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Fig. 1: (a) Most important parts of the Integrated Detection Network. (b) With the Integrated Detection Network, expressing
existing morphological relationship among anatomies is straightforward. In case of the fetal head, the pose of the Cerebellum
constrains the plane the Corpus Callosum is situated along.

ABSTRACT

The expanding role of complex object detection algorithms
introduces a need for flexible architectures that simplify inter-
facing with machine learning techniques and offer easy-to-use
training and detection procedures. To address this need, the
Integrated Detection Network (IDN) proposes a conceptual
design for rapid prototyping of object and boundary detec-
tion systems. The IDN uses a strong spatial prior present in
the medical imaging domain and a large annotated database
of images to train robust detectors. The best detection hy-
potheses are propagated throughout the detection network
using sequential sampling techniques. The effectiveness of
the IDN is demonstrated on two learning-based algorithms:
(1) automatic detection of fetal brain structures in ultrasound
volumes, and (2) liver boundary detection in MRI volumes.
Modifying the detection pipeline is simple and allows for im-
mediate adaptation to the variations of the desired algorithms.
Both systems achieved low detection error (3.09 and 4.20 mm
for two brain structures and 2.53 mm for boundary).

Index Terms— detection systems, discriminative learn-
ing, corpus callosum detection, cerebellum detection, liver
segmentation

Second and third author performed the work while at Siemens Corporate
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1. INTRODUCTION

In the recent years many accurate and domain-specific object
detection algorithms have been built around the well estab-
lished machine learning and pattern recognition techniques
[1, 2]. Often, these algorithms result in highly sophisticated
description of the detection systems that go well beyond de-
tecting single objects [3, 4, 5, 6]. In these cases, it becomes
challenging to manage large numbers of detectors, maintain
their training and detection pipelines, and navigate through
the parameter settings. In this paper, we propose a conceptual
framework, called Integrated Detection Network (IDN), that
enables efficient prototyping of large scale and robust systems
for object pose and boundary detection. In the IDN frame-
work the detection systems are decomposed into a network
of modules and the data associations between modules (Fig-
ure 2). This decomposition simplifies design, modification,
tuning, implementation, and encourages experimentation.

In large scale systems, it is often difficult to modify the
detection pipeline when a new theory is developed, additional
modules are included, or existing modules need to be rear-
ranged (Figure 4). In the medical imaging domain, these
changes are necessary to handle additional anatomical struc-
tures, different acquisition protocols, various types of patho-
logical cases, and imaging artifacts. Unless there is a clear
design concept, such modifications become cumbersome and



time consuming.
In this paper, we focus on two representative systems of

algorithms that account for complex spatial interdependen-
cies between objects and span applications of detection and
segmentation. In the first system, anatomical structure detec-
tion in 3D fetal ultrasound volumes, we propose modules for
detecting position, orientation, and scale at different resolu-
tions (Figure 4 and 5). The relationships are realized in terms
of hypothesized candidates for each detector. In the second
application, liver boundary detection in 3D MRI scans, we
propose modules for estimating an organ shape model. The
relationships are represented by PCA coefficients and a free
form organ boundary.

Both systems are built using a hierarchical learning-based
algorithm with one detector trained for each structure and a
resolution level. At the coarsest level, the search region is the
entire image. At each subsequent resolution level, the detec-
tor search region is defined by the image neighborhoods sur-
rounding the highest probability candidates from the previous
level. This way, the candidates are propagated and refined
throughout the detection network. IDN proposes a flexible
interface for re-arranging modules such that this refinement is
correctly handled for both training and detection.

In summary, the paper makes the following contributions:
(1) Conceptual framework for designing large scale detection
systems, (2) Formalism for propagating detection hypotheses
through the detection pipeline, (3) Algorithm and two differ-
ent pipelines for detecting cerebellum and corpus callosum
in fetal ultrasound volumes, and (4) Technique for detecting
liver boundary in 3D MRI scans.

2. BACKGROUND

The Integrated Detection Network (IDN) uses discriminative
learning techniques that rely on large database of annotated
images. It has been previously shown, that the localized de-
tectors can be improved by modeling interdependence of ob-
jects using contextual [3, 5] and semantic information [4].
The detectors are improved even further by exploiting the
strong prior information embedded in our domain of medical
images. In our approach, we detect multiple objects one-by-
one using sequential sampling techniques [6]. In the IDN de-
sign, these techniques are encapsulated into a common frame-
work for object and boundary detection.

The detection of fetal anatomical structures in ultrasound
images is complicated by the low quality of images that con-
tain speckle noise, shadows, blurry edges, and appearance
differences due to varying gestational age. These challenges
have been previously addressed by learning-based approaches
[7, 6] and by a multi-resolution hierarchy of detectors [6]. In
this paper, we will show how to refine the selection of the pose
estimation hierarchy by removing orientation and scale detec-
tors, when their models might be noisy (e.g. at coarser levels).
In addition, we apply the IDN to detect corpus callosum by

refining its predicted pose parameters from cerebellum. To
the best of our knowledge, this is the first time an automatic
method for detection and visualization of corpus callosum in
fetal brain ultrasound images has been proposed in literature.

Previously, there have been several techniques proposed
for the boundary detection of the liver (or liver segmentation)
in CT images [8]. The algorithms for MRI boundary detec-
tion have been based on graph cuts [9] and level sets [10]. The
design of these algorithms is complicated by high variation of
image intensities inside the liver parenchyma and neighbor-
ing structures [11]. In our approach, we use a learning-based
boundary detector that adapts to the differences of the images
in the training set and focuses on what is consistent.

3. MULTI-OBJECT DETECTION

Our detection algorithms are built using discriminative mod-
els trained from a large annotated database of medical images
(Section 3.1). In Section 3.2, we will describe how to use the
basic IDN blocks (modules and data) to build a detection net-
work. We will then focus on two specific networks: (1) IDN
for detecting anatomical structures in 3D ultrasound images
of fetal brain (Section 3.4) and (2) IDN for detecting bound-
ary of liver in 3D MRI scans (Section 3.5).

3.1. Hierarchical Detection Network (HDN)

In our multi-object detection systems, we adopt Hierarchi-
cal Detection Network (HDN) [6] that samples a sequential
order of probability distributions to obtain the best pose es-
timate of each object one by one. Let’s denote the pose pa-
rameters (position, orientation, and size) of the object t as
θt and the sequence of multiple object detections as θ0:t =
{θ0,θ1, . . . ,θt}. The set of observations (features) for object
t is denoted Vt, and the sequence as V0:t = {V0, V1, . . . , Vt}.
The multi-object detection problem is solved by recursively
applying prediction and update steps to obtain the posterior
distribution f(θ0:t|V0:t). The prediction step computes the
probability density of the state of the object t using the state
of the previous object, t− 1, and previous observations of all
objects up to t− 1:

f(θ0:t|V0:t−1) = f(θt|θ0:t−1)f(θ0:t−1|V0:t−1). (1)

When detecting object t, the observation Vt is used to com-
pute the estimate during the update step as:

f(θ0:t|V0:t) =
f(Vt|θt)f(θ0:t|V0:t−1)

f(Vt|V0:t−1)
, (2)

where f(Vt|V0:t−1) is the normalizing constant. The observa-
tion model is defined by a discriminative classifier (e.g. PBT
[2]):

f(Vt|θt) = f(yt = +1|θt, Vt), (3)



where the random variable y ∈ {−1,+1}, indicates the pres-
ence/absence of the object and f(yt = +1|θt, Vt) is posterior
probability of object presence at θt in Vt. The transition ker-
nel defines a pairwise dependency

f(θt|θ0:t−1) = f(θt|θj), j ∈ {0, 1, . . . , t− 1}. (4)

where f(θt|θ0:t−1) is a Gaussian distribution estimated from
the training data, and j indicates object precursor specified
using a prior knowledge or determined automatically [6].

3.2. IDN Abstraction Model

IDN is defined around a conceptually simple and minimal ab-
straction model: Modules perform an operation on the input
Data and produce zero or more output Data. The input (con-
sumption) and output (production) is realized through con-
necting Data objects to the input/output slots of a Module ob-
ject interface.

Module 1Data 1 Data 2

Fig. 2: The two fundamental building blocks of IDN are Data
(orange in all figures) and Modules (blue).

The network is a heterogenous combination of Mod-
ules and Data objects organized into directed acyclic graph
(DAG). The acyclic property is important to ensure that the
network is able to do self discovery of the connections and to
propagate certain signals (e.g. detection, training, traversal of
graph structure) without falling into infinite recursion.

The DAG is implemented as a heterogenous tree data
structure. Each level of the DAG consists of either only types
of Data or Module, in other words, operations relate to each
other only through data. This heterogenity allows for a flexi-
ble, pluggable approach. Both new operations and new data
types can be added to the framework and these can become
part of any network. As long as the output data type of a
Module matches the input data type of another Module, the
two can be directly connected through that Data type. Mod-
ules and Data are designed such that it is possible to train and
detect with the same network and therefore handle a single
image as well as a collection of images.

3.3. Rigid Detector in IDN

Figure 3 depicts a simple network that corresponds to the
Marginal Space Learning algorithm (MSL) for estimating
pose (9-dimensional similarity transform) [12]. The object
localization happens in 3 operations. Given an input image
(specified in Experiment Parameters), the initial position es-
timate is obtained from the Position Detector. The output of
this operation is the list of most probable locations (3D Posi-
tion Candidates). These locations are used during orientation
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Fig. 3: Rigid Detector in IDN. The detector network estimates
the parameters of a 9-dimensional similarity with three mod-
ules. See text for description.

estimation (in Orientation Detector) to produce the position
and orientation candidates (6D Pos. + Ort. Candidates).
Finally, the 6D candidates are used in the (Scale Detector) to
estimate the object pose candidates, output as a list 9D pose
parameters (Pos. + Ort. + Scale Candidates). Furthermore,
the Orientation and Scale Detectors take a set of possible ro-
tation (Orientation Hypotheses) and size (Scale Hypotheses)
parameters as additional inputs. In this paper we refer to such
a network as a Rigid Dectector.

3.4. Detecting Brain Structures in 3D Fetal US

We used the modules described in the previous sections to
build a system for detecting brain anatomical structures in fe-
tal head ultrasound volumes. The structures we are concerned
with in this paper are cerebellum and corpus callosum. The
output of the system is a visualization of the plane with cor-
rect orientation and centering of each structure. The struc-
tures are used in OB/GYN practice to asses the fetus health
and growth.

Cerebellum pose is found using a hierarchy of rigid de-
tectors (Section 3.3). The detection hypotheses from a lower
resolution image are propagated to the higher resolution im-
age in both training and detection. The next detector is con-
strained to only search within the region of interest defined
by the union of neighborhood regions surrounding candidates
with the highest probability. The structure at different resolu-
tions is therefore treated as another object and the sampling of
the probability distributions for computing the prediction and
update steps follows Eqs. 1 and 2. This way, the search space
at each resolution level is decreased which results in higher
efficiency and robustness.

Figure 4 details two networks for cerebellum detection.
Both networks consist of a hierarchy of detectors using vol-
umes at resolution 4 mm, 2 mm, and 1 mm. Pipeline A uses
position detectors at 4 mm and 2 mm resolutions whereas the
Pipeline B uses rigid detectors. For both networks A and B,



Different Resolutions of the same Input 3D Volume

Output
9D

Similarity
Transform

Cerebellum 4mm
Position
Detector

4mm
Position

Candidates

Cerebellum 2mm
Position
Detector

2mm
Pos.+Ort.

Candidates

Cerebellum 1mm
Rigid

Detector

1mm
Pos.+Ort.+Scale

Candiates

Experiment
Parameters

(4mm image)

Experiment
Parameters

(2mm image)

Experiment
Parameters

(1mm image)

Cerebellum 4mm
Rigid

Detector

4mm
Pos.+Ort.+Scale

Candidates

Cerebellum 2mm
Rigid

Detector

2mm
Pos.+ Ort.+Scale

Candidates

Cerebellum 1mm
Rigid

Detector

1mm
Pos.+Ort.+Scale

Candiates

Cerebellum 1mm
Robust Mean
Aggregator

Cerebellum 1mm
Robust Mean
Aggregator

1mm 9D
Object
Pose

1mm 9D
Object
Pose

Pipeline A

Pipeline B

Cerebellum 2mm
Orientation

Detector

2mm
Position

Candidates

Fig. 4: Two IDN configurations for localizing cerebellum in ultrasound volumes of the fetal head. The pipelines A and B have
different subnetworks at 4 mm and 2 mm resolutions and same modules at 1 mm resolution.

the cerebellum 3D pose candidates are obtained from a Rigid
Detector (Figure 3). The final 9D similarity transformation
is output by a robust mean aggregator that combines the 9D
pose candidates weighted by their probability (Eq.3).

Once cerebellum is detected, the candidates with the high-
est probability are used to predict the pose parameters of the
corpus callosum. This sampling and prediction is performed
following Eq. 1 and using the prediction kernel from Eq. 4.
The prediction kernel is Gaussian and is implemented in the
mean box predictor module. Using the candidates with the
highest probability, the corpus callosum detection continues
using a rigid detector module (Section 3.3).

In this paper, we propose two corpus callosum detection
pipelines (Figure 5). The Pipeline C uses cerebellum candi-
dates from 2 mm resolution and performs detection using 2
mm resolution volume. The Pipeline D uses 1 mm candidates
and volume.

3.5. Detecting Liver Boundary in 3D Liver MRI

Boundary detection occurs in a similar way as HDN, and
first proceeds by detecting a shape in a learned sub-space[13].
Given a mean shape, P̂ = {p̂i ∈ <3}ni=1, and a few modes
(e.g., 3) of shape variation, Uj = {uji}ni=1 (obtained by pro-
crustus analysis of training data and PCA analysis), a new
shape in the subspace can be synthesized as a linear combina-
tion of the modes:

pi(λj , r, s, t) = T (r, s, t)(p̂i +
∑
j

λju
j
i )

where T (r, s, t) is a similarity matrix defined by rotation, r,
scale s, and translation t. The parameters in the shape space,
θpca = {λ1, λ2, λ3}, are estimated using a discriminative
classifier (Eq. 3), and the transformation (r, s, t) comes di-
rectly from estimating the pose.

The second step is a free-form refinement of the mesh [13].
In this phase, the parameters θ are the locations of mesh ver-
tices. The update, pi ← pi + αini, is computed in the

direction of the normal, ni. Again, the αi is obtained through
the use of a trained discriminative model:

αi = argmax−τ≤α≤τf(yi = +1|V0:t, pi + αni, ),

where τ is the search range along the normal.
This update is interleaved with surface smoothing and up-

dating of the normal, ni. In practice, the mesh refinement is
done on a three level mesh hierarchy, where P̂2 ⊂ P̂1 ⊂ P̂0,
with the coarser levels being detected first.

The boundary detection algorithm naturally maps to the
concepts in IDN (Figure 5). The PCA Detector, takes as input
a shape subspace and a single similarity transform (e.g., com-
puted by aggregating a set of candidates), which it augments
with the detected PCA coefficients, λj . The Mesh Synthe-
sizer, uses these candidates along with the shape subspace to
generate an output Mesh data. Finally, a Boundary Detector
accepts an input Mesh, and outputs the refined Mesh. Inter-
nally, the boundary detector optionally upsamples the input
Mesh before performing detection.

4. EXPERIMENTS

Our experiments are on detecting brain structures in fetal head
ultrasound volumes using IDN networks presented in Sec-
tion 3.4 and on detecting boundary of the liver in MRI vol-
umes using IDN network from Section 3.5.

4.1. Detecting Brain Structures in 3D Fetal US

The cerebellum detection networks (Figure 4) were trained
with 990 expert-annotated volumes and the corpus callosum
networks (Figure 5) with 636 volumes. The volumes have av-
erage size 250 × 200 × 150 mm. The cerebellum annotation
line was drawn in the cerebellum measurement plane and the
corpus callosum line was drawn from the bottom of the genu
inside the body of corpus callosum (see Figure 7). The an-
notation planes and lines define the pose of each structure. A
total of 107 volumes were used for testing. The separation



of the volumes into disjoint training and testing data sets was
random.
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Fig. 5: Detection of corpus callosum using two different
pipelines. Pipeline C and D uses candidate detections from
cerebellum at 2 mm and 1 mm resolution, respectively.

Quantitative evaluation of the automatic cerebellum de-
tection and measurement is in Table 1. The median measure-
ment error1 of Pipeline A and B is 3.09 mm and 3.38 mm, re-
spectively. Pipeline A provides more accurate measurements
despite the fact that the network is simpler (it uses only posi-
tion detector at 4 mm resolution and position and orientation
detector at 2 mm resolution as opposed to rigid detector as in
Pipeline B). This is caused by an insufficient amount of de-
tail at the 4 mm resolution to disambiguate the orientation of
the fetus skull (see Figure 6). Several examples of automatic
measurements are in the top of Figure 7.

Fig. 6: The coarse 4 mm resolution volumes have insufficient
details causing ambiguity of the fetus skull orientation. The
annotation line highlights the cerebellum which is difficult to
distinguish at 4 mm but is much more clear at 2 mm and 1
mm resolutions.

Quantitative evaluation of the automatic corpus callosum
detection is in Table 1. The median measurement error of
Pipeline C and D is 4.83 mm and 4.20 mm, respectively.
The results at 1 mm resolution (Pipeline C) are more accu-
rate thanks to the more reliable cerebellum candidates at this
resolution.

Median Std.D.
P.A 3.09 1.71
P.B 3.38 1.78

Median Std.D.
P.C (2 mm) 4.83 2.38
P.D (1 mm) 4.20 2.13

Table 1: Detection error [mm] for Cerebellum (left) and cor-
pus callosum (right). Pipelines A and D have lower error. See
text for discussion.

1The measurment error for 3D Fetal Structures is computed as the maxi-
mum of the two distances between corresponding end points of the annotation
line and the detection line. Average annotation line length is 19.78 mm and
10.26 mm for cerebellum and corpus callosum, respectively.

4.2. Detecting Liver Boundary in 3D Liver MRI

To detect and segment the liver boundary in 3D MRI data,
we have configured our boundary detection modules as illus-
trated in Figure 8. The mean liver mesh and shape subspace
are built by performing Procrustes analysis on manually an-
notated training examples. The mesh hierarchy consists of a
low, medium, and high resolution meshes with 602, 1202, and
2402 vertices, respectively. The low and medium resolution
boundary detectors use 3 mm resolution volumes and the high
resolution boundary uses 1 mm resolution volumes.
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Fig. 8: The MRI liver segmentation network uses the rigid
detector to locate the liver. Then several layers boundary de-
tection is performed on different image and mesh resolutions.

The pipeline was trained on 59 annotated input volumes
with size as large as 420 × 300 × 432 mm. Using 3-fold
cross-validation, we computed the mesh-to-mesh distance of
the detected results. Through IDN, we easily reconfigured our
detection pipeline and removed intermediate modules such
that different stages of the algorithm can be evaluated (Ta-
ble 2). The table shows that all detection phases are neces-
sary to achieve the highest accuracy. Figure 9 illustrates some
boundary detection results for the entire pipeline.

Boundary pipeline Mean Mean Std Median
Entire 2.53 1.82 1.81

No med. 3.72 2.17 3.28
No Pca,no med. 5.26 2.38 4.79

Table 2: Mesh-to-mesh statistics on Liver MRI boundary
detection using the full pipeline, on pipelines without 3mm
medium resolution boundary detector (No med.), and without
PCA and medium resolution boundary (No Pca, no med).

5. CONCLUSION
We have proposed the Integrated Detection Network (IDN)
framework as a flexible design to manage complex large-scale
learning-based detection algorithms. The framework relies on
a simple but powerful abstraction of representing algorithm
components as either Modules or Data. IDN allows rapid pro-
totyping, tuning, and reconfiguration of detection algorithms,
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Fig. 7: Final hierarchical detection result of Pipelines A and D (cyan) compared to ground truth (red). The last two columns
show the agreement of the detection plane in the sagittal and coronal cross section.

Fig. 9: Sample liver boundary detection results (blue) in MRI
with ground truth (green).

and ensures that training uses the same inter-object dependen-
cies as detection.

In this work, we proposed two different networks and
their variants for hierarchical learning-based detection. The
first network, anatomical structure detection in 3D fetal US,
achieved accuracy of 3.09 mm (cerebellum) and 4.20 mm
(corpus callosum). The second, accurate 3D liver boundary
detection in MRI images, achieved accuracy of 2.53 mm. The
modularity of IDN promotes reuse, since these modules can
readily be reconfigured for other applications and newly de-
veloped algorithms can be easily integrated into existing de-
tection pipelines.
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