the bifurcation con-
straints. In the following, we propose several modifications
of the optimization algorithm, which drastically improve its
performance.

It is sufficient to consider only chordless cycles in (1)
and, furthermore, it is well-known that chordless cycle in-
equalities are facet-defining for multicut polytopes (cf. [14]
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and [19]). This argument can be analogously transferred to
inequalities (2) and (3).

Moreover, the inequalities of (3) where {vt, wt} ∈ Et
is an edge of the hypothesis graph may be considerably
strengthened by a less trivial, yet simple modification.
Lemma 4 shows that with both results combined, we can
equivalently replace (1) – (3) by the set of tighter inequali-
ties (13) and (14). Proofs are provided in the supplementary
material. In relation to our improved version of the branch-
and-cut algorithm, we refer to (13) as cycle and to (14) as
morality constraints.

Lemma 4. For every hypothesis graph G = (V,E) it holds
that x ∈ X ′G iff x ∈ {0, 1}E and x satisfies

∀t ∈ T ∀{v, w} ∈ Et ∪ Et,t+1

∀ chordless vw-paths P in G+
t :

xvw ≤
∑
e∈P

xe (13)

∀t ∈ T ∀v′, w′ ∈ Vt such that {v′, w′} /∈ Et

∀v′w′-cuts S in Gt∀ chordless v′w′-paths P in G+
t :

1−
∑
e∈S

(1− xe) ≤
∑
e∈P

xe (14)

Remark. Suppose we introduce for every pair of non-
neighboring nodes v′, w′ ∈ Vt a variable xv′w′ indicating
whether v′ and w′ belong to the same cell (xv′w′ = 0) or
not (xv′w′ = 1). Then any inequality of (14) is exactly the
combination of a cut inequality 1−xv′w′ ≤

∑
e∈S(1−xe)

and a path inequality xv′w′ ≤
∑
e∈P xe in the sense of

lifted multicuts [19]. For neighboring nodes v, w ∈ Vt, i.e.
{v, w} ∈ Et, we have the variable xvw at hand and can thus
omit the cut part of the morality constraint, as the lemma
shows.

Termination and Birth Constraints. We further suggest
a strengthening of the birth and termination constraints in
the MLTP. To this end, for any v ∈ Vt+1 let Vt(v) = {u ∈
Vt | {u, v} ∈ Et,t+1} be the set of neighboring nodes in
frame t. Further, we denote by E

(
Vt(v), Vt+1 \ {v}

)
the

set of inter frame edges that connect some node ut ∈ Vt(v)
with some node ut+1 ∈ Vt+1 different from v.

Lemma 5. For every hypothesis graph G = (V,E), the
vectors x ∈ X ′G, x

+, x− ∈ {0, 1}V satisfy inequalities (6)
iff the following inequalities hold:

∀t ∈ T ∀v ∈ Vt+1∀S ∈ Vtv-cuts(G+
t ) :

1− x+
v ≤

∑
e∈S\E(Vt(v),Vt+1\{v})

(1− xe). (15)

Similarly, x ∈ X ′G, x
+, x− ∈ {0, 1}V satisfy (7) iff

∀t ∈ T ∀v ∈ Vt∀S ∈ vVt+1-cuts(G+
t ) :

1− x−v ≤
∑

e∈S\E(Vt\{v},Vt+1(v))

(1− xe) (16)

hold true.
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Figure 7 Comparison of algorithms for the MLTP in terms of
runtime, objective (solid) and bounds (dashed) on the large in-
stances of [21]. Our heuristics are able to determine feasible solu-
tions quickly, while our branch-and-cut algorithm (ILP ours) con-
verges to the optimal solution in up to one hundredth of the time of
the original branch-and-cut algorithm (ILP original) and provides
tight bounds in both cases. On these instances, KLB exhibits no
significant runtime difference between the two choices of dMCBP.

Additional Odd Wheel Constraints. A wheel W =
(V (W ), E(W )) is a graph that consists of a cycle and a
dedicated center node w ∈ V (W ) which is connected by an
edge to every node in the cycle. Let EC denote the edges
of W in the cycle and Ew the remaining center edges. With
a wheel subgraph W = (V (W ), E(W )) of a graph G we
may associate an inequality

∑
e∈EC

xe −
∑
e∈Ew

xe ≤
⌊ |V (W )| − 1

2

⌋
, (17)

which is valid for multicut polytopes [14]. A wheel is called
odd if |V (W )|−1 is odd. It is known that wheel inequalities
are facet-defining for multicut polytopes iff the associated
wheel is odd [14].

We propose to add additional odd wheel inequalities to
the MLTP in order to strengthen the corresponding LP re-
laxation. More precisely, we consider only wheels W =
(V (W ), E(W )) ⊂ G such that w ∈ Vt+1 and v ∈ Vt for
all v ∈ V (W ) \ w and some t ∈ T . This structure guar-
antees that for any x ∈ X ′G, the restriction xE(W ) is the
incidence vector of a multicut of W . Therefore, (17) holds
with respect to x.

Implementation. For a subset of the constraints, we use
the commercial branch-and-cut solver Gurobi (7.0) [18] to
solve the LP relaxation and find integer feasible solutions.
Whenever Gurobi finds an integer feasible solution x, we
check whether x ∈ XG and all birth and termination con-
straints are satisfied. If not, then we provide Gurobi with
an additional batch of violated inequalities from (13) – (16)
as well as violated bifurcation constraints and repeat. To
this end, we adapt the separation procedures of [21] to ac-
count for our improvements in a straight-forward manner.
We further add odd wheel inequalities for wheels with 3
outer nodes as described above (so-called 3-wheels) to the
starting LP relaxation.

For every integer feasible solution that Gurobi finds, we
fix the connected components of the intra-frame segmenta-
tion and solve the remaining MCBP. This allows for the
early extraction of feasible lineage forests from the ILP.
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Figure 8 Number of morality cuts (top), ie. (3) or (14), and cy-
cle cuts (bottom), ie. (1) and (2) or (13), separated in the differ-
ent branch-and-cut algorithms. We observe that our branch-and-
cut algorithm requires considerably fewer morality cuts, while the
number of cycle cuts (including both space-cycles and space-time-
cycles) is in the same order of magnitude.

5 Experiments & Results

Instances and Setup. We evaluate our algorithms on the
two large instances of [21]: Flywing-epithelium and N2DL-
HeLa-full. The hypothesis graph of the former instance
consists of 5026 nodes and 19011 edges, while the latter
consists of 10882 nodes and 19807 edges. In addition to
this, we report experiments on two more sequences of a fly-
wing epithelium time-lapse microscopy with a wider field
of view. Their hypothesis graphs consist of 10641 nodes
and 42236 edges, respectively 76747 edges. We denote the
data sets with Flywing-wide I and II. These instances are
preprocessed with the same pipeline as Flywing-epithelium.
For details on the preprocessing, we refer to [21].

Our choice of birth and termination costs follows [21],
ie. we set c+ = c− = 5 for all instances. We initialize
the KLB heuristic with the solution of GLA to decrease the
number of outer iterations. We benchmark two versions of
KLB: The first one is denoted with KLB-d=inf and solves
the MCBP within the (reachable) subgraph of t ± 1, while
the second, KLB-d=10, additionally exploits spatial local-
ity, ie. it uses dMCBP = 10.

Convergence Analysis. The convergence of our algo-
rithms in comparison to the branch-and-cut algorithm
of [21] is reported in Fig. 7 and Table 1. We find that GLA
is the fastest in all instances, but only reaches a local opti-
mum with a gap of about 1.95 % and 3.69 %, respectively.
This solution is improved by KLB in terms of objective, up
to a gap of 0.76 % and 1.86 %. Both variants of KLB obtain
the same solution in terms of cut-edge labeling and show no
considerable runtime difference. We find that KLB spends
most of the time in the first outer iteration, where it has to
check a large number of bipartitions that do not improve
and will therefore not be considered in the next iteration.
Our KLB implementation could potentially be sped up by
updating components (of disjoint Gt−1:t+1) in parallel.

The improved branch-and-cut algorithm retrieves fea-
sible solutions considerably faster and provides tighter
bounds than the algorithm of [21]. The instances Flywing-
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Figure 9 Results on the more extensive instances Flywing-wide
I and II. Our branch-and-cut algorithm with 3-wheel constraints
provides slightly tighter bounds, with which we determine the
gaps for GLA to be 2.9% (I) and 2.1% (II), and 1.3% (I) and
0.95% (II) for KLB. Exploiting spatial locality when re-solving
the MCBPs considerably reduces runtime of KLB.

Table 2 Comparison of the similarity to ground truth of seg-
mentation (SEG) and traced lineage forest (TRA) on Flywing-
epithelium. ILP denotes the result of the branch-and-cut algo-
rithm, while PA [1] is a common tracking tool used by biologists.

Algorithm SEG TRA

GLA 0.9363 0.9640
KLB 0.9485 0.9721
ILP 0.9722 0.9813
PA (auto) 0.7980 0.9206

epithelium and N2DL-HeLa are solved to optimality in less
than 200 s, respectively 1000 s, while the original algorithm
did not find any feasible solutions in that time. As shown in
Fig. 8, we observe that our modifications of the branch-and-
cut algorithm greatly reduce the number of morality cuts.

On the larger instances Flywing-wide I and II, we present
our results in Fig. 9. We are able to determine the maximal
optimality gaps for GLA to be 2.9 % (I) and 2.1 % (II), and
1.3 % (I) and 0.95 % (II) for KLB. Again, both variants of
KLB obtain identical solutions. Here, exploiting spatial lo-
cality helps: KLB-d=inf runs in 477 s (I) and 9129 s (II),
while KLB-d=10 reduces this to 104 s and 3359 s, respec-
tively. The particular choice of dMCBP = 10 was found to
be stable in both cases. More extensive results with varying
dMCBP can be found in the supplement.

Solution Quality. We compare the solution quality of our
two heuristics by segmentation (SEG) and tracking (TRA)
metrics as used in [33] for Flywing-epithelium. The results
are reported in Table 2. We observe that KLB improves
the scores of GLA slightly (up to an additional 1.2 % and
0.81 % for SEG and TRA, respectively). The optimal ILP
solutions achieve slightly better scores in both measures
than the heuristics. All presented algorithms outperform
the baseline, the packing analyzer [1], whose scores were
originally reported in [21].

6 Conclusion

We have introduced local search algorithms for the re-
cently introduced MLTP [21], a mathematical framework

7
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Table 1 Detailed quantitative comparison of algorithms for the MLTP. BestGap is calculated using the tightest bound of any algorithm,
while Gap is based on the bound established by each particular algorithm. KLB-d=inf solves the MCBP in the entire reachable
subgraph of {t− 1, t, t+ 1}, while KLB-d=10 additionally uses spatial locality with dMCBP = 10.

Flywing-epithelium N2DL-HeLa-full
Method Time / s objBest objBound Gap BestGap Time / s objBest objBound Gap BestGap

GLA 0.26 -38835.90 0.0195 0.12 -6095.85 0.0369
KLB-d=10 6.42 -39294.65 0.0076 1.95 -6205.54 0.0186
KLB-d=inf 6.24 -39294.65 0.0076 2.06 -6205.54 0.0186
ILP (ours) 189.41 -39593.90 -39593.90 0.0000 0.0000 931.07 -6320.81 -6320.81 0.0000 0.0000
ILP (original) [21] 23460.80 -39593.90 -39717.80 0.0031 0.0000 156542.00 -6320.81 -6484.02 0.0258 0.0000

for cell lineage reconstruction, which treats both subprob-
lems, image decomposition and tracking, jointly. We pro-
pose two efficient heuristics for the MLTP: a fast agglom-
erative procedure called GLA that constructs a feasible lin-
eage bottom-up, and a variant of the KL-algorithm which
attempts to improve a given lineage by switching nodes be-
tween components, merging or splitting them. The latter
algorithm repeatedly solves a MCBP conditioned on fixed
partitions. We show that this subproblem can be solved
as a minimum cost bipartite matching problem, which is
of independent interest. Furthermore, we improve the
branch-and-cut algorithm of [21] by separating tighter cut-
ting planes and employing our result about the MCBP sub-
problem. Our branch-and-cut algorithm solves previous in-
stances quickly to optimality. For both the previous and
larger instances, our heuristics efficiently find high quality
solutions. This demonstrates empirically that our methods
alleviate runtime issues with MLTP instances and makes
moral lineage tracing applicable in practice (eg. in [38]).
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S. O. Isikman, A. F. Coskun, O. Mudanyali, and A. Ozcan.
Imaging without lenses: achievements and remaining chal-
lenges of wide-field on-chip microscopy. Nature methods,
9(9):889–895, 2012. 1

[17] C. Guillot and T. Lecuit. Mechanics of epithelial tissue
homeostasis and morphogenesis. Science, 340(6137):1185–
1189, 2013. 1

[18] Gurobi Optimization, Inc. Gurobi optimizer reference man-
ual, 2016. 6
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