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Abstract. Several important tasks in medical image analysis can be
stated in the form of an optimization problem whose feasible solutions
are connected subgraphs. Examples include the reconstruction of neural
or vascular structures under connectedness constraints.
We discuss the minimum cost connected subgraph (MCCS) problem and
its approximations from the perspective of medical applications. We pro-
pose a) objective-dependent constraints and b) novel constraint genera-
tion schemes to solve this optimization problem exactly by means of a
branch-and-cut algorithm. These are shown to improve scalability and
allow us to solve instances of two medical benchmark datasets to opti-
mality for the first time. This enables us to perform a quantitative com-
parison between exact and approximative algorithms, where we identify
the geodesic tree algorithm as an excellent alternative to exact inference
on the examined datasets.

1 Introduction

The minimum cost connected subgraph (MCCS) optimization problem arises in
several medical image analysis tasks, most prominently for segmenting neural
structures [1] or reconstructing vascular networks [2], where the maximum a
posteriori (MAP) subgraph under connectedness constraints is inferred. Varia-
tions of this optimization problem have been proposed for anatomical labelling
of vasculature [3] or artery-vein separation [4]. Imposing connectedness serves
as regularizer, suppressing spurious detections and complementing incomplete
observations, and it is often a requirement for further processing steps, e.g. if
the reconstructed vasculature shall be used for biophysical simulations.

While [1,2,3,4] successfully solve an MCCS problem on heavily preprocessed,
application-specific, sparse graphs, it would also be interesting to enforce con-
nectedness on both very dense or large grid-graphs, for example in low-level seg-
mentation tasks (Fig. 1, left), for 3D/4D reconstruction problems (Fig. 1, middle
and right) or when it is not possible to reliably reduce the candidate graphs size.
In these cases, however, the computational complexity becomes challenging. In
fact, it was shown to be NP-hard in [5]. Nowozin & Lampert [6] propose an
exact algorithm that tightens an outer polyhedral relaxation of the connected
subgraph polytope by cutting planes. However, without guarantee to terminate
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Fig. 1. Examples for the MCCS on grid graphs. Left: Segmentation of vasculature in
retinal images. Middle: Reconstruction of a neuron from a 3D stack. Excessive dis-
connected components are shown in red for better visibility. Right: Delineation of
vessels in a digital subtraction angiography (DSA) time series. The detail views show:
raw image (top), without connectedness (middle) and with connectedness (bottom).
Imposing connectedness constraints, i.e. requiring an MCCS, helps to reconnect dis-
connected terminals and remove spurious detections without penalizing thin tubular
structures.

in polynomial time, it was found to be too slow to solve typical instances of
medical benchmark datasets to optimality. To this end, two heuristical algo-
rithms were proposed by Chen et al. [7] and Stühmer et al. [8]. They either use
an approximative formulation of the connected subgraph polytope by means of
a precomputed geodesic shortest path tree [8] or iteratively solve a surrogate
problem that is based on altered weights of the original problem [7]. Both ap-
proaches are fast enough for medical applications and were reported to yield
qualitatively promising results. A quantitative comparison, however, has been
prevented by the prohibitively expensive computation of exact solutions to the
MCCS problem.

In this paper, we revisit the MCCS in an integer linear programming (ILP)
framework for MAP estimation under connectedness constraints. First, we con-
tribute to the exact optimization by proposing a) objective-dependent constraints
that reduce the size of the polytope and hence, reduce the number of potential
solutions to explore, and b) constraint generation strategies beyond the standard
nearest and minimal separator strategy, which we show to have a strong impact
on the runtime of the ILP. Both propositions together enable us to compute
the MCCS on several instances of two medical benchmark datasets – addressing
vessel segmentation and neural fiber reconstruction – to optimality. Our second
contribution is a first quantitative comparison of the exact algorithm and the
two heuristics in terms of runtime, objective function and semantic error metrics.

2 Background

We are interested in the most likely binary labeling x ∈ {0, 1}|V | of the nodes V
in the graph G = (V,E). A node i is active if xi = 1. By imposing connectedness
constraints, i.e. x ∈ Ω, the MAP estimate becomes a MCCS problem:

x∗ = arg max
x∈{0,1}|V |

P (X = x|I,Ω) = arg max
x∈Ω

P (X = x|I) , (1)
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where I is the image evidence and Ω denotes the set of x that are connected
subgraphs of G. In this section, we discuss two formulations of Ω, the exact
formulation that follows [6] and the geodesic tree formulation of [8].

2.1 Exact Connectedness

Following [6], we can describe Ω with the following set of linear inequality con-
straints

∀i, j ∈ V, (i, j) /∈ E : ∀S ∈ S(i, j) xi + xj − 1 ≤
∑
k∈S

xk , (2)

where S is a set of vertices that separate i and j, while S(i, j) is the collection
of all vertex separator sets for i and j. In other words, if two nodes i and j are
active, then they are not allowed to be separable by any set of inactive nodes.
Thus, a path of active nodes has to exist. In practice, this set of constraints is too
large to be generated in advance. However, given a labelling x we can identify at
least a subset of the violated connectedness constraints in polynomial time, add
them to the ILP and search for a new feasible solution. This approach is known
as lazy constraint generation. In Sec. 3.2, we detail on identifying and adding
these constraints.

Rooted case. In many medical segmentation problems, it is reasonable to as-
sume that a root node can be identified aforehand with an application-specific
detector, manually or by a heuristic, such as picking the strongest node in the
largest component. If a known root r exists, it suffices to check connectedness
to the root node instead of all pairs of active nodes. The constraints in (2) then
become

∀i ∈ V \ {r}, (r, i) /∈ E : ∀S ∈ S(i, r) xi ≤
∑
k∈S

xk . (3)

2.2 Geodesic Tree Connectedness

Alternative to the exact description of all connected subgraphs that we discussed
in the previous section, we can formulate a connectedness prior as in [8] on a
geodesic shortest path tree T (G) = (V,A ⊆ E) rooted in r. Here, T (G) is
precomputed based on the unary potentials, i.e. with edge weights defined as
f(i, j) = 1

2 (max(wi, 0) + max(wj , 0)). The set of feasible solutions is then given
by the inequalities:

∀i ∈ V \ {r}, (p, i) ∈ T (G) xi ≤ xp , (4)

where p is the parent of i in the geodesic tree T (G). With this set of constraints,
a node i can only be active if his parent p in the geodesic tree is also active, thus
connecting all active nodes to the root r along the branches of T (G). Advantages
of this approach are that only |V | − 1 constraints are necessary to describe the
set of feasible solutions and that the relaxation is tight. On the other hand, the
inequalities of (4) describe a strict subset of (3), unless T (G) = G. Hence it
might discard an optimal solution that is feasible in (3).
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3 Methods

Given the probabilistic model P (X = x|I) of (1) is a random field over G =
(V,E), we can write its MAP estimator x∗ = arg maxx∈{0,1} P (X = x|I,Ω) as
an ILP. We will assume for the remaining part that P (X = x|I) =

∏
i∈V P (xi|I),

leading to the ILP:

minimize
∑
i∈V

wixi , (5)

s.t. x ∈ Ω , (6)

x ∈ {0, 1}|V | , (7)

where (6) are the connectedness constraints, i.e. either (3) or (4), (7) enforces

integrality, and wi are the weights that can be derived as wi = − log P (xi=1|I)
1−P (xi=1|I) .

Higher order terms of the random field can be incorporated by introducing aux-
iliary binary variables and according constraints as done in [2]. Note, however,
that [7] reported problem instances with weak or no pairwise potentials – as we
are addressing them here – to be amongst the most difficult.

3.1 Objective-dependent Constraints

Given the problem with unary terms, we observe that, for any connected com-
ponent U ⊂ V composed of unfavourable nodes only, i.e. ∀i ∈ U , wi > 0, it can
only be active in the optimal solution if there are at least two active nodes in
its neighbourhood:

∀i ∈ U 2xi ≤
∑

j∈∪k∈Uδ(k)\U

xj , (8)

where δ(k) is the set of neighouring nodes to k. In other words, unfavourable
nodes can not form a leaf in the optimal solution (otherwise, removing the un-
favourable nodes would give us a better solution without loosing connectedness).
In the special case of |U| = 1, we can add the constraint from the beginning.
This removes feasible solutions from Ω that are a priori known to be suboptimal,
hence reducing the search space in the optimization and making it unnecessary
to add a large set of separator inequalities.

Higher-order weights. Even though we only define (8) for unary weights, it
is possible to adapt the constraint to higher-order models by changing the con-
dition to wi + minj∈δ(i) wij > 0, provided the pairwise weights wij are only
introduced for neighbouring nodes i, j such that (i, j) ∈ E.

3.2 Constraint Generation Strategies

The extensive number of inequalities needed for (3) makes it necessary to identify
violated constraints during the optimization and add them to the problem. We
note that it suffices to treat individual connected components as one entitity,
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Fig. 2. Constraint generation strategies. Illustration of the nearest separator (left),
minimal separator (middle) and k-nearest (right) strategies. Active nodes are shown in
black, inactive nodes are white and the identified separator sets S are marked in blue.
S is subsequently used to generate the corresponding constraint in (2) or (3).

since establishing a connection automatically connects all pairs of nodes between
them. Identifying violated constraints boils down to finding a vertex separator
set S between two disconnected, active components in the current solution. The
constraints corresponding to S are then generated according to (2) or (3) for all
nodes in the given connected component.

At the heart of this technique is the observation that only a subset of inequal-
ities is active at the optimum of a given problem instance. However, depending
on the choice of the inequalities that we add in each step, we may explore (and
therefore construct) different parts of the polytope Ω, most likely requiring a
different number of iterations.

In the following, we first review the two standard strategies, namely the near-
est and minimal separator, and then propose several novel, alternative strategies.

Nearest separator. In this standard approach, the vertex separator set in the
immediate neighbourhood of the active component is picked for generating the
new constraint. This strategy has been used, for example, in [2]. It is motivated
by its simplicity and the fact that it often coincides with the minimal separator
strategy for small components.

Minimal separator. A minimal (in terms of |S|) separator set is obtained by
solving a max-flow problem between any two disjoint active components at hand
and selecting the smaller vertex set on either side of the resulting min-cut. For the
max-flow, we set the flow capacity c in edge (i, j) as c(i, j) = max(1−xi, 1−xj).
The strategy was applied in [6].

Equidistant separator. Alternatively, we can identify the separator set S that
is equidistant to the current active component and all other components by run-
ning a breadth-first search (BFS) from either side. Similar to the max-flow of the
minimal separator, the distance measure is only accounting for non-active nodes.
This strategy originates in the observation that the weakest evidence between
two components is often found half-way into the connecting path.

k-Nearest and k-Interleave. We run a BFS from the active component C
and collect the k (disjoint) separator sets {Sn}k−1n=0 composed of all nodes with
identical distance. The search terminates if k equals the number of nodes in C or
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Fig. 3. Runtime with and without the proposed
objective-dependent constraints on 64 × 64 in-
stances. Mean values are depicted by �, whiskers
span [min,max] values. Unsolved instances are ex-
cluded for readability. We find that all strategies
benefit from the additional constraints. Additional
per-instance information can be found in the sup-
plement.

if another active node is reached. For the k-interleave, only separators with even
distance are chosen. The intuition behind these strategies is that a wider range
of neighbours (and their neighbours) has to be considered for the next solution.

4 Experiments & Results

Datasets & Preprocessing. We conduct experiments on two medical datasets:
First, on the DRIVE database of retinal images [9], each being 565 × 584 px.
We use the probability estimates P (xi = 1|I) for a pixel i being vasculature
from the recent state-of-the-art approach of [10] for our unaries. Second, we run
experiments on the olfactory projection fibers (OPF) dataset [11], composed of
8 3D confocal microscopy image stacks. We use the stacks prepared in [1], where
we estimate P (xi = 1|I) of voxel i being part of the fiber by a logistic regression
on the image intensities. We segment the nerve fiber under the requirement of
connectedness on the 3D grid graph of 256×256×n nodes with n ∈ {30, . . . , 51}
depending on the case. The probability P (xi = 1|I) of voxel i being part of the
fiber is estimated by a logistic regression on the image intensities. Both datasets
are illustrated in Fig. 1.

Optimization. We solve the ILP (5) by the branch-and-cut algorithm of the
solver Gurobi [12] with a default relative gap of 10−4. Objective-dependent con-
straints for single nodes (Sec. 3.1) are added from the beginning. For the exact
connectedness (Sec. 2.1), the strategies described in Sect. 3.2 are implemented
as a callback: Whenever the solver arrives at an integral solution x′, violated
constraints are identified and added to the model. If no such violation is found,
i.e. x′ is already connected, then it is accepted as new current solution x∗. For
the geodesic tree connectedness (Sec. 2.2), all constraints are added at once. In
order to arrive at a fair comparison, we define the root node for both approaches.

Experiment: Objective-dependent constraints. To examine the impact of
the objective-dependent constraints, we subsample 25 subimages of 64 × 64 px
from the DRIVE instances and run the ILP once with and once without the
additional first order constrains of (8). As shown in Fig. 3, we find that all
strategies benefit from the additional constraints.
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Fig. 4. Left: Number of solved instances per
strategy. The darker bar indicates how of-
ten a strategy was the fastest to solve an in-
stance. Right: Runtime on solved instances.
Strategies with too few solved instances are
not included. k-Nearest and k-Interleave are
found to be the most successful exact strate-
gies.

Table 1. Segmentation scores in terms
of F1-score, (Precision, Recall) in %
on the solved instances. All approaches
outperform the baseline (MaxComp),
while no significant difference can be
found between them.

OPF DRIVE
F1 (P R) F1 (P R)

Maxcomp 68.5 (67.7, 71.9) 78.7 (87.2, 72.1)
Geodesic 76.2 (69.1, 85.4) 80.1 (86.2, 75.2)
Topocut - - - 80.1 (86.4, 74.9)
Exact 76.2 (69.1, 85.4) 80.1 (86.2, 75.2)

Geodesic Exact

Fig. 5. Comparison
of exact and approxi-
mative connectedness:
Major differences as
the one indicated are
encountered mainly if
solutions are compet-
ing under the model
P (X = x|I) and thus
almost equivalent
w.r.t. objective value.

Experiment: Comparing exact and approximative algorithms. We com-
pare exact and geodesic tree MCCS on both datasets. On 2D images, we addi-
tionally compare to the method by [7] called Topocut. As a baseline, we compute
the maximum connected component in the non-constrained solution (Maxcomp).
The results are presented in Fig. 4 and Table 4 (additional information per in-
stance is provided in the supplement). We observe that 6/8 and 12/20 instances
were solved to optimality with our propositions, while standard strategies solved
≤ 1. k-Nearest and k-interleave are the two most successful exact strategies in
terms of solved instances and speed. In terms of segmentation scores, the two
heuristics are on par with the exact algorithm, while all of them outperform
the baseline. We find the geodesic approach to match the exact solution with
respect to objective values in all instances (within a relative difference of 10−4),
whereas Topocut often obtains slightly lower objective values than the geodesic
approach. A qualitative comparison between an exact and geodesic solution is
presented in Fig. 5.
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5 Conclusions

We have shown that exact optimization of the MCCS, as it is typical for neural
and vascular structure reconstruction tasks, strongly benefits from the proposed
objective-dependent constraints and the constraint generation strategies. In a
first quantitative comparison between exact and approximative approaches on
two datasets, we found that the geodesic tree formulation is a fast, yet highly
competitive alternative to exact optimization.

While we focussed on large grid-graphs that are most important for low-
level segmentation and reconstruction, we expect that our findings transfer to
MCCS problems and related ILP-based formulations on sparse graphs, e.g. those
discussed in [1,2,3,4], and thus consider this a promising direction for future work.
Besides, it will be intersting to investigate the effect of our propositions in the
presence of higher-order terms.
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