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ABSTRACT

In many augmented reality applications, in particular in the medi-
cal and industrial domains, knowledge about tracking errors is im-
portant. Most current approaches characterize tracking errors by
6× 6 covariance matrices that describe the uncertainty of a 6DOF
pose, where the center of rotational error lies in the origin of a tar-
get coordinate system. This origin is assumed to coincide with the
geometric centroid of a tracking target.

In this paper, we show that, in case of a multi-camera fiducial
tracking system, the geometric centroid of a body does not neces-
sarily coincide with the point of minimum error. The latter is not
fixed to a particular location, but moves, depending on the individ-
ual observations. We describe how to compute this point of mini-
mum error given a covariance matrix and verify the validity of the
approach using Monte Carlo simulations on a number of scenarios.
Looking at the movement of the point of minimum error, we find
that it can be located surprisingly far away from its expected posi-
tion. This is further validated by an experiment using a real camera
system.

Index Terms: I.4.8 [Image Processing and Computer Vi-
sion]: Scene Analysis—Tracking H.5.1 [Information Interfaces and
Presentation]: Multimedia Information Systems—Artificial, aug-
mented, and virtual realities

1 INTRODUCTION

Recent years have seen more and more tracking applications requir-
ing a permanent on-line control of registration error or measure-
ment uncertainty. This kind of information is important for aug-
mented reality in general, but in particular for areas such as surgical
navigation or quality control in industrial measurement. In vendor-
calibrated tracking systems with rigid configuration and pre-defined
working volume this kind of information is readily available. In
flexible configurations of multi-camera setups and under varying
viewing conditions in dynamic scenes, however, a full error de-
scription becomes more difficult and cannot easily be interpreted
anymore. Also, the real-time description of varying uncertainty
in pose estimation has only recently been addressed in more de-
tail ([17], [2], [10]). Most approaches make use of the covariance
matrix as a means of quantifying measurement errors and for the
visualization of error ellipsoids. Less attention has been paid to
the structure and interpretation of the covariance and its meaning in
different reference frames. This will be investigated in the paper.

Multi-Camera Fiducial Tracking The tracking system used
in this investigation consists of an n-ocular CCD camera system.
The cameras detect the pose of a measurement target consisting
of a rigidly attached set of fiducials, i.e. small spheres with retro-
reflective coating. These fiducial reflect the light of infrared flashes,
which are attached to the tracking cameras. Besides the details
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Figure 1: Distribution of translation errors (black) sampled at 9 dif-
ferent CREs for a fiducial target defined by the white spheres. It is
directly evident that the samples more distant to the body’s geomet-
rical centroid represent CREs with a larger translational uncertainty
due to the additional influence of rotation errors.

of the underlying computer vision algorithms, the accuracy of this
kind of system depends on the particular geometry of the camera
configuration, the size, number and spatial arrangement of fiducials
on the target and the visibility conditions for each of the markers.
As the marker visibility changes according to the movement and in-
teraction of objects within the tracking volume, the error estimation
for a target has to be updated dynamically.

Center of Rotational Error When computing the 6DOF ob-
ject pose from the 2D marker reflexes measured by the cameras,
the translation and orientation of the target is expressed with re-
spect to a specific coordinate system, the target coordinate system.
The origin of this reference frame can be chosen freely and defines
the center of rotational error (CRE), for which the corresponding
covariance matrix is computed. The matrix generally subsumes the
translation and orientation uncertainty and by changing from one
reference frame to another, the translatory error will be more or less
polluted by rotational errors. This is depicted in Figure 1, where we
show the covariance error ellipsoids for 9 different CRE locations,
with all errors clearly larger than the one at the target center.

It is also obvious that for every visibility situation there is a dis-
tinguished reference frame which has minimum translation error.
We call the origin of this coordinate system the point of minimum
error (PME). In Figure 2 one can compare the different outcomes
of covariance computation at different CREs for an elongated target
which is not fully visible. As opposed to the large translational un-
certainty at the geometrical centroid (GC) the error is considerably
smaller at the PME.

Contribution In this paper, we show that, in case of a multi-
camera fiducial tracking system, the center of rotational error can
be set, in principle, into practically any point without obvious disad-
vantages. As the reference frame with minimum translational error



Figure 2: Comparison of covariances (black ellipsoids) computed at
the geometric centroid (GC) and at the point of minimum error (PME)
for a target whose fiducials are not fully visible to both of two cam-
eras (white spheres visible, gray spheres occluded). Obviously, the
translational error differs considerably between choosing the GC or
the PME as the CRE.

is not fixed but changes according to the individual camera obser-
vations, however, there is a prominent location, namely the point
of minimum error, which maximally separates translational from
rotational errors.

After introducing this point of minimum error, we describe how
to compute its position from a given covariance matrix. Therefore,
we show that the covariance matrix contains all information to com-
pute this distinguished point just by the knowledge of the transfor-
mation properties of the different parts of the covariance matrix.

The validity of the approach is verified using Monte Carlo sim-
ulations by comparing the analytical and numerical results of PME
computation.

Related Work There have been a number of publications deal-
ing with error estimation of tracking systems. One of the oldest
works on pose error is by Woltring et al. [18] who analytically de-
rive the effects of isotropic 3D error on an isotropic distribution of
fiducials and who observe that the error is minimal at the centroid
of the fiducials.

Fitzpatrick [7] give a formula for estimating the target registra-
tion error based on the simplifying assumption of an isotropic fidu-
cial location error.

In the AR community, the field of error analysis of AR systems
has drawn much attention. Holloway [11] gives a comprehensive
overview and derives error bounds for various error sources. Error
estimation for optical trackers was investigated by Hoff and Vin-
cent [10], Davis et al. [5][6], Allen and Welch. [1] and Bauer et
al. [2]. Most publications state the need for computing the error at
the centroid, but do not investigate the choice of the CRE in more
detail.

Coelho et al. [4] use the unscented transformation [12] (UT)
to propagate tracking errors through a scene graph into the image
shown to an AR user. UT is generally considered to be superior
to the linear propagation of covariance that we use, due to better
handling of non-linearities. However, for the small rotational errors
that we consider, the error propagation is sufficiently linear. We
will verify this using Monte Carlo simulations later. Furthermore,
the general problem of CRE choice remains, independently of the
method of error propagation.

2 ERROR REPRESENTATION

In order to address the problem of a moving center of rotational
error, we extend the standard error representation to explicitly take
this point into account. The resulting extended error representation
is given by equation 1. It describes the transformation of a point
xT in target coordinates to its image xW in world coordinates. The

transformation from target to world coordinates is given by the ro-
tation matrix R and the translation vector t.

xW = ER (RxT + t− c)+ c+ et (1)

The error itself is modeled as an additional rotation matrix ER
that rotates around a CRE c, and a translation vector et . The value
of c can explicitly change from frame to frame. Note that ER, et
and c are given in world coordinates.

Both ER and et are assumed to be small random variables with
expectations I and 0 respectively. For the error propagation, we
approximate ER using a small-angle version of Rodrigues’ rotation
formula:

ER = I3×3 +[eR]× (2)

where [v]× denotes the antisymmetric matrix corresponding to a 3-
vector v:

[v]× =

 0 −v3 v2
v3 0 −v1
−v2 v1 0

 (3)

The pose uncertainty is given by a 6×6 covariance matrix Σ that
describes the joint Gaussian distribution of et and eR:[

et
eR

]
∼ N(0,Σ) (4)

Intuitively, the diagonal entries of Σ can be interpreted as the
positional uncertainty in world coordinates (Σ1,1 to Σ3,3) and the
rotational uncertainty around the three axes of the world coordinate
system (Σ4,4 to Σ6,6), given in radians. Off-diagonal values describe
the statistical dependency between two values.

According to this definition, our error representation consists of
the tuple (Σ,c) where c defines the center of rotational error.

3 BACKWARD PROPAGATION OF COVARIANCE

In order to analytically compute the covariance of a 6DOF pose
from uncertainties of multiple 2D measurements, we use the back-
ward propagation of covariance (BPC) [8] approach. Since the BPC
requires the same intermediate steps as non-linear least-squares op-
timization, it is easily integrated into a pose estimation algorithm.

In consequence, our system calculates 6DOF target poses p by
a least squares adjustment, where a 6×6 covariance matrix Σ6D of
the parameters is part of the result. The adjustment procedure mini-
mizes the weighted residuals in 2D image space of the individually
projected target fiducial positions u. This projection consists of two
separate steps. The first step basically is a 3D similarity transforma-
tion without scale of 3D fiducial positions xT from target to world
coordinates xW as shown in equation 1.

The second step is using the collinearity equation for a pinhole
camera projection of this target fiducial location in world coordi-
nates xW to the 2D image space coordinates u for each camera,
where this fiducial was detected [13]:

u =

[
xh
yh

]
− cc

r3T · (xW − x0)
·
[

r1
T · (xW − x0)

r2
T · (xW − x0)

]
(5)

where xh and yh are the coordinates of the principle point and cc
the principle distance of the camera. The vector x0 represents the
world coordinates of the camera projection center and ri is the i-th
column of the camera rotation matrix R:

R =
[

r1 r2 r3
]

(6)

The position and orientation of a camera relative to the world
coordinate system are generally known as its extrinsic parameters.



These are complemented with intrinsic parameters such as princi-
ple point, principle distance and corrections to compensate for lens
distortion and other effects [3].

The derivatives of the 6DOF to 2DOF projection function w.r.t.
the target pose p = (et ,eR) form the Jacobian matrix J for the min-
imization process. J is computed by applying the chain rule on the
target-to-world transformation and the pinhole projection:

J =
∂u
∂ p

=
∂u

∂xW
· ∂xW

∂ p
(7)

The chain rule allows for the separation in two derivative matrices
with dimensions of 2× 3 and 3× 6 respectively. This separation
into two steps simplifies the calculation of the derivatives to two
well-known approaches. The derivatives of the collinearity equa-
tion are equivalent to the ones applied for the forward intersection
to calculate a 3D position [13].

As the rotations and translations are given in the world coordi-
nate system, the Jacobian matrix of the similarity transformation
part is a 3× 3 identity matrix for translation and an antisymmetric
matrix [−v]× = [−RxT ]× for rotation:

∂xW

∂ p
=

 1 0 0 0 v3 −v2
0 1 0 −v3 0 v1
0 0 1 v2 −v1 0

 (8)

Multiplying the two derivative matrices shown in 7 yields the 2×6
Jacobian matrix J for the iterative adjustment process [14],

δ p = (JT PJ)−1JT Pu (9)

which provides the corrections δ p of the target pose parameters as
well as the covariance matrix Σ6D given by

Σ6D = σ
2
0 · (JT PJ)−1 (10)

The observations u refer to the measured fiducial position in
image space and their 2D covariances Σ2D are crucial as they de-
termine the weight matrix P = Σ2D

−1 of each individual observa-
tion. For simplicity, all observations are introduced with the same
weight. To avoid a possible mismatch in the stochastic model the
standard deviation σ0 is required for scaling of the cofactor matrix
(JT PJ)−1.

The adjustment process uses predictions from previous time
steps as approximation for the target pose p, which generally leads
to convergence in only a few iterations.

4 POINT OF MINIMUM ERROR COMPUTATION

In the previous sections, we presented an error representation that
explicitly deals with a changing center of rotational error. The goal
of the error description is to allow us to place the error into the
point of minimum error, where rotational and translational errors
are most naturally separated.

Considering the occlusion scenarios mentioned in the introduc-
tion, the most natural approach to compute the point of minimum
error is to compute the geometric centroid of all observed fiducials.
Unfortunately, as our experiments later on will show, this is only
an approximation of the PME’s location, which in extreme cases
can be far from its true location. In the rest of this section, we will
present an analytical approach to compute the PME as an offset,
given the CRE and the 6×6 covariance matrix in any location.

4.1 Forward Propagation of Covariance
The discussion in this section is based on forward propagation of
covariances [8]. Let f : RN → RM be a differentiable function and
x ∈ RN a random variable with expectation x̄ and covariance Σx.
According to the forward propagation rule, y = f (x) is a random

variable with expectation ȳ = f (x̄). The covariance Σy is computed
as:

Σy = J Σx JT (11)

J =
∂ f
∂x

with J being the Jacobian of f . This approximation is valid for
Gaussian distributions when f is approximately linear within rea-
sonable extent around x. This is the case for small angular errors,
which are typical for the mentioned tracking systems.

4.2 Change of CRE
Using the forward propagation method, we first describe how to
propagate covariance from one CRE to another. Assume in the
above error representation (eq. 1) that c is shifted by some offset
∆c, i.e.

xW = ER (RxT + t− (c+∆c))−ER ∆c+ c+ et (12)

By integrating the term −ER ∆c into the translational error et , we
compute the error propagation

Σ∆c = J∆c ΣJT
∆c (13)

J∆c =

[
I [∆c]×
0 I

]
(14)

where Σ∆c is the new covariance matrix at the shifted CRE.
We make the following observations:

Commutativity Examining at the structure of J∆c, we can see that
the concatenation of two CRE changes J∆c1 J∆c2 can be ex-
pressed as a single change, as J∆c1 J∆c2 = J∆c1+∆c2 .

Reversibility As J∆c is invertible, we can revert the change of
CRE without loss of information, by applying the propaga-
tion again using J−1

∆c . We can also show that J−1
∆c = J−∆c.

4.3 Point of Minimum Error Extraction from Covariance
In order to compute the location of the point of minimum error, we
start from a covariance matrix Σ, evaluated for an arbitrary CRE c.
The idea is to find an offset vector ∆c for which the CRE change
results in a minimal translation error. The resulting c+∆c describes
the PME location. Minimizing translational error is the natural
choice for finding the PME, as our error model basically defines
translational error at some POI as the sum of translational error at
the PME plus some rotational error.

We start the computation by looking at the block structure of Σ

and how this evaluates into the translational error:

Σ
′
t =

[
I [∆c]×

] [ A B
BT C

] [
I [∆c]×

]T
= A+[∆c]×BT +B [∆c]T×+[∆c]×C[∆c]T× (15)

In order to determine the offset ∆c for which Σ′t is minimal, we have
to choose a suitable matrix norm to minimize. In this case, we select
the trace norm, as the trace of a covariance matrix is proportional
to the RMS error. We therefore seek to minimize the following
expression:

argmin
∆c

tr(Σ′t) (16)

inserting equation 15, computing the derivative and solving for the
∆c which minimizes the trace yields the following equation:

(tr(D) I−D)∆c =−SKEW−1(B−BT ) (17)

where SKEW−1 is a function that inverts the effect of [. . .]× by
extracting a 3-vector from a skew-symmetric matrix as defined by
eq. 3.



5 VALIDATION

In this section we want to verify the analytic methods described in
the previous two sections using a Monte Carlo simulation of the
tracking process. Monte Carlo simulation is a quite flexible but
computationally expensive means to solve optimization and inte-
gration problems [16]. Our problem is of the latter type, since we
want to compute the expected deviation (second statistical moment)
of some point of interest (PoI) from its mean value. Monte Carlo
Simulation was previously used successfully to investigate various
influences in photogrammetric systems [9].

5.1 Monte Carlo Simulation

The Monte Carlo simulation is based on the assumption of known
ground-truth data from which the pose at a desired PoI can be de-
rived. This original data is then perturbed with Gaussian noise and
its influence on the PoI observed. The goal is to compute a 6× 6
covariance matrix that can be compared to the analytic BPC result
as described in section 3. We assume the following ground-truth
data to be known:

• extrinsic camera parameters

• intrinsic camera parameters

• target geometry

• target pose

• point of interest

The target geometry simply is a list of 3D positions in target co-
ordinates, which describe the constellation of fiducials. The point
of interest is the 3D point for which the covariance shall be esti-
mated. This corresponds to the CRE in the BPC approach.

The first step of our Monte Carlo simulation projects fiducials
onto the image plane of each camera, based on the known target
geometry and pose, as well as the known intrinsic and extrinsic
camera parameters. This yields a list of synthetic 2D positions for
each camera, perfectly fulfilling the geometric constraints imposed
by the assumed ground-truth data.

Based on the assumption of Gaussian pixel noise, we can per-
turb these 2D positions to obtain artificial measurement data for the
layed out geometric situation. This perturbation can be repeated
many times, with different noise instantiations. A Gaussian distri-
bution might not represent well the structured noises that are usually
present in optical tracking systems, caused e.g. by mis-calibration
of the cameras or insufficiencies in the camera model. Nevertheless,
a pragmatic approach commonly followed in the field of metrology
is to subsume both, systematic error and random noise, under the
common notion uncertainty and to represent it by a Gaussian [14].

From the known point of interest and the known target pose, we
can also derive the ground truth position of interest in the local tar-
get coordinate frame. This completes the prerequisites for the ac-
tual simulation experiment.

Using the artificial “noisy” 2D measurements of each camera,
the known target geometry, as well as the known intrinsic and ex-
trinsic parameters, we now estimate the target pose. This reflects
the normal mode of operation of our tracking system, indeed the
same algorithms are used also for the simulation. This estimation
of the point of interest in world coordinates is repeated many times,
using different noise instantiations for the 2D measurements. Given
such a large set of poses (1,000,000 samples for each point of in-
terest), we compute the mean pose and a 6× 6 covariance matrix,
which is compared to the analytically computed counterpart.

5.2 Reference Scenarios
In order to evaluate the error computation approach, we have de-
fined a number of reference scenarios which we will refer to later
on. These consist of five synthetic scenarios that are used to system-
atically evaluate some effects and one realistic constellation, taken
from a calibrated real setup.

Scenario 1: single camera, planar target A single camera is
placed at a distance of 0.5m away from a planar target. The
target consists of four fiducials arranged as a square with 0.1m
side-length. The target is seen under an angle of 45◦.

Scenario 2: single camera, 3D target Similar to the previous
scenario, but a fifth fiducial is added such that the target forms
a pyramid.

Scenario 3: two cameras, planar target Same as scenario 1, but
the target is observed by a stereo camera pair with 0.2m base
length at a distance of 0.5m.

Scenario 4: two cameras, 3D target Stereo camera pair observ-
ing the same target as in scenario 2.

Scenario 5: two cameras, real scenario Two cameras with arbi-
trary placement and a target consisting of ten fiducials with
non-planar arrangement.

Scenario 6: two cameras, real scenario, half-occlusion Same as
scenario 5, but half of the fiducials are occluded.

Scenario 7: two cameras, real scenario, alternating occlusions
Same as scenario 5, but each fiducial is observed by exactly
one camera.

5.3 Backward Propagation
We first use the Monte Carlo Simulation (MCS) to verify the back-
ward propagation of covariance (BPC) approach. For this, we
choose for each scenario a few sample points. These sample points
are used as the CRE in the BPC and as the point of interest in the
MCS.

An example of two 6×6 covariance matrices generated by BPC
and MCS is shown in table 1. When comparing both, we find that
the entries of the MCS matrix agree with those of the BPC in the
first 2-3 digits. However, for the BPC entries that are close to zero
(usually < 10−17mm2), MCS gives much bigger values (around
10−6mm2). As these values also differ strongly between multiple
runs of the MCS (even changing the sign), we assume that this be-
havior can be explained by noise in the MCS, having an insufficient
number of iterations (currently 1,000,000 for six DOFs).

5.4 Forward Propagation
Next, we empirically evaluate how well the covariance at a partic-
ular target CRE can be computed by forward propagation of the
covariance from an arbitrary source CRE, i.e. how good the ob-
servations from section 4.2 are. For this, we use BPC to directly
compute the covariance matrix at the target CRE. This is compared
with the covariance computed by forward-propagation (eq. 13) of
the covariance matrix evaluated for another CRE.

We find that, even when the distance between the two starting
CREs is large, the resulting covariance matrices at the target CRE
are equal, up to small numerical differences.

This empirical result strengthens our assumption that the mea-
surement error for this kind of measurement system can be modeled
as a covariance at a point of minimum error plus some part that is
only dependent on the rotational error. For small rotational uncer-
tainties, we therefore make no significant error when applying the
linear(!) forward propagation and all non-linearity is contained in
the backward propagation step.




0.036735 −2.5672 ·10−17 7.1835 ·10−17 −4.7622 ·10−20 −0.00015546 −3.8355 ·10−5

−2.5672 ·10−17 0.010308 −0.00058889 −8.2805 ·10−5 2.0947 ·10−19 −1.4972 ·10−20

7.1835 ·10−17 −0.00058889 0.44315 −0.00013705 1.0872 ·10−19 −2.2394 ·10−19

−4.7622 ·10−20 −8.2805 ·10−5 −0.00013705 1.9162 ·10−6 −5.5887 ·10−22 4.1259 ·10−22

−0.00015546 2.0947 ·10−19 1.0872 ·10−19 −5.5887 ·10−22 2.0852 ·10−6 −7.0393 ·10−7

−3.8355 ·10−5 −1.4972 ·10−20 −2.2394 ·10−19 4.1259 ·10−22 −7.0393 ·10−7 6.833 ·10−7


(a)

0.0367844 2.64194 ·10−5 −0.000119706 8.33421 ·10−8 −0.000155759 −3.84876 ·10−5

2.64194 ·10−5 0.010323 −0.000588892 −8.27622 ·10−5 −2.21609 ·10−7 3.46285 ·10−8

−0.000119706 −0.000588892 0.442735 −0.000135955 9.13904 ·10−7 −2.02893 ·10−7

8.33421 ·10−8 −8.27622 ·10−5 −0.000135955 1.91456 ·10−6 −1.52874 ·10−9 2.6768 ·10−10

−0.000155759 −2.21609 ·10−7 9.13904 ·10−7 −1.52874 ·10−9 2.08748 ·10−6 −7.03794 ·10−7

−3.84876 ·10−5 3.46285 ·10−8 −2.02893 ·10−7 2.6768 ·10−10 −7.03794 ·10−7 6.83906 ·10−7


(b)

Table 1: Covariance matrices produced by backward propagation (a) and Monte Carlo simulation (b) for scenario 1 at the PME.

 0.036735 0 0
0 0.010308 −0.00058889
0 −0.00058889 0.44315


(a) 0.0067017 0 0

0 0.0067294 −0.0063575
0 −0.0063575 0.61402


(b)

Table 2: Translational part of the covariance matrices produced by
backward propagation at the PME (a) and at the geometric centroid
(b).

5.5 PME Computation

To investigate whether the PME as computed by equation 17 really
has minimum error, we use the MCS to sample the volume at the
computed PME and at several points in a close vicinity. The results
show that, within the precision of our MCS, the trace of the result-
ing covariance matrices at the computed PME location actually is
smaller in all cases.

Table 2 shows the translational part of the covariance matrices
produced by backward propagation at the PME (a) and at the geo-
metric centroid (b). When comparing the two, we see that the x and
y components actually have higher error at the PME compared to
the GC. However, the total error (trace) is smaller at the PME, due
to a much reduced z component.

6 PME LOCATION

In the last part of this paper, we more closely investigate the location
of the PME in the various scenarios and describe the observations.

6.1 Comparison PME and GC location

Table 3 shows the error at PME and GC, as well as the location of
the PME in the scenarios described in section 5.2. In order to be in-
dependent from the actual coordinate systems, the error is given as
the square root of the three eigenvalues of the translational covari-
ance. As we can see from the table, the PME not only minimizes
the trace norm, but also the largest eigenvalue, which corresponds
to the error along the “worst” axis. Another interesting observation
is that the smaller eigenvalues become larger at the PME in some
cases. This observation suggests that the PME somehow distributes
the error among the axes (from z to x and y in the one-camera case)
while still minimizing the overall error.

The addition of a second camera (scenarios 3 and 4) or a fifth
non-planar fiducial (scenarios 2 and 4) seems to reduce the offset
between PME and GC, but do not completely eliminate the prob-
lem. In the “real” scenario 5, no big difference can be seen between
the PME and the GC when all fiducials are visible to all cameras.
When half of the target is occluded (scenario 6), the PME strongly
deviates from the GC, as expected. In the case where each fiducial
is observed by only a single camera (scenario 7), but observations
are distributed equally among the cameras, a slight difference be-
tween PME and GC locations can be observed, but not enough to
change the estimated error significantly.

6.2 Scenario 1

As scenario 1 shows the most extreme difference between GC and
PME locations, we will more closely investigate this situation. The
scenario consists of a single camera that observes four fiducials, ar-
ranged in a square. Therefore, the observations made here can even-
tually also be applied to the AR toolkit-like square marker trackers
frequently found in simple AR applications.

In this investigation, we first systematically shifted the CRE
through a volume around the target and computed for each location
the trace norm of the translational covariance, computed by BPC.
Figure 3 shows a volume rendering of the result. The slice lying
in the target’s plane is color-coded according to the error at each
location. The gray ellipsoid describes an iso-surface of equal error
at the center of which the PME is located. As already suggested by
table 3, we can clearly see that in this scenario, the PME signifi-
cantly moves out of the target plane and deviates from the centroid
of the four fiducials.

In a second step, we have a closer look at how the PME’s lo-
cation depends on the orientation of the planar target towards the
camera. Therefore, we systematically rotate the target around its
x-axis, which is parallel to the camera’s x-axis. The path of the
PME is shown in figure 4. We observe that when the target plane
is parallel to the image plane, the PME lies slightly (5mm) behind
the target. As the target is rotated, the PME moves away quickly,
reaching its furthest position at an angle of 45◦. At 90◦, the PME
lies in the target plane, about 7mm closer to the camera than the
GC.

The corresponding RMS errors at the GC and the PME are
shown in figure 5c. We see that the error at the GC looks like a
straight line with dents at 0◦ and 180◦, whereas the error at the
PME has more of a sine-like shape. At 0◦ and 90◦, where both
points have the closest location, they also have closest RMS error.
The largest difference is observed at an angle of about 19◦, where
the GC error is about 25% larger than the PME error.



error PME error GC PME→ GC offset (mm)
σ1 σ2 σ3 σ1 σ2 σ3 x y z

Scenario 1 0.1015 0.1917 0.6657 0.0816 0.0819 0.7836 0.0 98.5 -68.1
Scenario 2 0.0748 0.1220 0.6191 0.0729 0.0730 0.6509 0.0 57.2 -48.2
Scenario 3 0.0586 0.0640 0.2425 0.0577 0.0579 0.2484 0.0 19.6 -13.0
Scenario 4 0.0516 0.0537 0.2184 0.0515 0.0516 0.2201 0.0 10.0 -10.5
Scenario 5 0.0621 0.0648 0.1470 0.0622 0.0648 0.1470 0.7 1.9 1.0
Scenario 6 0.0934 0.0980 0.2397 0.1450 0.2430 0.3303 -107.9 0.7 0.2
Scenario 7 0.0875 0.0920 0.2097 0.0887 0.0921 0.2097 4.8 4.5 -1.2

Table 3: Comparison of PME and GC error in all scenarios. The first six columns contain the square roots of the eigenvalues of the translational
covariance for the PME and GC locations. The last three columns describe the PME location relative to the GC.

Figure 3: Volume rendering of the error for scenario 1. The color-
coded slice goes through the plane defined by the target’s fiducials.
The line from the target centroid points towards the camera. The
gray ellipsoid describes an iso-surface of equal error at the center of
which the PME is located.
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Figure 4: Traces of the PME location as the target is rotated around
its x axis. The location is shown in both world (top) and target coor-
dinates (bottom).

7 EXPERIMENTAL VALIDATION

In order to verify that the described effects also appear in a real
system, we conducted an experiment with our ARTrack TP system,
using two FireWire cameras. A planar target, consisting of four
retro-reflective markers was placed in front of the two cameras at an
angle of about 45◦, and a long sequence of measurements (70,000
frames) was recorded without moving the target.

As Monte Carlo simulation had revealed the strongest effects in
one-camera setups, we removed all but the first frame of the second
camera. This allowed for stereo detection of the target in the first
frame, with continuing tracking during the rest of the sequence.

Under normal circumstances, Gaussian sensor noise is negligi-
ble. We therefore artificially increased sensor gain to the maximum
level, yielding an unrealistically high 2D feature noise with with a
standard deviation of about 1

10 pixel.
For each of the 70,000 recorded frames, a 6DOF pose was esti-

mated from the four detected marker locations. In order to visually
determine the PME location, we systematically sampled a volume
around the target. For each point in the volume, its target coordi-
nates were multiplied with all 70,000 6DOF poses and the resulting
jitter in world coordinates was determined using the trace of the
covariance norm of the resulting 3D coordinates.

Figure 6 shows a volume rendering of the resulting data set, in-
cluding the location of the computed PME. The result undermines
our claim that the PME can be far from the GC. As can be seen,
there is some offset between the computed and the measured PME
locations. In order to explain where this offset comes from, fur-
ther investigations are necessary. One possible explanation could
be static errors in either the camera calibration or the assumed tar-
get geometry.

8 CONCLUSION

In this paper we have investigated how the choice of a center of ro-
tational error (CRE) influences the result of error propagation tech-
niques for optical tracking systems. We found out that, in order
to properly characterize the error of a tracking system, the location
of the CRE does not matter, as the error can always be propagated
to any other point without loss of information. This is due to the
usually unintuitive correlations between rotation and translation.

However, when it comes to the interpretation of the diagonal en-
tries of the covariance matrix in terms of rotational and translational
error, the choice of a CRE matters. Only in the point of minimum
error (PME), the trace of the covariance matrix is minimal and ro-
tational and translational errors are separated as much as possible.
Contrary to common belief, the PME in general does not coincide
with the geometric centroid (GC) of a tracking target. We showed,
that the pose covariance matrix Σ contains enough information to
compute the PME from Σ alone and provided the necessary equa-
tions. The approach was verified using Monte Carlo Simulation on
a number of camera setups. We found out, that in some cases, the
PME can be surprisingly far away from the GC, which was also
validated in a real system experiment.
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Figure 5: PME location (red:y, blue:z) plotted against the target’s ro-
tation angle around the x axis. Locations are shown in world (a)
and target coordinates (b). (c) shows the RMS translational error
estimated at the GC (blue) and at the PME (red) depending on the
orientation.

Figure 6: Results of the real system experiment. There is a deviation
between computed and measured PME locations that needs further
investigations. The effect that the PME is not identical to the GC,
however, is clearly visible.

When reporting covariance matrices to the user, we suggest that
tracking systems use an error representation with variable CRE,
such as the one presented in section 2. Unless the actual point
of interest (such as the tip of a tool) is known to the system, this
CRE should coincide with the PME. This has the advantage that
rotational and translational errors are separated as much as possible
and, in consequence, users can interpret the diagonal entries of the
covariance matrix as pure rotation and translation. Furthermore, ex-
plicit CRE representations have the advantage that this separation
can be maintained under a number of coordinate system transfor-
mations, by simply adjusting the CRE location (see appendix).

Unfortunately, the current approach requires the covariance ma-
trix to be computed for an arbitrary CRE, before the PME can be
computed. After this, the error can be propagated to the PME. It
probably would be more efficient to have an approach where the
PME location can be computed beforehand. This, however, is con-
sidered future work.

This paper has to be seems as only the first step in investigat-
ing the role of the CRE in 6DoF error representations for optical
tracking systems. While we have theoretically and experimentally
validated that the PME in general does not coincide with the GC,
more insight needs to be gained why this is the case and what the
exact relationship is between rotational and translational errors. We
hope that this paper will serve as a good starting point for future
research in this direction.
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A TRANSFORMATION RULES FOR EXPLICIT CRE ERROR
REPRESENTATIONS

Mathematically, an arbitrary center of rotational error can be chosen
for 6DOF pose error description, and the resulting 6×6 covariance
matrix can always be propagated to any point of interest without
loss of information. However, when no PoI is known to the track-
ing system, it might make sense to choose the PME as the CRE,
because the PME provides the best separation between translational
and rotational errors and gives the most intuitive results when users
just look at the diagonal entries of the covariance matrix without
further propagation.

Since the PME depends on the current set of observations, the
error description needs to explicitly take a dynamic CRE into ac-
count. For this purpose, we propose to use the error representation
defined in equation 1 and the tuple (c,Σ) as defined by equation 4
as an error representation at runtime.

Error representations without explicit CRE location have prob-
lems when the coordinate systems of the underlying transformation
are changed. Consider the case where the target coordinate sys-
tem is moved from the centroid to some more convenient location.
When the error is implicitly centered around the new target coordi-
nate frame, the covariance also needs to be updated and rotational
error is added to the translational error. While the underlying error
still is the same, the translational error that can be read from the

upper-left block of the covariance matrix now seems to be much
higher. By having an explicit CRE, we can just update the CRE
location to the new coordinate systems without factoring rotational
into translational error.

In this appendix, we describe the effect that certain transforma-
tions have on the proposed error representation. We also give equa-
tions for practical computation of 3D covariances in arbitrary points
of interest.

Spatial Relationship Patterns In order to more clearly de-
fine the meaning of the different transformations, each of them
is illustrated by a spatial relationship pattern [15]. In these di-
agrams, nodes represent coordinate systems or orientation-free
points, whereas edges represent measurements such as position or
pose. Input measurements are drawn as solid lines whereas output
edges are drawn as dashed lines.

Each edge is attributed with the type of measurement. An edge
A→ B of type 6DOF represents the following transformation of a
point xB in B to a point xA in A:

xA = RxB + t

For edges of type 3DPos, rotation is missing and the position of B
in A is given.

Measurements with associated uncertainty information are de-
noted by adding +Σ to their type, e.g. 6DOF+Σ. For 6DOF edges,
uncertainty is represented by the tuple (Σ,c) as described above.
For 3DPos types, only a 3×3 covariance matrix is given.

Edges in the pattern may also describe additional constraints that
must be fulfilled between two objects. In the style of UML notation,
the type definitions are surrounded by double angle brackets (�
. . .�).

A.1 Change of Target Coordinate System

W T T’6DOF+Σ 6DOF

6DOF+Σ

Let (R, t) be a transformation from target to world coordinates,
as described above. In homogeneous matrix notation, the target co-
ordinate system can be changed by a right-hand-side transformation
(RR, tR) using the following matrix product:[

R′ t ′
0 1

]
=

[
R t
0 1

][
RR tR
0 1

]
(18)

Assuming that (RR, tR) is an error-free transformation, the error
description (Σ,c) of (R, t) is equally valid for (R′, t ′), i.e. (Σ′,c′) =
(Σ,c).

A.2 Change of World Coordinate System

W’ W T6DOF 6DOF+Σ

6DOF+Σ

Let (R, t) be a transformation from target to world coordinates,
as described above. In homogeneous matrix notation, the world co-
ordinate system can be changed by a left-hand-side transformation
(RL, tL) using the following matrix product:[

R′ t ′
0 1

]
=

[
RL tL
0 1

][
R t
0 1

]
(19)



Assuming that (RL, tL) is an error-free transformation, the new
error description (Σ′,c′) for (R′, t ′) is computed using the following
equations:

Σ
′ = AL ΣAT

L (20)
c′ = RL c+ tL (21)

where AL is a 6×6 matrix defined as follows:

AL =

[
RL 0
0 RL

]
(22)

A.3 Pose Inversion

A B

6DOF+Σ

6DOF+Σ

Exchanging the world and target coordinate systems corresponds
to a matrix inversion:[

R′ t ′
0 1

]
=

[
R t
0 1

]−1
=

[
R−1 −R−1 t

0 1

]
(23)

Transforming both covariance matrix and centroid from world
into the target coordinate frame yields the new error description
(Σ′,c′):

Σ
′ = AI ΣAT

I (24)

c′ = R−1 (c− t) (25)

where AI is a 6×6 matrix defined as follows:

AI =

[
R−1 0

0 R−1

]
(26)

A.4 Transformation of a Point of Interest

W T

<<attached> or

<<observed>>

6DOF+Σ

P

3D

3D+Σ

Let p be the world coordinate location of a point of interest that
is rigidly attached to the target. The uncertainty in the location of
p caused by the measurement uncertainty of the target is computed
using the following equation:

Σp =
[

I3×3 [p− c]×
]

Σ
[

I3×3 [p− c]×
]T (27)

where Σp is a 3× 3 covariance matrix that describes the location
uncertainty of p in world coordinates and [p− c]× is a 3× 3 anti-
symmetric matrix as defined earlier.

Note that the same equation holds when p is a point in the world
that is observed by a camera attached to the target. In this case, the
resulting covariance describes the uncertainty in the observation of
p (in world coordinates).

A.5 Combination of two Pose Measurements

W T2

<<observed>>

6DOF+Σ

P

3D
3D+Σ

6DOF+ΣT1

<<attached>>

A slightly more complicated case typically appears in AR ap-
plications: a point of interest is rigidly attached to one target and
observed by another. For instance, a doctor may look through a
tracked HMD onto a PoI that lies on a patient with an attached
tracking target. In this case we are interested in the combined error
that results from tracking errors in both targets, propagated to the
point of interest.

To compute the resulting position of the PoI relative to the HMD
(T2), one normally would first invert the transformation W→T2
multiply the result with W→T1 and then use the result to transform
the PoI into the coordinate system T2. Unfortunately, we cannot
easily apply our error representation onto the multiplication of two
uncertain poses, as the product would no longer have well-defined
center of rotational error.

However, given a single point of interest p, whose coordinates
relative to T1 and T2 are given by pT1 and pT2 respectively, we can
express the observation process by the following equation:

pT2 = ẼR2 (R̃2 (ER1 (R1 pT1+t1−c1)+c1+et1)+ t̃2− c̃2)+ c̃2+ ẽt2
(28)

where R̃2, t̃2, ẼR2, ẽt2 and c2 are the parameters of the inverted
transformation W→T2 as defined in section A.3. Applying the for-
ward propagation of covariance and transforming the result back to
the world coordinate system, we obtain the following simple equa-
tion:

Σ
′
p = Σ

T1
p +Σ

T2
p2 (29)

where ΣT1
p and ΣT2

p2 are the 3×3 covariance matrices resulting from
the PoI transformation as given by equation 27, using the parame-
ters of W→T1 and W→T2 respectively.

In short, the combined error at a point of interest is computed by
summing up the covariance matrices resulting from the individual
PoI propagations.


