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Abstract

We introduce a probabilistic approach to vessel network extraction that enforces

physiological constraints on the vessel structure. The method accounts for both

image evidence and geometric relationships between vessels by solving an inte-

ger program, which is shown to yield the maximum a posteriori (MAP) estimate

to a probabilistic model. Starting from an overconnected network, it is pruning

vessel stumps and spurious connections by evaluating the local geometry and

the global connectivity of the graph. We utilize a high-resolution micro com-

puted tomography (µCT) dataset of a cerebrovascular corrosion cast to obtain

a reference network and learn the prior distributions of our probabilistic model

and we perform experiments on in-vivo magnetic resonance microangiography

(µMRA) images of mouse brains. We finally discuss properties of the networks

obtained under different tracking and pruning approaches.
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1. Introduction

Many diseases affect general properties of the cerebrovascular network, ex-

amples are arteriosclerosis and dilative vascular malformations changing vessel

shape and diameter, but also Alzheimer’s and related neuro-degenerative dis-

eases are suspected to affect the general vascularity and global network proper-5

ties [1, 2]. Studies investigating such diseases frequently use mouse models for

experiments and commonly acquire in-vivo cerebrovascular imagery by means of

magnetic resonance microangiography (µMRA). While segmenting and tracing

tubular structures is a longstanding field of interest in medical image comput-

ing [3, 4, 5, 6], we approach here the wider – and somewhat neglected [7] –10

problem of extracting the full vascular network from image volumes under con-

sideration of local geometric properties and global constraints of the vascular

structure.

Most vessel segmentation techniques rely on tubularity measures or other

vessel enhancement filters [3], and then apply rule-based or learned decision15

algorithms to segment the vessels [5, 6, 8]. The network graph - representing

vessels by their centerline, complemented with additional information such as

local radii – can be extracted from binary segmentations using morphological

operators [9, 10], or by tracking vessels directly by minimal path techniques [11],

e.g. by applying a fast marching algorithm [12] or a Dijkstra-like scheme [13]. We20

point the interested reader to [5, 6] for more extensive reviews. In most applica-

tions, however, the extracted graphs need further post-processing: Lu et al. [14],

for example, incorporated discriminative classifiers that examine local geometri-

cal features of segments into a hierarchical approach for vessel-structure parsing.

In order to deal with imperfections in vascular connectivity of extracted net-25

works, Kaufhold et al. [15] discussed a supervised learning approach to gap

filling and network pruning, whereas Schneider et al. [16] recently proposed a

generative method for gap in-fill that is guided by a simplified angiogenesis

model. While segmentation algorithms are likely to enforce expected local ves-

sel shape and geometry, only few approaches consider both local properties and30

2



global network connectivity when extracting the full network: Jiang et al. [17]

incorporated assumptions about vessel diameters (Murray’s hypothesis [18]) in a

global optimization problem restricted to vascular trees. Tree shape priors have

also been included into the segmentation of vasculature by [19]. In a different

application, Türetken et al. [20] introduced recently an integer programming35

approach that evaluates path coherence and connectivity of general curvilinear

structures, such as streets in remote-sensing images or vessels in confocal image

stacks. Starting from an overconnected graph, they are pruning edges that do

not fulfill desired structural relationships of neighbouring segment pairs using a

path classifier that is trained from annotated 3-D networks.40

All of these approaches enforce local coherence within the extracted network

– a general property of the vascular network. More complex local properties

of a structural network, however, can be described by network motifs [21, 22].

Network motifs are frequently recurring subgraphs, also called building blocks,

that are characteristic for a type of network, such as bifurcations in vascular45

networks.

In this paper, we enforce local geometrical properties similar to Jiang et al. [17],

exploring the relevance of two basic motifs of vascular networks, i.e., the geo-

metrical properties of continuing segment pairs and of vessel bifurcations and50

following the idea of pruning of Türetken et al. [20]. We present a probabilistic

model which combines this geometric prior with local vessel evidence obtained

from a segmentation algorithm [8], and show that the maximum a posteriori

(MAP) estimate can be computed by an integer linear program (ILP). We learn

the global statistic of geometrical properties of the network motifs from a high55

resolution dataset. Finally, we identify a more efficient scheme to solve the

ILP for large datasets and illustrate its application for reconstructing vascular

networks from in-vivo µMRA images of the mouse brain.
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Figure 1: Workflow: In a first stage (gray box), the image volume I is processed so as to obtain

an overconnected graph Gover as well as a confidence measure for vessels such as the confidence

map P (I). In the following step, the network G∗ is extracted from Gover in an optimization

scheme that considers both image evidence (according to P (I)) and geometric-physiological

prior knowledge. In this paper, we focus on the network optimization step (blue), where both

image evidence and geometrical relationships of certain network motifs, namely continuing

pairs and bifurcations are considered.

2. Methods

In this section, we detail on the proposed vessel network extraction method60

that estimates the most probable network under consideration of image evidence

and physiological prior knowledge. As depicted in the workflow (Fig. 1), this

method starts from an overconnected network graph Gover. Hence, we briefly

review the applied segmentation framework and skeletonization method as used

in our experiments.65

2.1. Vessel Segmentation Method and Construction of the Overconnected Graph

As a first stage, we transform image intensities into confidence maps by

using the framework of Schneider et al. [23, 8]: In this approach, multiscale

steerable filter templates (SFT) are used as efficient directional filters, offering

features that are invariant with respect to the local vessel direction. An oblique70

random forest (RF) [24], which determines splits by solving a linear regression

with elastic net penalty in each node, is used for a subsequent classification.

The RF assigns each voxel v in an image volume I to a probability pv ∈ [0, 1],

indicating the local presence of a vessel-like structure.
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We apply a threshold θ to the probability volume P (I) and skeletonize the75

resulting binary volume using distance-ordered homotopic thinning (DOHT) [9],

a method that iteratively removes voxels without altering the objects topology,

to derive a network graph G(θ). We obtain an overconnected network by gen-

erating multiple binary segmentations from P (I) with different thresholds {θi},

skeletonizing each of them by DOHT to G(θi) and superposing them into one80

network Gover({θi}). The resulting network contains both segments with low

confidence (contributed by graphs from low thresholds θ close to 0), but main-

tains the high spatial accuracy of a graph that is generated from conservative

thresholds (i.e., with θ close to 1). Note, however, that any method which gen-

erates an overconnected graph Gover by proposing local vessel connections could85

be used instead.

2.2. Vessel Network Extraction

The goal of our method is to find the most plausible network G∗ out of an

overconnected network graph Gover = (V,E) with edges E = {ei} and given im-

age evidence P (I). We encode subgraphs of Gover with a set of binary variables90

X = {xi} where each xi indicates whether or not the corresponding segment

ei ∈ E is active (i.e. xi = 1). Therefore, we arrive at the equivalent problem of

determining the MAP estimate of x ∈ {0, 1}|E|, for which we describe a prob-

abilistic model (Sect. 2.2.1) that considers image evidence, local properties of

specific network motifs as well as global connectivity, and derive an ILP that95

allows computing the MAP network (Sect. 2.2.2).

2.2.1. Probabilistic Model

We formulate a probabilistic model P (X = x,Ω|I,G) according to Fig. 2,

where I is the image evidence, G is the given (overconnected) graph and X is

the set of binary variables denoting subgraphs of G. Ω is the set of all feasible

solutions of x:

Ω = {x ∈ {0, 1}|E| : Ax ≥ b} , (1)
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Figure 2: Probabilistic model. I: Image; G: (overconnected) Graph; X: Set of binary

variables denoting subgraphs of G; Ω: Set of feasible configurations of x.

with Ax ≥ b being the short notation for all hard constraints that will be

considered such as those enforcing connectivity. This introduces a probabilistic

interpretation, as in [25], of the hard constraints that we impose on the extracted100

networks.

According to the given probabilistic model in Fig. 2, we arrive at the poste-

rior distribution for x:

P (X = x|I,G,Ω) ∝ P (Ω|X = x)P (X = x|I,G) . (2)

Next, we model P (X = x|I,G) as a Markov random field (MRF):

P (X = x|I,G) =
1

Z

∏
xi∈X

φi (xi; I,G)
α
∏

xi,xj∈X:

ei,ej adjacent

6∃ek adjacent to ei∧ej

φi,j (xi, xj ; I,G)
∏

xi,xj,xk∈X:

ei,ej ,ek adjacent

φi,j,k (xi, xj , xk; I,G) ,

(3)

where Z is the partition function and φ (.) are the potentials, which are defined

in the following. α > 0 is a parameter to adapt the trade-off between unary and

higher order potentials. For each segment represented by xi, we set the unary

potential:

φi (xi; I,G) =

P (xi = 1|Ii, Ei) if xi = 1 ,

P (xi = 0|Ii, Ei) otherwise ,

(4)

where P (xi = 1|Ii, Ei) can be understood as image evidence that the segment

xi is part of the underlying vasculature and a valid segment of the network. The

higher-order potentials are chosen as:

φi,j (xi, xj ; I,G) =

pC,ij if xixj = 1 ,

pT otherwise ,

(5)
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and

φi,j,k (xi, xj , xk; I,G) =


pB,ijk if xixjxk = 1 ,

pC,ij if xixj = 1 ∧ xixjxk = 0 ,

pT otherwise .

(6)

where pC,ij is the likelihood of ei continuing in ej , pB,ijk the likelihood of a

bifurcation involving ei, ej and ek, and pT represents the possibility that neither

of them occur and the vessel terminates. Note that both binary and ternary

potentials in (3) account for the relationships of multiple segments, hence we105

can split P (X = x|I,G) into a pure image evidence term – containing only the

unary potentials φi (.) – and a prior term consisting of both φi,j (.) and φi,j,k (.).

2.2.2. Maximum A Posteriori Estimation by Integer Programming.

So far, we translated the problem of finding the most plausible subnetwork

in Gover into determining the MAP estimate x∗ of (2):

x∗ = arg max
x∈X

P (X = x|I,G,Ω) = arg max
x∈X

P (Ω|X = x)P (X = x|I,G) , (7)

where X = {0, 1}|E| is the set of all configurations of x. In the following, we are

going to derive an ILP to determine x∗. We start by specifying the likelihood

P (Ω|X = x) to be equal for all feasible x and 0 else, i.e.

P (Ω|X = x) ∝

1 if x ∈ Ω ,

0 otherwise .

(8)

Applying this definition leads to:

x∗ = arg max
x∈X

P (Ω|X = x)P (X = x|I,G) (9)

= arg max
x∈Ω

P (X = x|I,G) . (10)

From (10), the definition of the MRF (3), its potentials (4) to (6) and the fact

that each pseudo-boolean function has a unique multilinear polynomial form, it
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follows that the MAP estimate x∗ takes the form of the integer program:

min
x

J(x) = α
∑
xi∈X

wixi +
∑

xi,xj∈X:

ei,ej adjacent

wijxixj +
∑

xi,xj,xk∈X:

ei,ej ,ek adjacent

wijkxixjxk , (11)

s.t. Ax ≥ b , (12)

xi ∈ {0, 1} ∀xi ∈ X , (13)

with the weights wi, wij and wijk derived as

wi = − log
P (xi = 1|Ii, Ei)
P (xi = 0|Ii, Ei)

, (14)

wij = − log
pC,ij
pT

, (15)

wijk = − log
pB,ijkp

2
T

pC,ijpC,ikpC,jk
. (16)

The derivation is given in the appendix.

2.2.3. Computing the Weights110

Image Evidence. The weights derived from the unary potentials of the MRF

allow us to account for image evidence observed for each segment represented

by xi separately. To infer P (xi = 1|Ii, Ei) from the image evidence, we average

the probabilistic output pv of the classification along voxels v assigned to the

segment ei. We define P (xi = 1|Ii, Ei) = pi and compute:

wi = − log
pi

1− pi
. (17)

Geometric Prior. As depicted in Fig. 3, we consider two network motifs and

weight them accordingly with the derived wij and wijk. In order to compute

these, we evaluate angles between the involved segments – denoted with γij and

γijk (cf. Fig. 3c) – under consideration of their estimated radii and define:

wij = − log
pC,ij
pT

= − log
P (γij |continue,Θ)P (continue|Θ)

P (γij |terminate,Θ)P (terminate|Θ)
, (18)

wijk = − log
pB,ijkp

2
T

pC,ijpC,ikpC,jk
(19)

= − log
P (γijk|branch,Θ)P (branch|Θ)P (terminate|Θ)

2∏
(i′,j′)∈2{i,j,k} P (γi′j′ |continue,Θ)P (continue|Θ)

, (20)
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Figure 3: Illustration of network motifs that are considered by the physiological model and

the variables at a potential bifurcation. a) Pairs of continuing segments and b) triplets that

form a bifurcation (illustrated in red). c) Variables at a potential bifurcation: Segments, e.g.

xi, are drawn as solid black lines, while a pairwise variable yij that represents xi continuing in

xj is depicted by the dark grey overlay (yik and yjk are omitted for clarity). zijk corresponds

to all three adjacent edges in the bifurcation (light grey). Furthermore, both deviation angles

γd (blue) and the inner angle γin (red) are shown. Radii are estimated perpendicular to the

edge direction. In our experiments, we consider geometric features γijk = (γin, γd1, γd2)ijk

for bifurcations and γij = (γd)ij for continuing segments, while radius estimates are used to

determine the main trunk.

where Θ is the parametric model that encodes physiologically realistic geometric

properties of the network motifs in terms of distributions over the considered

geometric features γij and γijk. The probabilities pC,ij , pB,ijk and pT originate

from the definitions in (5) and (6). In this case, P (γij |continue,Θ) describes

the likelihood of observing angle γij in a continuing pair, and P (continue|Θ) is115

the prior on how frequent continuing pairs occur. We will discuss the choice of

such a model Θ in our experiments (Sect. 3.3) where we fit them to evidence

from high-resolution network data.

2.2.4. Global Connectivity

An essential aspect when extracting vascular networks from noisy or incom-

plete data is to enforce connectivity between the observed components in the

network. In our approach, we enforce this property by hard constraints:∑
xi∈M

xi < |M |+
∑
xj∈N

xj ∀M ⊂ X \ xseed , (21)
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where M is a set of connected segments and N its neighbourhood. In other120

words, a subset M of segments that form one connected structure can only

be active, if there is an incoming segment (or it is adjacent to the seed). As

there are exponentially many constraints, we follow a lazy constraint generation

approach and iteratively add those which are required (cf. Sect. 2.2.6).

2.2.5. Linear Formulation125

We note that the integer program in (11) contains second and third order

relations between variables. To deal with these, we exploit the binary nature

of the variables xi and introduce additional auxiliary variables Y = {yij} and

Z = {zijk} to substitute these products (xixj and xixjxk) in the objective. A set

of linear constraints ties the auxiliary variables to the corresponding indicator

variables {xi} such that yij = xixj and zijk = xixjxk holds for all feasible

solutions:

yij ≤ x ∀x ∈ {xi, xj},∀yij ∈ Y , (22)

yij ≥ xi + xj − 1 ∀yij ∈ Y , (23)

zijk ≤ x ∀x ∈ {xi, xj , xk},∀zijk ∈ Z , (24)

zijk ≥ xi + xj + xk − 2 ∀zijk ∈ Z , (25)

which leads to the ILP:

J(x,y, z) = α
∑
xi∈X

wixi +
∑
yij∈Y

wijyij +
∑

zijk∈Z
wijkzijk , (26)

s.t. A′(x,y, z) ≥ b′ , (27)

xi ∈ {0, 1} ∀xi ∈ X , (28)

yij ∈ {0, 1} ∀yij ∈ Y , (29)

zijk ∈ {0, 1} ∀zijk ∈ Z , (30)

where we summarized the constraints (22) to (25) together with (12) in (27).

(x,y, z) is the concatenation of all binary variables to a column vector of all

variables. We can solve the linear problem of (26) by a branch and cut algorithm

implemented in libraries such as [28].
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2.2.6. Solving the Integer Programming Problem for Large Datasets130

The described integer programming problem of (26) with the associated

constraints grows quickly for large graphs that result from whole brain scans. To

tackle this problem, we propose to employ a lazy constraint generation scheme

together with the following approach:

1. Given the variable set X of the ILP, define a graph A = (VA, EA) with a135

vertex vi ∈ VA for every xi ∈ X.

2. Add an edge eij to EA if and only if there exists a constraint that contains

both variables xi and xj .

3. Determine the connected components in A. Vertices of each connected

component represent a sub-problem that can be solved independently – of140

course with their according constraints.

Whenever a constraint or variable is added, we adjust the graph A dynami-

cally. Then only sub-problems – i.e. variable sets represented by connected

components of A that are affected by the change – need to be solved, speeding

up the performance over approaches that solve the complete problem in every145

run. Lazy constraint generation is a known concept in integer programming,

which was, for example, already applied to the famous travelling salesman prob-

lem [26], whereas the dynamic sub-problem handling is novelty of our approach.

Employing this scheme does not deteriorate the solutions quality, that is its ob-

jective value in terms of the cost function J(.) in (11). However, the solution x∗150

is in general not unique and hence, solutions obtained from different optimizers

are not necessarily identical in terms of the network that they encode.

3. Experiments

3.1. Image Data

We use four 3-D in-vivo µMRA images of the mouse brain, each of size155

248 px× 248 px× 109 px with an isotropic voxel spacing of 60µm, and a micro

computed tomography (µCT) of a corrosion cast from the cerebral vasculature
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(a) (b)

Figure 4: (a) Example slice of a whole-brain µMRA dataset, (b) Central slice of the corrosion

cast µCT with a magnified subregion (right). All images are gray-scale inverted and the blue

scalebar is 1 mm.

of a mouse brain with a volume of 2048 px × 2048 px × 3714 px and a spacing

of 2.9 µm. Both image data types are depicted in Fig. 4. All five datasets were

acquired from different animals with one acquisition protocol for all µMRA160

images. The µCT is downsampled by a factor of 2 for the subsequent steps.

3.2. Preprocessing: Vessel Segmentation and Graph Construction

We use the described vessel segmentation framework [23, 8] to obtain an

initial segmentation and to construct network graphs. Its parameters, such as

SFT order and scales as well as RF parameters, are adjusted in a leave-one-165

out cross-validation using manually annotated ground truth labels. Probability

maps P (I) are binarized for different thresholds θ and transformed into network

graphs using DOHT as discussed in Sect 2.1. We segment and track vessels in

both µMRA and the µCT volume. The non-overconnected results, obtained

from single thresholds {0.2, 0.5, 0.9}, – denoted as alternative below – serve as170

comparison in the experiments.

3.3. Training: Learning the Geometric Prior from the High Resolution Network

We use the geometrical prior to support bifurcations in our overconnected

graph that are valid with respect to their diameter and relative angle, and

to remove those that are not. To this end, we learn the relative frequencies175
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of radii and deviation angles of vessel segments from the high resolution µCT

(see Fig. 5b for observed angles). We find p(γij |continue,Θ) to be well repre-

sented by an exponential distribution (where γij is the deviation angle between

two continuing vessels), and p(γijk|branch,Θ) to be well approximated by a

multivariate Gaussian (where γijk are the three angles of a bifurcation) while180

Θ is the joint set of parameters of the two distribution models. Radius es-

timates are utilized to determine the main trunk in a bifurcation that serves

as the reference for the angles considered here. An illustration of the angles

calculated at every possible bifurcation is given in Fig. 3c. Furthermore, we es-

timate the relative frequencies of the discussed network motifs, P (continue|Θ),185

P (branch|Θ) and P (terminate|Θ). For this, we take into account that paths in

the high-resolution data (n-times higher spatial resolution) are more frequently

sampled due to the higher spatial resolution, while the number of bifurcation

points remains constant. Hence, for estimating P (continue|Θ), we normalize

the number of points sampled along paths by the resolution ratio n between190

high and low resolution datasets. Otherwise, P (continue|Θ) would be strongly

overestimated for the low-resolution data. Parameters Θ are fitted to the dis-

tributions observed in the µCT using the maximum likelihood estimate. The

fitted model is then used to determine weights wij and wijk as in (18) and (20).

Samples of favourable network motifs according to the learned distributions are195

depicted in red in Fig. 5c.

3.4. Application: Extracting Networks from Low Resolution µMRA Data

We generate an overconnected graph for each of the µMRA test sets using the

approach described in Sect. 2.1 with multiple thresholds θi ∈ {0.2, 0.5, 0.9}. We

select these three thresholds to obtain connections from high-recall (θ = 0.2),200

high-precision (θ = 0.9) and trade-off (θ = 0.5) binarizations. After optimiza-

tion (with α = 1 and a maximal αmax = α → ∞), we compare the extracted

network (opt) to networks obtained from individual thresholds θ = 0.2, 0.5 and

0.9 (alternative).

We present a sensitivity analysis of the α-parameter of our method in Fig. 6.205
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Figure 5: (a) Processed network of the corrosion cast µCT; see Fig. 4 for scale. (b) Angle

histograms computed on the extracted network of the corrosion cast dataset with inferred dis-

tributions (solid). Shown are deviation angles of continuing segments (green), deviation (blue)

and inner (red) bifurcation angles (see Fig. 3c). (c) Favourable configurations of bifurcations

(red) according to the fitted model of the corrosion cast µCT.
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Figure 6: Sensitivity study on the weight parameter α performed on two µMRA datasets. The

parameter α has a limited impact with respect to the depicted scores. Averages are within

5.13 % and 5.45 % for relative vessel volume, 222 µm and 256µm average distance and 51.4 %

and 51.6 % Dice (cf. Fig. 8).

For large values of α, the image evidence is emphasized (the network is still

connected), while choosing a small value of α prioritizes geometric weights. Al-

though varying α has limited impact on the scores that we calculate for our test

data, it is recommendable for other problems to determine the most suitable α

depending on the previously applied processing, namely the segmentation and210

overconnection stage. If the data to be processed is expected to contain mal-

formations that are known to form atypical bifurcations, then it would not be

advisable to choose α < 1, unless the prior model had been adapted accord-

ingly. In the following experiments, we will set α = 1 per default and compute

results with αmax – i.e. maximum emphasis on the image evidence term – for215

comparison.

Figure 7a shows an optimized network, while Fig. 7b-c provides close-up

views before and after optimization, respectively. A number of spurious sprouts

and loops are visible that are removed during the process. Details in Fig. 7d-

g show differences between the two thresholded and an optimized network.220

We find that both thresholded networks (Fig. 7e-f) lose the connection of the

large branch (center to top-right), while it is retained in the optimized network

(Fig. 7g).

Figure 8 reports quantitative measures of global network properties, such
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as relative vessel volume, average distance to the next vessel (i.e. extravascu-225

lar distance) and Dice score. We calculate both relative vessel volume and the

extravascular distance over a manually annotated brain mask of 360 mm3. In

order to compute Dice scores, we rasterize the networks using a tubular model

of circular shape and compare them with voxel-grained annotations that were

obtained manually on a set of selected slices along each direction. As a conse-230

quence of this rasterization, inaccuracies on the voxel level are introduced that

negatively affect absolute values of the Dice score, which is already very sensitive

for thin structures such as vessels. Note, however, that all compared strategies

are affected by this to the same degree. We find the optimized network (opt,

α = 1) to always group with the more favourable of the alternative, which is a235

low vessel volume, a moderate, i.e. neither too small nor too large, extravas-

cular distance and a high Dice score, while each of the alternative approaches

provides poor results in at least one of these scores. The relative vessel volumes

vary between 5.2 % and 6.5 % for our datasets, while [27] reported values from

3.6 % to 4.2 % and also observed some inter-subject variability. Comparing the240

result of our optimization with parameter α = 1 and the maximal choice of

αmax, we observe that both relative vessel volume and Dice score vary only

slightly, while the average distance increases when using αmax, hence resulting

in networks with a decreased vascular density. While the results support the as-

sumption that combining image evidence with geometric prior benefits network245

extraction, it will require analysis on more extensive databases to quantify the

methods robustness in presence of specific pathologies and malformations.

Comparing the processing time of the proposed solver (Sect. 2.2.6) and a

standard method (IBM ILOG CPLEX V12.51 [28]) as reported in Table 1, we

find that our approach of handling subproblems during the optimization leads250

to an improvement: runtimes (one run each, on a quadcore CPU, 32 GB RAM)

were shorter in three out of four cases, whereas the standard method took

between 44 % and 107 % longer. We find that absolute run times may vary

widely depending on the size of the overconnected graph and its connectedness

as well as parametrization due to the dynamic processing scheme. For those255
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Dataset # 1 # 2 # 3 # 4

tilpcc 2060.6 186.0 18.6 8.8

tcplex 2958.6 385.0 31.6 8.7

tcplex−tilpcc

tilpcc
0.44 1.07 0.70 -0.01

Table 1: Runtimes in minutes on different µMRA datesets for our proposed solving scheme

(tilpcc) and an off-the-shelf solver (tcplex). We observe that our method is faster as the off-

the-shelf solver in the majority of cases.

two datasets that run much longer (# 1 and # 2), we observe that the number

of removed segments is two to three times higher than for the two others, while

the resulting, optimized networks describe all a very similar vascular volume (as

seen in Fig. 8). We attribute this to a situation where the overconnection scheme

is not as efficient as for the two latter datasets and a high number of connections260

has to be discarded in the regularization. The relative runtimes indicate that

the approach of partitioning the ILP into independent subproblems yields larger

gains on datasets which required more iterations in the constraint generation,

i.e. had longer absolute runtimes.

4. Conclusions1
265

We have introduced a probabilistic approach for extracting vessel networks

and we can compute the MAP estimate efficiently by solving an ILP. We learned

physiological-geometric properties considered in the probabilistic model from

a high-resolution corrosion cast µCT of a murine cerebrovascular network and

applied it to low-resolution, in-vivo µMRA images, leading to superior extracted270

networks in terms of macroscopic measures.

Our method can be applied as post-processing step to existing vessel segmen-

tation pipelines in order to incorporate physiological knowledge for improved

1A version of our optimization code will become available from:

http://ibbm.in.tum.de/software
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(a)

(b) (c)

(d) (e) (f) (g)

Figure 7: Visualisation of the results. (a) Rendered vascular network extracted with our

method (opt, α = 1) (b) Detail view before and (c) after optimization. Colours change with

vessel diameter. (d) Raw image. (e) Rasterized DOHT network θ = 0.5 and (f) with θ = 0.9.

(g) Postprocessed network with our method. Note that for the rasterization, a simple tube

model is used and therefore, not a perfect voxel-grained segmentation is to be expected but

rather a qualitative visualization that indicates whether or not a structure is present in the

network model (shown as red overlay).
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Figure 8: Comparison between the optimized networks (opt) with α = 1, αmax = α→ ∞ and

simple networks obtained at thresholds θ = 0.2, 0.5 and 0.9 (alternative: low = 0.2, mid = 0.5,

high = 0.9). Boxplots (median in red, mean as ?) depict the statistics on all four µMRA

datasets. The gradients (green) to the right of both plots of physiological scores indicate

physiologically plausible ranges (cf. [27]). The Dice score has been computed by comparing

voxel-wise annotations with the rasterized the networks using a simple tube model (negatively

affecting absolute Dice values for all approaches to the same degree). Our regularization (opt,

α = 1) always groups with the more favourable of the alternatives, i.e. it has a small vessel

volume, a moderate average distance and yet an acceptable high Dice score.

network extraction. As such, it can be combined with other graph generation

methods that are potentially able to overconnect the graph, such as discussed275

in [15, 16]. It can be used with any other geometrical-physiological prior knowl-

edge about properties, for example considering vessel shape, length, curvature

and flow direction, or a non-parametric learning as in [14]. Even a spatially-

variant prior could be designed and incorporated to address different vascular

properties in certain areas, similar to the parametric maps used for latent classes280

in [29, 30]. Furthermore, higher-order network motifs that occur frequently in

vasculature could be included into the prior model in the same way as bifurca-

tions. It should be noted, however, that increasing the complexity of the prior

model would likely require a larger database for training.

For future studies, it would be interesting to assess the robustness of the285

approach with respect to specific pathologies and abnormalities in the vascular

network. Another direction could be the extension of the algorithm to jointly
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infer a subject-specific parametrization of the physiological model and predict

the underlying network.
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Appendix

In Sect. 2.2.2, we found that the MAP estimate x∗ is given by

x∗ = arg max
x∈Ω

P (X = x|I,G) . (31)

Here, we are going to derive the cost function from the definition of the MRF (3).

We start by using the definitions of the potential functions φ (.), (4) to (6), in
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the logarithm of P (X = x|I,G):

logP (X = x|I,G) ∝

α
∑
xi∈X

log
(
P (xi = 1|Ii, Ei)xi P (xi = 0|Ii, Ei)1−xi

)
+
∑

xi,xj∈X:

ei,ej adjacent

6∃ek adjacent to ei∧ej

log
(
p
xixj

C,ij p
1−xixj

T

)

+
∑

xi,xj,xk∈X:

ei,ej ,ek adjacent

log

pxixjxk

B,ijk p
(1−xi)(1−xj)(1−xk)
T

∏
(i′,j′)∈S

p
xi′xj′−xixjxk

C,i′j′

 (32)

=α
∑
xi∈X

xi log
P (xi = 1|Ii, Ei)
P (xi = 0|Ii, Ei)

+ logP (xi = 0|I) +
∑

xi,xj∈X:

ei,ej adjacent

6∃ek adjacent to ei∧ej

xixj log
pC,ij
pT

+ log pT

+
∑

xi,xj,xk∈X:

ei,ej ,ek adjacent

xixjxk log
pB,ijkp

2
T∏

(i′,j′)∈S pC,i′j′
+

∑
(i′,j′)∈S

(
xi′xj′ log

pC,i′,j′

pT

)
+ log pT

 ,

(33)

where we applied multilinear representations for pseudo-boolean functions and

S is the set of pairs out of {i, j, k}, i.e. S = 2{i,j,k}. Discarding the constant

terms, rearranging the pairwise terms originating from the ternary potentials

and merging them with the uniquely pairwise terms – which generates per def-

inition no doubles – then leads to

logP (X = x|I,G) ∝

α
∑
xi∈X

xi log
P (xi = 1|Ii, Ei)
P (xi = 0|Ii, Ei)

+
∑

xi,xj∈X:

ei,ej adjacent

xixj log
pC,ij
pT

(34)

+
∑

xi,xj,xk∈X:

ei,ej ,ek adjacent

xixjxk log
pB,ijkp

2
T

pC,ijpC,ikpC,jk
. (35)
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Finally, taking the negative logarithm turns the maximization into a minimiza-

tion:

x∗ = arg min
x∈Ω

− logP (X = x|I,G) (36)

= arg min
x∈Ω

α
∑
xi∈X

− log
P (xi = 1|Ii, Ei)
P (xi = 0|Ii, Ei)

xi +
∑

xi,xj∈X:

ei,ej adjacent

− log
pC,ij
pT

xixj (37)

+
∑

xi,xj,xk∈X:

ei,ej ,ek adjacent

− log
pB,ijkp

2
T

pC,ijpC,ikpC,jk
xixjxk , (38)

which is equivalent to the integer program:

min
x

J(x) = α
∑
xi∈X

wixi +
∑

xi,xj∈X:

ei,ej adjacent

wijxixj +
∑

xi,xj,xk∈X:

ei,ej ,ek adjacent

wijkxixjxk , (39)

s.t. Ax ≥ b , (40)

xi ∈ {0, 1} ∀xi ∈ X , (41)

with the weights given as:

wi = − log
P (xi = 1|Ii, Ei)
P (xi = 0|Ii, Ei)

, (42)

wij = − log
pC,ij
pT

, (43)

wijk = − log
pB,ijkp

2
T

pC,ijpC,ikpC,jk
. (44)
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vessel segmentation and centerline extraction using oblique hough forests

with steerable filters, Medical Image Analysis, in press.

[9] C. Pudney, Distance-ordered homotopic thinning: a skeletonization algo-

rithm for 3D digital images, Computer Vision and Image Understanding330

72 (3) (1998) 404–413.

[10] T. Lee, R. Kashyap, C. Chu, Building skeleton models via 3-D medial

surface axis thinning algorithms, CVGIP: Graphical Models and Image

Processing 56.6 (1994) 462–478.

[11] L. D. Cohen, R. Kimmel, Global Minimum for Active Contour Models : A335

Minimal Path Approach, International Journal of Computer Vision 24 (1)

(1997) 57–78.

23



[12] F. Benmansour, L. D. Cohen, Tubular structure segmentation based on

minimal path method and anisotropic enhancement, International Journal

of Computer Vision 92 (2) (2011) 192–210.340
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