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Abstract. We introduce an integer programming-based approach to vessel net-
work extraction that enforces global physiological constraints on the vessel struc-
ture and learn this prior from a high-resolution reference network. The method
accounts for both image evidence and geometric relationships between vessels
by formulating and solving an integer programming problem. Starting from an
over-connected network, it is pruning vessel stumps and spurious connections
by evaluating bifurcation angle and connectivity of the graph. We utilize a high-
resolution micro computed tomography (µCT) dataset of a cerebrovascular corro-
sion cast to obtain a reference network, perform experiments on micro magnetic
resonance angiography (µMRA) images of mouse brains and discuss properties
of the networks obtained under different tracking and pruning approaches.

1 Introduction

Many diseases affect general properties of the cerebrovascular network, examples are
arteriosclerosis and dilative vascular malformations changing vessel shape and diame-
ter, but also Alzheimer’s and related neuro-degenerative diseases that are suspected to
affect the general vascularity and global network properties [1, 2]. While segmenting
and tracing tubular structures is a longstanding field of interest in medical image com-
puting [3–6], we approach here the wider – and somewhat neglected [7] – problem of
extracting the full vascular network from image volumes under consideration of global
geometric properties of the vascular structure.

Most vessel segmentation techniques rely on tubularity measures, e.g. [3], or other
vessel enhancement filters, and further apply rule-based or learned decision algorithms
to segment the vessels [5, 6, 8]. Usually, networks are extracted from the binary seg-
mentations using morphological operators [9, 10], or by tracking vessels directly for
which various methods have been proposed (as extensively reviewed in [5, 6]). Ex-
tracted structures often need to be further processed depending on the final application:
Lu et al. [11], for example, proposed a supervised approach to vessel-structure pars-
ing that included local geometrical features. Kaufhold et al. [12] discussed gap filling



and pruning whereas Schneider et al. [13] recently proposed a generative approach to
deal with imperfections in vascular connectivity of extracted networks. While segmen-
tation algorithms are likely to enforce expected local vessel shape and geometry, only
few approaches consider global physiological properties of the network when extract-
ing the full network: Jiang et al. [14] incorporated assumptions about vessel diame-
ters (Murray’s hypothesis) in a global optimization problem for vascular trees. Here,
Türetken et al. [15] introduced an integer programming approach that evaluates ge-
ometrical properties of curvilinear structures. Starting from an over-connected graph,
they are pruning edges that do not fulfill desired structural relationships of neighbour-
ing segments using a classifier that is trained from annotated 3-D networks (requiring
manual annotation of both true positive and false positive connections).

In this paper, we enforce global geometrical constraints similar to Jiang et al. [14],
but follow the inference approach by Türetken et al. [15]. We combine the global ge-
ometric prior with a local vessel segmentation algorithm [8] – i.e., we do not have to
design individual classifiers for each geometrical constraint, but simply learn the global
statistic of desired geometrical properties of the network from a high resolution dataset
– and are able to trade local image evidence with global geometric properties as well as
network connectivity. Identifying a new and more efficient scheme for the integer pro-
gramming problem, we can now scale it to large datasets and illustrate its application
for delineating vessels in µMRA images of the murine brain.

2 Methods

Segmentation Method. We transform image intensities into confidence maps by using
the framework of Scheider et al. [8]: In this approach, multiscale steerable filter tem-
plates (SFT) are used as efficient directional filters, offering features that are invariant
with respect to the local vessel direction. An oblique random forest (RF), which deter-
mines splits by solving a linear regression with elastic net penalty in each node, is used
for a subsequent classification indicating the local presence of a vessel-like structure.
The RF assigns each voxel v in an image volume I to a probability pv ∈ [0, 1]. We apply
a threshold θ to the probability volume P (I) and skeletonize the resulting binary vol-
ume using distance-ordered homotopic thinning (DOHT) [9], a method that iteratively
removes voxels without altering the objects topology, to derive a network graph G(θ).

We obtain an over-connected network by generating multiple binary segmentations
from P (I) with different thresholds {θi}, skeletonizing each of them by DOHT to
G(θi) and superposing them into one network Gover({θi}). The resulting network con-
tains both segments with low confidence (contributed by graphs from low thresholds θ
close to 0), but maintains the high spatial accuracy of a graph that is generated from
conservative thresholds (i.e., with θ close to 1).

Vessel Network Regularization using Integer Programming. Our regularization
method starts with the over-connected vessel network graphGover = (V,E) with edges
E = {ei} and image evidence P (I). For every edge ei ∈ E, we introduce a binary vari-
able xi which indicates whether or not its corresponding edge is active (i.e. xi = 1).



We then attempt to determine the optimal configuration of x by solving an integer pro-
gramming problem. Our objective function J(x) to be minimized is formulated as:

J(x) = α
∑
xi∈X

wixi +
∑

xi,xj∈X:

ei,ej adjacent

wijxixj +
∑

xi,xj,xk∈X:

ei,ej ,ek adjacent

wijkxixjxk , (1)

where wi is the weight assigned to edge ei, wij the weight for adjacent pairs and wijk

for adjacent triplets. We identify the first sum – similar to [15] – as proportional to
the negative log-likelihood − logP (I,G|X = x) of observing image I and extracting
graphG given the underlying network represented by x. In the same sense, we interpret
the second and third term as geometric prior, − logP (X = x|Θ), where Θ is the
parameter set of the model encoding physiologically realistic geometric relationships
evaluating, for example, the plausibility of a bifurcation with the observed angle. The
optimal solution x∗ is obtained by trading image evidence with expected geometric
shape of a vessel network, a trade-off that can also be adjusted using parameter α > 0.

The optimization objective in (1) contains second and third order relations between
variables. To deal with these, we introduce auxiliary binary variables Y = {yij} and
Z = {zijk} to substitute second and third order terms in the objective. A set of linear
constraints ties these auxiliary variables to the corresponding indicator variables {xi},
leading to the following problem:

J(x,y, z) = α
∑
xi∈X

wixi +
∑

yij∈Y

wijyij +
∑

zijk∈Z

wijkzijk , (2)

s.t. yij ≤ x ∀x ∈ {xi, xj},∀yij ∈ Y , (3)
yij ≥ xi + xj − 1 ∀yij ∈ Y , (4)
zijk ≤ x ∀x ∈ {xi, xj , xk},∀zijk ∈ Z , (5)
zijk ≥ xi + xj + xk − 2 ∀zijk ∈ Z . (6)

For the image evidence term in (1) we identify the weights wi with log likelihood
ratios based on image evidence for edge ei corresponding to xi:

wi = − log
P (xi = 1|Ii)
P (xi = 0|Ii)

= − log
pi

1− pi
, (7)

where we set P (xi = 1|Ii) = pi, the local confidence obtained by averaging along ei in
the image evidence P (I) obtained from the RF. For the auxiliary variables Y and Z of
the geometric constraints – that we associate with the two states continue (⇒ yij = 1)
and branch (⇔ zijk = 1) – we identify weights wij and wijk that penalize or reward
continuing or branching segments depending on their topological relationship. We set:

wij = − log
P (yij = 1|Θ)

P (yij = 0|Θ)
, (8)

wijk = − log
P (zijk = 1|Θ)

P (zijk = 0|Θ)
− wij − wik − wjk , (9)

where we determine P (yij = 1|Θ) = P (continue|γij ,Θ) and P (zijk = 1|Θ) =
P (branch|γijk,Θ) according to the model Θ and the geometric features γ. The de-
nominator may be modeled accordingly or be replaced by a tuning parameter.



Fig. 1. Example of variables at a potential bifurcation. Segments,
e.g. xi, are drawn as solid black lines, while a pairwise vari-
able yij that represents xi continuing in xj is depicted by the
dark grey overlay (yik, yjk are omitted for clarity). zijk corre-
sponds to all three adjacent edges in the bifurcation (light grey).
Furthermore, both deviation angles γd (blue) and the inner an-
gle γin (red) are shown. Radii are estimated perpendicular to the
edge direction. In our experiments, we consider geometric features
γijk = (γin, γd1, γd2)ijk for bifurcations and γij = (γd)ij for
continuing segments, while radius estimates are used to determine
the main trunk.
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Solving the Integer Programming Problem for Large Datasets. The described inte-
ger programming problem of (2) with the associated constraints can be approximated by
a branch and cut algorithm implemented in libraries such as [16]. However, the optimal
solution to this problem is not necessarily a plausible vessel network yet and connec-
tivity constraints might be required. Since both auxiliary variables and constraints grow
quickly in number for larger graphs, such as to be expected from a complete brain scan,
we propose to employ a lazy constraint generation scheme, i.e. only add necessary con-
straints in an iterative manner, together with the following approach:

1. Given the variable set X of (1), we define a graph A = (VA, EA) with a vertex
vi ∈ VA for every xi ∈ X .

2. An edge eij is added to EA if and only if there exists a constraint that contains both
variables xi and xj .

3. Determine the connected components in A. Vertices of each connected component
represent a sub-problem that can be solved independently – of course with their
according constraints.

Whenever a constraint or variable is added, we adjust this structure dynamically. Then
only sub-problems, i.e. connected components, that are affected by the change need to
be re-solved (e.g. by a standard solver) speeding up the performance over approaches
that solve the complete problem in every run.

3 Experiments

Image Data and Preprocessing. We use four 3-D µMRA images of the murine brain
of size 248 px× 248 px× 109 px with an isotropic voxel spacing of 60 µm, and a cor-
rosion cast µCT of the cerebral vessel network of a mouse with a volume of 1024 px ×
1024 px × 1857 px voxels, with a spacing of 5.8 µm.

We apply the segmentation framework of Schneider et al. [8], adjusting filter tem-
plate order and scales as well as random forest parameters in a leave-one-out cross-
validation using manually annotated ground truth labels. Probability maps P (I) are
binarized for different thresholds θ and transformed into network graphs using DOHT
as discussed above. We segment and track vessels in both µMRA and the µCT volume.
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Fig. 2. (a) Example of a whole-brain µMRA dataset (gray-scale inverted), (b) corrosion cast µCT
subregion of 256 px × 256 px, (c) angle histograms computed on the extracted network of the
corrosion cast dataset with inferred distributions (solid). Shown are deviation angles of continuing
segments (green), deviation (blue) and inner (red) bifurcation angles (see Fig. 1).

Training: Learning the Geometric Model from the High Resolution Network. We
use the geometrical prior to support bifurcations in our over-connected graph that are
valid with respect to their diameter and relative angle, and remove those that are not. To
this end, we learn the relative frequencies of radii and deviation angles of vessel seg-
ments from the high resolution µCT (see Fig. 2c for angles). We find p(γ|continue,Θ)
to be well represented by an exponential distribution (where γ is the deviation an-
gle between two continuing vessels), and p(γ|branch,Θ) to be well represented by
a Gaussian (where γ are the three angles of a bifurcation) while Θ is the joint set of
parameters of the two distribution models. Radius estimates are utilized to determine
which vessel is the main trunk in a bifurcation and the reference for the angles consid-
ered here. The model is utilized to determine weights wij and wijk as in (8) and (9)
with the help of Bayes’ formula, and assuming a uniform prior on P (continue) and
P (branch). For the weights’ denominator, we use a uniform distribution for pairs (i.e.
P (γ|¬continue) ∼ U(γ)) and model P (γ|¬branch), for bifurcations, by the probabil-
ity of any involved pair being continuing. Parameters Θ are fitted to the distributions
observed in the µCT using the maximum likelihood estimate.

Experiment: Trading Image Evidence with Geometrical Prior. In Fig. 3, the be-
haviour of our regularization method with varying weight parameter α is shown. For
large values of α, the image evidence is emphasised (the network is still connected),
while choosing a small value of α puts more emphasis on geometric weights. Although
varying α has no large impact in our case, it may be advisable for other problems to
determine the most suitable α depending on the previously applied processing.

Experiment: Applying the Network Model to Low Resolution µMRA Data. We
generate an over-connected graph for each of the µMRA test sets using the approach
described in Sect. 2 with multiple thresholds θi ∈ {0.2, 0.5, 0.9}. After removing un-
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Fig. 3. Sensitivity study on the weight parameter α performed on two µMRA datasets. The param-
eter α has a limited impact with respect to the depicted scores. Averages are within 5.16% and
5.37% for relative vessel volume, 236 µm and 251 µm average distance and 50.8% and 51.6%
Dice.

physiological nodes and edges, we compare the regularized network to unregularized
networks obtained from individual thresholds θ = 0.2, 0.5 and 0.9.

Figure 4a shows a regularized network, while Fig. 4b-c provides close-up views
before and after regularization, respectively. A number of spurious sprouts and loops
are visible that are removed during regularization. Details in Fig. 4d-g show differences
between the two thresholded and a regularized network. We note that both thresholded
networks (Fig. 4e-f) lose the connection of the large branch (center to top-right), while
it is retained in the regularized network (Fig. 4g).

Figure 5 reports quantitative measures of global network properties, such as total
vessel volume, average distance to the next vessel (i.e. extravascular distance) and Dice
score when rasterized (using a tubular model) and compared with voxel-based segmen-
tation labels. We find the regularized network to always group with the more favourable
of the alternative, which is a low vessel volume, a moderate, i.e. neither too small nor
too large, extravascular distance and a high Dice score, while each of the alternative
approaches provides poor results in at least one of these scores.

Experiment: Scaling to Large Datasets. Comparing the processing time of the pro-
posed solver (Sect. 2) and a standard method (IBM ILOG CPLEX V12.51 [16]), we find
that our approach of handling subproblems during the optimization leads to an improve-
ment: average run times (on a quadcore CPU, 8 GB RAM, same set-up as in the previous
experiment) for 10 repeated runs on three test datasets were 25.0, 9.5, 34.9 [min] for
our approach, while the standard solver required 57.8%±0.39%, 56.1%±0.22% and
20.2%± 1.83% longer run times, respectively. Note that absolute run times may vary
widely depending on data and parametrization due to the dynamic processing scheme.

4 Conclusions

We have introduced a regularization method for vessel networks and presented exper-
iments on µMRA images where we learned the physiological-geometric prior from a
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Fig. 4. Visualisation of the results. (a) Rendered vascular network extracted with our method. (b)
Detail view before and (c) after regularization. Colours change with vessel diameter. (d) Raw
image. (e) Rasterized DOHT network θ = 0.5 and (f) with θ = 0.9. (g) Postprocessed network
with our method. Note that for the rasterization, a simple tube model is used and therefore, not
a perfect voxel-grained segmentation is to be expected but rather a qualitative visualization that
indicates whether or not a structure is present in the network model (shown as red overlay).
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Fig. 5. Comparison of the regularized network (reg) with unregularized networks obtained at
thresholds θ = 0.2, 0.5 and 0.9. Boxplots (median in red, mean as ?) depict the statistics on all
four µMRA datasets. The Dice score has been computed by rasterizing the network using a simple
tube model (negatively affecting absolute Dice values for all approaches to the same degree) and
comparing it to voxel-based segmentation labels. For this experiment, α = 1 was chosen. Our
regularization always groups with the more favourable of the alternatives, i.e. it has a small vessel
volume, a moderate average distance and yet an acceptable high Dice score.

high-resolution corrosion cast µCT of a murine cerebrovascular network. Our method
can be applied as post-processing step to existing vessel segmentation pipelines in order
to incorporate physiological knowledge for improved network extraction. It is easily ex-
tendable to other physiological prior, for example considering vessel shape, length, net-



work structure or prior learning as in [11], and it can also be combined with other geo-
metrical or physiological re- and over-connection schemes such as discussed in [12, 13].
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