
DepthSynth: Real-Time Realistic Synthetic Data Generation from CAD Models
for 2.5D Recognition

Benjamin Planche1, Ziyan Wu2, Kai Ma3, Shanhui Sun3, Stefan Kluckner4, Oliver Lehmann3,
Terrence Chen3, Andreas Hutter1, Sergey Zakharov1, Harald Kosch5, Jan Ernst2

1Siemens Corporate Technology, Germany
{benjamin.planche, andreas.hutter, sergey.zakharov}@siemens.com

2Siemens Corporate Technology, USA
{ziyan.wu, jan.ernst}@siemens.com

3Siemens Healthineers, USA
{kai.ma, shanhui.sun, oliver.lehmann, terrence.chen}@siemens.com

4Siemens Mobility, Germany
stefan.kluckner@siemens.com

5University of Passau, Germany
harald.kosch@uni-passau.de

Abstract

Recent progress in computer vision has been dominated
by deep neural networks trained over large amounts of la-
beled data. Collecting such datasets is however a tedious,
often impossible task; hence a surge in approaches relying
solely on synthetic data for their training. For depth images
however, discrepancies with real scans still noticeably af-
fect the end performance. We thus propose an end-to-end
framework which simulates the whole mechanism of these
devices, generating realistic depth data from 3D models by
comprehensively modeling vital factors e.g. sensor noise,
material reflectance, surface geometry. Not only does our
solution cover a wider range of sensors and achieve more
realistic results than previous methods, assessed through
extended evaluation, but we go further by measuring the
impact on the training of neural networks for various recog-
nition tasks; demonstrating how our pipeline seamlessly in-
tegrates such architectures and consistently enhances their
performance.

1. Introduction
Understanding the 3D shape or spatial layout of a real-

world object captured in a 2D image has been a classic com-
puter vision problem for decades [16, 54, 8]. However, with
the advent of low-cost depth sensors, specifically structured
light cameras [21] e.g. Microsoft Kinect, Intel RealSense,
its focus has seen a substantial paradigm shift. What in the
past revolved around interpretation of raw pixels in 2D pro-

RGB IR Depth

Figure 1. Synthetic sample generated by the proposed pipeline

jections has now become the analysis of real-valued depth
(2.5D) data. This has drastically increased the scope of
practical applications ranging from recovering 3D geometry
of complex surfaces [33, 28] to real-time recognition of hu-
man actions [41], inspiring research in automatic object de-
tection [13, 38, 43, 46], classification [23, 30, 38, 44, 45, 46]
and pose estimation [13, 27, 39].

While real data is commonly used for comparison and
training, a large number of these recent studies decompose
the problems to matching acquired depth images of real-
world objects to synthetic ones rendered from a database of
pre-existing 3D models [13, 38, 45, 27, 46, 44, 6]. With no
theoretical upper bound on obtaining synthetic images to ei-
ther train complex models for classification [49, 30, 53, 39]
or fill large databases for retrieval tasks [15, 51], research
continues to gain impetus in this direction.

Despite the simplicity of the above flavor of approaches,
their performance is often restrained by the lack of real-
ism (discrepancy with real data) or variability (limited con-
figurability) of their rendering process. As a workaround,
some approaches fine-tune their systems on a small set of
real scans [52]; but in many cases, access to real data is too

1

ar
X

iv
:1

70
2.

08
55

8v
2

 [
cs

.C
V

]
 2

8
N

ov
 2

01
7

CAD Model

Object Modeling

• Motion Control
• Illumination
• Material Properties
• Surface Micro-

Geometry Modeling

Camera Modeling

• Distortion
• Motion Blur
• Lens Grain
• Other Noise

Projector Modeling
• Pattern(s)
• Motion between

exposures
• Projector lens effects

OR

Reconstruction

Post-processing (compute shader)
• Smoothing
• Hole filling

Figure 2. Representation of DepthSynth pipeline.

scarce to bridge the discrepancy gap. Other methods try in-
stead to post-process the real images to clear some of their
noise, making them more similar to synthetic data but los-
ing details in the process [53] which can be crucial for tasks
such as pose estimation or fine-grained classification.

A practical approach to address this problem is thus to
generate more data, and in such a way that they mimic cap-
tured ones. This is however a non-trivial problem, as it is
extremely difficult to exhaustively enumerate all physical
variations of a given object—including surface geometry,
reflectance, deformation, etc. Addressing those challenges
in this paper, our key contributions are as follows: (a) we
introduce DepthSynth, an end-to-end pipeline to syntheti-
cally generate depth images from 3D models by virtually
and comprehensively reproducing the sensors mechanisms
(Figure 2), replicating realistic scenarios and thereby fa-
cilitating robust 2.5D applications, regardless the ulterior
choice of algorithm or feature space; (b) we systematically
evaluate and compare the quality of the resulting images
with theoretical models and other modern simulation meth-
ods; (c) we demonstrate the effectiveness and flexibility of
our tool by pairing it to a state-of-the-art method for two
recognition tasks.

The rest of the paper is organized as follows. In Sec-
tion 2, we provide a survey of pertinent work to the inter-
ested reader. Next, in Section 3, we introduce our frame-
work, detailing each step. In Section 4, we elaborate on
our experimental protocol; first comparing the sensing er-
rors induced by our tool to experimental data and theoretical
models; then demonstrating the usefulness of our method
by applying it to the pose estimation and classification tasks
used as examples. We finally conclude with insightful dis-
cussions in Section 5.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3. Examples of data generated, simulating a multi-shot
depth sensor: (a) Rendering of projected patterns under realis-
tic lighting and surface materials; (b) Ideal depth data; (c) Depth-
Synth generated data without motion or ambient light; (d) with
strong ambient light; (e) with motion between exposures (5 cm/s
constant speed); (f) with motion between exposures (10 cm/s con-
stant speed); (g) with vibration (2 cm amplitude); (h) with rolling
shutter effect (10 cm/s constant speed).

2. Related Work

With the popular advocacy of 2.5D/3D sensor for vision
applications, depth information is the support of active re-
search within computer vision. We emphasize on recent ap-
proaches which employ synthetic scans, and present previ-
ous methods to generate such 2.5D data from CAD models.
Depth-based Methods and Synthetic Data Crafting fea-
tures to efficiently detect objects, discriminate them, evalu-
ate their poses, etc. has long been a tedious task for com-
puter vision researchers. With the rise of machine learn-
ing algorithms, these existing models have been comple-
mented [39, 16, 48], before being almost fully replaced
by statistically-learned representations. Multiple recent ap-
proaches based on deep convolutional neural networks un-
equivocally outshone previous methods [53, 30, 49, 53, 50],
taking advantage of growing image datasets (such as Ima-
geNet [10]) for their extensive training. As a matter of fact,
collecting and accurately labeling large amounts of real data
is however an extremely tedious task, especially when 3D
poses are considered for ground truth.

In order to tackle this limitation, and concomitantly with
the emergence of 3D model databases, renewed efforts
[37, 50] were put into the synthetic extension of image or
depth scan datasets, by applying various deformations and
noise to the original pictures or by rendering images from
missing viewpoints. These augmented datasets were then
used to train more flexible estimators. Among other deep
learning-based methods for class and pose retrieval recently
proposed [53, 30, 49], Wu et al. 3D Shapenets [53] and Su et
al. Render-for-CNN [50] methods are two great examples
of a second trend: using the ModelNet [53] and ShapeNet
[7] 3D model datasets they put together, they let their net-
works learn features from this purely synthetic data, achiev-
ing consistent results in object registration, next-best-view

prediction or pose estimation.
Diving further into the problem of depth-based object

classification and pose estimation chosen as illustration in
this paper, Wohlhart et al. [52] recently developed a scal-
able process addressing a two-degree-of-freedom pose es-
timation problem. Their approach evaluates the similar-
ity between descriptors learned by a Convolutional Neural
Network (CNN) with Euclidean distance, followed by near-
est neighbor search. They trained their network with real
captured data, but also simplistic synthetic images rendered
from 3D models. In our work, this framework is extended to
recognizing 3D pose with six degrees of freedom (6-DOF),
and fed only with realistic synthetic images from Depth-
Synth. This way we achieve a significantly higher flexibil-
ity and scalability of the system, as well as a more seamless
application to real-world use cases.
Synthetic Depth Image Generation Early research along
this direction involves the work of [29, 5], wherein search
based on 3D representations are introduced. More recently,
Rozantsev et al. presented a thorough method for generating
synthetic images [38]. Instead of focusing on making them
look similar to real data for an empirical eye, they worked
on a similarity metric based on the features extracted during
the machine training. However, their model is tightly bound
to properties impairing regular cameras (e.g. lighting and
motion blur), which can’t be applied to depth sensors.

Su et al. worked concurrently on a similar pipeline [50],
optimizing a synthetic RGB image renderer for the train-
ing of CNNs. While working on finding the best compro-
mise between quality and scalability, they notice the ability
CNNs have to cheat at learning from too simplistic images
(e.g. by using the constant lighting to deduce the models
poses, or by relying too much on contours for pictures ren-
dered without background, etc.). Their pipeline has thus
been divided into three steps: the rendering from 3D mod-
els, using random lighting parameters; the alpha compo-
sition with background images sampled from the SUN397
dataset [18]; and randomized cropping. By outperforming
state-of-the-art pose estimation methods with their own one
trained on synthetic images, they demonstrated the benefits
such pipelines can bring to computer vision.

Composed of similar steps as the method above, Depth-
Synth can also be compared to the one by Landau et al.
[25, 24], reproducing the Microsoft Kinect’s behavior by
simulating the infrared capture and stereo-matching pro-
cess. Though their latter step inspired our own work, we
opted for a less empirical, more exhaustive and generic
model for the simulated projection and capture of pat-
tern(s). Similar simulation processes were also devel-
oped to reproduce the results of Time-of-Flight (ToF) sen-
sors [35, 19]. If this paper mostly focuses on single- or
multi-shot structured-light sensors, DepthSynth’s generic-
ity allows it to also simulate ToF sensors, using a subset of

Table 1. Comparing BlenSor [17], Landau’s pipeline [25, 24]
and ours on sensor noise types.

Type of Noise BlenSor Landau’s DepthSynth
Axial and Lateral Noise Yes Yes Yes
Specular Surface Yes No Yes
Non-specular Surface No No Yes
Structural Noise No Partial Yes
Lens Distortion and Effects No No Yes
Quantization Step Noise No Yes Yes
Motion and Rolling Shutter No No Yes
Shadow No Partial Yes

its operations (discarding the baseline distance within the
device, defining a simpler projector with phase shift, etc.).
Such a subset is then comparable to the method developed
by Keller et al. [19]. For the sake of completeness, tools
such as BlenSor[17], or pcl::simulation[12, 1] should also
be mentioned. However, such simulators were implemented
to help testing vision applications, and rely on a more sim-
plistic modeling of the sensors, e.g. ignoring reflectance
effects or using fractal noise for approximations.

3. Methodology
Our end-to-end pipeline for low-latency generation of re-

alistic depth images from 3D CAD data covers various types
of 3D/2.5D sensors including single-shot/multi-shot struc-
tured light sensors, as well as Time-of-Flight (ToF) sensors
(relatively simpler than structured-light ones to simulate,
using a sub-set of the pipeline’s components e.g. i.i.d. per-
pixel noise based on distance and object surface material,
etc.). From here, we will mostly focus on single-shot sen-
sors e.g. Microsoft Kinect, Occipital Structure and Xtion
Pro Live, given their popularity among the research commu-
nity. This proposed pipeline can be defined as a sequence of
procedures directly inspired by the underlying mechanism
of the sensors we are simulating; i.e. from pattern projec-
tion and capture, followed by pre-processing and depth re-
construction using the acquired image and original pattern,
to post-processing; as illustrated in Figure 2.

3.1. Understanding the Noise Causes

To realistically generate synthetic depth data, we need
first to understand the causes behind the various kinds of
noise one can find in the scans generated by real struc-
tured light sensors. We thus analyzed the different kinds of
noise impairing structured light sensors, and their sources
and characteristics. This study highlighted how each step
of the sensing process introduces its own artifacts. During
the initial step of projection and capture of the pattern(s),
noise can be induced by the lighting and material proper-
ties of the surfaces (too low or strong reflection of the pat-
tern), by the composition of the scene (e.g. pattern’s density
per unit area drops quadratically with increasing distance
causing axial noise, non-uniformity at edges causing lat-

eral noise, and objects obstructing the path of the emitter, of
the camera or both causing shadow noise), or by the sensor
structure itself (structural noise due to its low spatial reso-
lution or the warping of the pattern by the lenses). Further
errors and approximations are then introduced during the
block-matching and hole-filling operations—such as struc-
tural noise caused by the disparity-to-depth transform, band
noise caused by windowing effect during block correlation,
or growing step size as depth increases during quantization.

By using the proper rendering parameters and apply-
ing the described depth data reconstruction procedure, the
proposed synthetic data generation pipeline is able to ex-
haustively induce the aforementioned types of noise, un-
like other state-of-the-art depth data simulation methods, as
highlighted by the comparison in Table 1.

3.2. Pattern Projection and Capture

In the first part of the presented pipeline, a simulation
platform is used to reproduce the pattern projection and cap-
ture mechanism. Thanks to an extensive set of parameters,
this platform is able to behave like a large panel of depth
sensors. Indeed, any kind of pattern can first be provided as
an image asset/spotlight cookie for the projection, in order
to adapt to the sensing device one wants to simulate. More-
over, the intrinsic and extrinsic parameters of the camera
and projector are configurable.

Our procedure covers both the full calibration of struc-
tured light sensors and the reconstruction of their projected
pattern with the help of an extra camera. Once the orig-
inal pattern obtained, our pipeline automatically generates
a square version of it (to efficiently use spotlight simula-
tion with cookies, projected patterns need to be padded to
a square format for the 3D engine), followed by other dif-
ferent ones later used as reference in the block matching
procedure according to the camera resolution.

Once obtained, these parameters can be handed to the 3D
platform to initialize the simulation. The 3D models must
then be provided, along with their material(s). Even though
not all models come with realistic textures, the results qual-
ity highly depends on such characteristics—especially their
reflectance (physically based rendering model [36] or bidi-
rectional reflectance distribution function [40]).

Given a list of viewpoints, the platform will perform
each pattern capture and projection, simulating realistic illu-
mination sources and shadows, taking into account surface
and material characteristics. Along the object, the 3D scene
is thus populated with:
• A spot light projector, using the desired high resolution

pattern (e.g. 2000 px by 2000 px) as light cookie;
• A camera model, set up with the intrinsic and extrin-

sic parameters of the real sensor, separated from the
projector by the provided baseline distance in the hor-
izontal plan of the simulated device;

• Optionally additional light sources, to simulate the ef-
fect of environmental illuminations;
• Optionally other 3D models (e.g. ground, occluding

objects, etc.), to ornament the scene.
These settings and procedure allow our method to re-

produce complex realistic effects by manipulating camera
movement and exposure; e.g. rolling shutter effect can be
simulated by acquiring 1 pixel-line per exposure while the
camera is moving, or motion blur by averaging several ex-
posures over movement.

Using rendering components implemented by any recent
3D engine with the aforementioned parameters e.g. the vir-
tual light projector provided with the pattern(s) and a virtual
camera with the proper optical characteristics, we can sim-
ulate the light projection / capture procedures done by the
real devices, and obtain a “virtually captured” image with
the chosen resolution, similar to the intermediate output of
the devices (e.g. IR image of the projected pattern).

3.3. Pre-processing of Pattern Captures

This intermediate result, captured in real-time by the
virtual camera, is then pre-processed (fed into a compute
shader layer), in order to get closer to the original quality,
impinged by imaging sensor noise. In this module, noise ef-
fects are added, including radial and tangential lens distor-
tion, lens scratch and grain, motion blur, and independent
and identically distributed random noise.

3.4. Stereo-matching

Relying on the principles of stereo vision, the rendered
picture is then matched with its reference pattern, in order
to extract the depth information from their disparity map.
The emitted pattern and the resulting capture from the sen-
sor are here used as the stereo stimuli, with these two virtual
eyes (the projector and the camera) being separated by the
baseline distance b. The depth value z is then a direct func-
tion of the disparity d with z = f · b/d, where f is the focal
length in pixel of the receiver.

The disparity map is computed by applying a block-
matching process using small Sum of Absolute Differences
(SAD) windows to find the correspondences [20], sliding
the window along the epipolar line. The function value of
SAD for the location (x, y) on the captured image is:

FSAD(u, v) =

w−1∑
j

w−1∑
i

|Is(x+i, y+j)−It(x+u+i, y+v+j)|

(1)
where w is the window size, Is the image from the cam-
era, and It the pattern image. The matched location on the
pattern image can be obtained by:

(um, vm) = argmin
(u,v)

FSAD(u, v) (2)

(a)

IR
 im

ag
e

R
ec

o
n

st
ru

ct
ed

(b) (c) (d)
R

G
B

 im
ag

e
R

ec
o

n
st

ru
ct

ed

Figure 4. Examples of synthetic image pairs for target objects
(4 cubes of 0.2m3) with different placements and surface ma-
terials. Cubes in are separated by 5 cm in (a), and by 10 cm in (b,
c, d). Cubes have fully diffused material in (a, b), 20% reflective
material in (c), and 50% reflective material in (d).

CAD Model + Normal Map Reconstructed Depth IR Pattern Rendering

Figure 5. Example of the effects of surface conditions on the
simulation, applying a textured normal map to the target objects.

The disparity value d can be computed by:

d =

{
um − x horizontal stereo
vm − y vertical stereo (3)

Based on pixel offsets, each disparity value is an inte-
ger. Refinement is done by interpolating between the clos-
est matching block and its neighbors, achieving a sub-pixel
accuracy. Given the direct relation between z and d, the
possible disparity values are directly bound to the sensor’s
operational depth range, limiting the search range itself.

3.5. Post-processing of Depth Scans

Finally, another compute shader layer post-processes the
depth maps, smoothing and trimming them according to the
sensor’s specifications. In the case that these specifications
are not available, one can obtain reasonable estimation by
feeding real images of captured pattern(s) from the sensor
through the reconstruction pipeline and derive from the dif-
ferences between this reconstructed depth image and the
one actually output by the sensor. Imitating once more the
original systems, a hole-filling step can be performed to re-
duce the proportion of missing data.

Figures 4 and 5 show how DepthSynth is able to real-
istically reproduce the spatial sensitivity of the devices or
the impact of surface materials. In the same way, Figure 3
(c)-(h) reveals how the data quality of simulated multi-shot
structured light sensors is highly sensitive to motion—an
observation in accordance to our expectations. As high-
lighted in Figures 6 and 7 with the visual comparisons be-
tween DepthSynth and previous pipelines, the latter ones

Fine Structures Structural loss

Quantization

Lateral

Incident angle

Reflection

DepthSynth BlenSor

Figure 6. Detailed visual comparison with BlenSor [17] high-
lighting the salient differences, based on the noise study presented
in Subsection 3.1.

Shadow Caused by Baseline

Reflective Surface

Ambient Illumination

Background

Wrong Depth Value

Sharp Noise

Landau’s DepthSynth

RGB Rendering

Distorted Pattern

Figure 7. Detailed visual comparison with Landau’s solu-
tion [25, 24], based on the noise study presented in Subsection 3.1.

aren’t sensitive to some realistic effects during capture, or
preserve fine details which are actually smoothed-out up to
the window size in block-matching. Our determination to
closely reproduce the whole process performed by the de-
vices paid off in terms of noise quality.

3.6. Background Blending

Most of the depth rendering tools chose to ignore back-
ground addition e.g. by alpha compositing, causing signif-
icant discrepancy with real data and biasing the learner.
Background modeling is hence another key component of
DepthSynth. Added backgrounds can be: (1) from static
predefined geometry; (2) from predefined geometry with
motion; (3) with large amounts of random primitive shapes;
(4) real captured scans (e.g. from public datasets).

Optimized for GPU operations, the whole process can

1

10

100

1000

10 20 30 40 50 60 70 80

Lo
g

Sc
al

e
 o

f
St

an
d

ar
d

 D
e

p
th

 E
rr

o
r

(m
m

)

Angle of tilted plane (deg)

BlenSor's (1000mm)

BlenSor's (1400mm)

Landau's (1000mm)

Landau's (1400mm)

Exp. (1000mm)

Exp. (1400mm)

Ours (1000mm)

Ours (1400mm)

0

10

20

30

40

50

800 1600 2400 3200 4000

St
an

d
ar

d
 D

e
p

th
 E

rr
o

r
(m

m
)

Distance to vertical plane (mm)

Choo Model

Nguyen Model

Menna Model

Experimental Data

BlenSor Data

Landau Data

Our Data

(A) (B)

0

5

10

15

20

25

30

20 70 120 170 220

St
an

d
ar

d
 D

ep
th

 E
rr

o
r

(m
m

)

Distance from center of focal plane (px)

Exp. 800 mm 1600 mm

2400 mm 3200 mm

0

5

10

15

20

25

30

20 70 120 170 220

St
an

d
ar

d
 D

ep
th

 E
rr

o
r

(m
m

) Ours 800 mm 1600 mm

2400 mm 3200 mm

0

5

10

15

20

25

30

20 70 120 170 220

St
an

d
ar

d
 D

ep
th

 E
rr

o
r

(m
m

) Landau's 800 mm 1600 mm

2400 mm 3200 mm

(C)

Distance from center of focal plane (px) Distance from center of focal plane (px)

0

5

10

15

20

25

30

20 70 120 170 220

St
an

d
ar

d
 D

ep
th

 E
rr

o
r

(m
m

)

Distance from center of focal plane (px)

BlenSor's 800 mm 1600 mm

2400 mm 3200 mm

Figure 8. Standard depth error (in mm) as a function of (A) the distance (in mm) to a vertical flat wall for various fixed distances; (B) its
tilt angle (in deg) for various fixed distances; (C) the radial distance (in px) to the focal center, plotted for the experimental images and the
synthetic data from the various solutions, for various fixed distances.

generate ˜10 scans (VGA resolution) and their metadata
(e.g. viewpoints) per second on a middle-range computer
(Intel E5-1620v2, 16GB RAM, NVidia Quadro K4200).

4. Experiments and Results
To demonstrate the accuracy and practicality of our

method, we first analyze in Subsection 4.1 the depth error it
induces when simulating the Kinect device, comparing with
other simulation tools, experimental depth images and theo-
retical models for this device. In Subsection 4.2, we adapt a
state-of-the-art algorithm for classification and pose estima-
tion to demonstrate how supervised 2.5D recognition meth-
ods benefit from using our data. The pipeline developed for
these evaluations makes use of Unity 3D Game Engine [11]
(for rendering) and OpenCV [4] (for stereomatching).

4.1. Depth Error Evaluation

To validate the correctness of our simulation pipeline,
we first replicate the set of experiments used by Landau et
al. [25, 24], to compare the depth error induced by Depth-
Synth to experimental values, as well as to the results from
Landau et al. [25, 24], from BlenSor [17] and from 3
Kinect error models—respectively from Menna et al. [31],
Nguyen et al. [34] and Choo et al. [9, 24]. All datasets con-
sist of scans of a flat surface placed in front of the sensor
at various distances and tilt angles to the focal plane. The
experimental data was kindly provided by Landau [25, 24].

Figure 8(A) shows how the distance between the plane
and the sensor influences the standard depth error in the

resulting scans. The trend in our synthetic data matches
well the one observed in experimental scans, and Choo et
al. model recalibrated by Landau on the same experimen-
tal data [24]. As noted in [24], these models are based on
experimental results which are inherently correlated to the
characteristics of their environment and sensor. We could
expect other data not to perfectly align with such models (as
proved by the discrepancies among them). We can still no-
tice that our synthetic images’ quality degenerates slightly
more for larger distances than the real scans, though our
method behaves overall more realistically than the others.

In Figure 8(B), we evaluate how the synthetic methods
fares when gradually tilting the plane from orthogonal to
almost parallel to the optical axis. The errors induced by
our tool matches closely the experimental results for tilt an-
gles below 70◦, with some overestimation for steeper an-
gles but a similar trend, unlike the other methods. It should
be noted that for such incident angles, both real scans and
DepthSynth ones have most of the depth information miss-
ing, due to the poor reflection and stretching of the projected
pattern(s), heavily impairing the reconstruction.

As a final experiment related to the error modeling, we
compute the standard depth error as a function of the ra-
dial distance to the focal center. Again, Figure 8(C) shows
us that our pipeline behaves the most realistically, despite
inducing slightly more noise for larger distances and thus
more distorted pattern(s). DepthSynth even satisfyingly re-
produces the oscillating evolution of the noise when in-
creasing the distance and reaching the edges of the scans—

a well-documented phenomenon caused by ”wiggling” and
distortion of the pattern(s) [14, 22].

4.2. Application to 6-DOF Pose Estimation and
Classification

Among the applications which can benefit from our
pipeline, we formulate a 6-DOF camera pose recognition
and classification problem from a single 2.5D scan into an
image retrieval problem, supposing no real images can be
acquired for the training of the chosen method. However
in possession of the 3D models, we discretize Np camera
poses, generate the synthetic 2.5D image for each pose and
each object using DepthSynth, and encode each picture via
a discriminative, low-dimension image representation with
its corresponding class and camera pose. We build this way
a database for pose and class retrieval problems. Given an
unseen image, its representation is thus computed the same
way and queried in the database to find the K-nearest neigh-
bor(s) and return the corresponding class and pose.

To demonstrate the advantages of using DepthSynth data
irrespective of the selected features, we adapt Wohlhart et
al. “triplet method” [52] which uses case-specific computer-
crafted image representations generated by a CNN. We
thus use a CNN (LeNet structure [26] with custom hyper-
parameters – two 5×5 convolution layers, each followed by
a ReLu layer and a 2×2 Max pooling layer; and finally two
fully connected layers leading to the output one, also fully
connected, as shown in Figure 9) to learn the discriminating
features by enforcing a loss function presented in [52], over
all the CNN weights w:

L = Ltriplet + Lpairwise + λ‖w‖22, (4)

whereLtriplet is the triplet loss function, Lpairwise the pair-
wise one, and λ the regularization factor. A triplet is defined
as (pi, p+i , p−i), with pi one class and pose sampling point,
p+i a point close to pi (similar class and/or pose) and p−i an-
other one far from p+i (different class and/or pose). A pair
is defined as (pi, p′i), with pi one sampling point and p′i its
perturbation in terms of pose and noise, to enforce proxim-
ity between the descriptors of similar data. Given a margin
m, Lpairwise is defined as the sum of the squared Euclidean
distances between f(pi) and f(p′i), and Ltriplet as:

Ltriplet =
∑

(pi,p
+
i ,p−

i)

max(0, 1− ‖f(pi)− f(p−i)‖2
‖f(pi)− f(p+i)‖2 +m

), (5)

Given such a state-of-the-art recognition method, we
present the experiments to validate our solution and discuss
their results.
Data Preparation As target models for the experiment, we
select three similar-looking office chairs, with their CAD
models obtained from the manufacturers’ websites (Fig-
ure 10). The following procedure is performed to capture

convolution ReLu Pool convolution ReLu Pool Fully connected Fully connected

ReLu ReLu Output 5x5 2x2 5x5 2x2

300 100 10 40 80

Figure 9. CNN architecture used in our experiment.

Chair A Chair B Chair C

Figure 10. CAD models and sample real images used in the ex-
periments (note the strong similarities among these chairs).

(a) (b) (c)

Figure 11. Real data acquisition and processing. (a) Sample real
depth data. (b) Sample RGB data with markers. (c) Recovered
trajectory (poses) for each samples, along markers for Chair C.

Figure 12. Sample synthetic data generated by DepthSynth.

the real 2.5D dataset and its ground-truth pose annotations:
AR markers are placed on the floor around each chair, an
Occipital Structure sensor is mounted on a tablet, and its in-
frared camera is calibrated according to the RGB camera of
the tablet. Using this table, an operator captures sequences
of RGBD frames walking around the chairs (Figure 11).

In a comprehensive and redundant annotation procedure
using robust Direct Linear Transform, we manually gener-
ate 2D-3D correspondences on chairs regions based on vi-
sual landmarks, choosing a representative set of approxi-
mately 60 frames. These estimated camera poses and the
detected 2D locations of markers are used to generate tri-

Clean/Clean

Clean+FT/Clean

Blensor/Clean

Blensor/Blensor

Blensor+FT/Blensor

Ours/Clean

Ours/Ours

Ours+FT/Ours 62,9

76,5

70,2

74,7

83,6

71,5

86,4 87,7

60

70

80

90

100

0

20

40

60

80

100

0

10

20

30

40

50

60

70

80

90

10
0

C
D

F
(%

)

0

20

40

60

80

100

0 200 400 600 800 1000

C
D

F
(%

)

(A) (B) (C)
Max Translational Error (mm) Max Rotational Error (deg) Recognition Accuracy (%)

Figure 13. Cumulative Distribution Function (CDF) on errors (A) in translation and (B) in rotation for pose estimation on the Chair
C dataset. (C) Classification results over the 3-Chairs dataset, using the method trained over different datasets. (“FT” = “fine-tuning”)

angulated 3D markers locations in the CAD coordinate sys-
tem. Given the objects’ movable parts, the actual chairs
deviate from their model. We thus iteratively reduce the de-
viation for the final ground-truth sequence by verifying the
reprojections, and the consistency of the triangulated mark-
ers positions relative to the chairs elements.

The IR and RGB camera calibration parameters are then
used to align the depth scans into the common 3D coordi-
nate system. In a final fine-tuning step, the poses and 3D
models are fed into the simulation pipeline, to generate the
corresponding noiseless depth maps, used by an Iterative
Closest Point method [2] to be aligned to the real images;
optimizing the ground-truth for our real test dataset.
Evaluation on Pose Estimation As a first experiment, we
limit the aforementioned approach to pose estimation only,
training and testing it over the data of Chair C. For the CNN
training, 30k synthetic depth scans rendered with CAD
model and floor plane as shown in Figure 12, are used to
form 100k samples (triplets + pairs). The learned repre-
sentation is then applied for the indexation of all the 30k
images, using FLANN [32]. For testing, the representations
of the 1024 depth images forming the real testing dataset
are extracted and indexed. For each, the nearest neighbor’s
pose is then rendered and aligned to the input scan to refine
the final 3D pose estimation.

To demonstrate how the quality of the synthetic training
data impacts the estimation, three different datasets are gen-
erated; resp. using noiseless rendering, BlenSor, and Depth-
Synth. Each dataset is used either for both representation-
learning and indexing; or only for learning, with the clean
dataset used for indexing. We also further apply some fine-
tuning (FT) to the CNN training, feeding it with 200 real
scans, forming 3k samples (triplets + pairs). Estimated 3D
poses are compared to the ground-truth ones, and the Cu-
mulative Distribution Functions on errors in rotation and
translation are shown in Figure 13(A-B).

It reveals how the method trained over DepthSynth data
gives consistently better results on both translation and rota-
tion estimations; furthermore not gaining much in accuracy

after fine-tuning with real data.
Evaluation on Classification We consider in a second time
the classification problem for the 3 chairs. Using the same
synthetic training datasets extended to all 3 objects, we eval-
uate the accuracy of the recognition method over a testing
dataset of 1024 real depth images for each chair, taking
as final estimation the class of the nearest neighbor in the
database for each extracted image representation.

Despite the strong similarities among the objects, the
recognition method is performing quite well, as shown in
Figure 13(C). Again, it can be seen that it gives consistently
better results when trained over our synthetic data; and that
unlike other training datasets, ours doesn’t gain much from
the addition of real data, validating its inherent realism.

5. Conclusion

We presented DepthSynth, a pipeline to generate large
depth image datasets from 3D models, simulating the mech-
anisms of a wide panel of depth sensors to achieve unique
realism with minimum effort. We not only demonstrated the
improvements in terms of noise quality compared to state-
of-the-art methods; but also went further than these previ-
ous works by showcasing how our solution can be used to
train recent 2.5D recognition methods, outperforming the
original results using lower-quality training data.

We thus believe this concept will prove itself greatly
useful to the community, leveraging the parallel efforts to
gather detailed 3D datasets. The generation of realistic
depth data and corresponding ground truth can promote a
large number of data-driven algorithms, by providing the
training and benchmarking resources they need. We plan
to further demonstrate this in a near future, applying our
pipeline to tasks of larger-scale (e.g. semantic segmentation
of the NYU depth dataset [43], using SUNCG models [47]
as input for our pipeline) . We are also curious to compare—
and maybe combine—DepthSynth with recent GAN-based
methods such those developed by Shrivastava et al. [42] or
Bousmalis et al. [3].

References
[1] A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger,

C. Potthast, B. Zeisl, R. B. Rusu, S. Gedikli, and M. Vincze.
Point cloud library. IEEE Robotics & Automation Magazine,
1070(9932/12), 2012. 3

[2] P. Besl and D. McKay. Method for registration of 3-d shapes.
In Robotics-DL tentative, pages 586–606. International So-
ciety for Optics and Photonics, 1992. 8

[3] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and
D. Krishnan. Unsupervised pixel-level domain adapta-
tion with generative adversarial networks. arXiv preprint
arXiv:1612.05424, 2016. 9

[4] G. Bradski. Dr. Dobb’s Journal of Software Tools. 6
[5] R. A. Brooks, R. Creiner, and T. O. Binford. The acronym

model-based vision system. In Proceedings of the 6th Inter-
national Joint Conference on Artificial Intelligence - Volume
1, IJCAI’79, pages 105–113. Morgan Kaufmann Publishers
Inc., 1979. 3

[6] F. M. Carlucci, P. Russo, and B. Caputo. A deep represen-
tation for depth images from synthetic data. arXiv preprint
arXiv:1609.09713, 2016. 1

[7] A. X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan,
Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su,
J. Xiao, L. Yi, and F. Yu. ShapeNet: An Information-Rich
3D Model Repository. Technical Report arXiv:1512.03012
[cs.GR], Stanford University — Princeton University —
Toyota Technological Institute at Chicago, 2015. 2

[8] D.-Y. Chen, X.-P. Tian, Y.-T. Shen, and M. Ouhyoung. On
visual similarity based 3d model retrieval. In Computer
graphics forum, volume 22, pages 223–232. Wiley Online
Library, 2003. 1

[9] B. Choo, M. Landau, M. DeVore, and P. A. Beling. Statistical
analysis-based error models for the microsoft kinecttm depth
sensor. Sensors, 14(9):17430–17450, 2014. 6

[10] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-
Fei. Imagenet: A large-scale hierarchical image database.
In Computer Vision and Pattern Recognition, 2009. CVPR
2009. IEEE Conference on, pages 248–255. IEEE, 2009. 2

[11] U. G. Engine. Unity game engine-official site. On-
line][Cited: October 9, 2008.] http://unity3d. com, pages
1534–4320. 6

[12] M. F. Fallon, H. Johannsson, and J. J. Leonard.
Point cloud simulation & applications, 2012.
http://www.pointclouds.org/assets/icra2012/localization.pdf.
Accessed: 2015-09-23. 3

[13] S. Fidler, S. Dickinson, and R. Urtasun. 3d object detec-
tion and viewpoint estimation with a deformable 3d cuboid
model. In NIPS, pages 611–619, 2012. 1

[14] P. Fürsattel, S. Placht, M. Balda, C. Schaller, H. Hofmann,
A. Maier, and C. Riess. A comparative error analysis of cur-
rent time-of-flight sensors. IEEE Transactions on Computa-
tional Imaging, 2(1):27–41, 2016. 7

[15] A. Geiger, M. Roser, and R. Urtasun. Efficient large-scale
stereo matching. In ACCV, pages 25–38, 2011. 1

[16] S. Gold, A. Rangarajan, C. ping Lu, and E. Mjolsness.
New algorithms for 2d and 3d point matching: Pose estima-

tion and correspondence. Pattern Recognition, 31:957–964,
1997. 1, 2

[17] M. Gschwandtner, R. Kwitt, A. Uhl, and W. Pree. Blensor:
blender sensor simulation toolbox. In Advances in Visual
Computing, pages 199–208. Springer, 2011. 3, 5, 6

[18] K. E. A. O. J. Xiao, J. Hays and A. Torralba. Sun database:
Large-scale scene recognition from abbey to zoo. In Com-
puter Vision and Pattern Recognition, 2010. CVPR 2010.
IEEE Conference on, pages 3485–3492. Springer, 2010. 3

[19] M. Keller and A. Kolb. Real-time simulation of time-of-
flight sensors. Simulation Modelling Practice and Theory,
17(5):967–978, 2009. 3

[20] K. Konolige. Small vision systems: Hardware and imple-
mentation. In Robotics Research, pages 203–212. Springer,
1998. 4

[21] K. N. Kutulakos and E. Steger. A theory of refractive and
specular 3d shape by light-path triangulation. In IEEE ICCV,
pages 1448–1455, 2005. 1

[22] E. Lachat, H. Macher, M. Mittet, T. Landes, and P. Grussen-
meyer. First experiences with kinect v2 sensor for close
range 3d modelling. The International Archives of Pho-
togrammetry, Remote Sensing and Spatial Information Sci-
ences, 40(5):93, 2015. 7

[23] K. Lai, L. Bo, X. Ren, and D. Fox. A large-scale hierarchical
multi-view rgb-d object dataset. In IEEE ICRA, pages 1817–
1824. IEEE, 2011. 1

[24] M. J. Landau. Optimal 6D Object Pose Estimation with Com-
modity Depth Sensors. PhD thesis, University of Virginia,
2016. http://search.lib.virginia.edu/catalog/hq37vn57m. Ac-
cessed: 2016-10-20. 3, 5, 6

[25] M. J. Landau, B. Y. Choo, and P. A. Beling. Simulating
kinect infrared and depth images. 2015. 3, 5, 6

[26] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-
based learning applied to document recognition. 7

[27] J. J. Lim, H. Pirsiavash, and A. Torralba. Parsing ikea ob-
jects: Fine pose estimation. In IEEE ICCV, pages 2992–
2999. IEEE, 2013. 1

[28] Y. Ma, K. Boos, J. Ferguson, D. Patterson, and K. Jonaitis.
Collaborative geometry-aware augmented reality with depth
sensors. In Proceedings of the 2014 ACM International Joint
Conference on Pervasive and Ubiquitous Computing: Ad-
junct Publication, pages 251–254. ACM, 2014. 1

[29] D. Marr and H. K. Nishihara. Representation and recogni-
tion of the spatial organization of three-dimensional shapes.
Proceedings of the Royal Society of London B: Biological
Sciences, 200(1140):269–294, 1978. 3

[30] D. Maturana and S. Scherer. Voxnet: A 3d convolutional
neural network for real-time object recognition. In IEEE
IROS, September 2015. 1, 2

[31] F. Menna, F. Remondino, R. Battisti, and E. Nocerino. Geo-
metric investigation of a gaming active device. In SPIE Opti-
cal Metrology, pages 80850G–80850G. International Society
for Optics and Photonics, 2011. 6

[32] M. Muja and D. G. Lowe. Scalable nearest neighbor algo-
rithms for high dimensional data. Pattern Analysis and Ma-
chine Intelligence, IEEE Transactions on, 36, 2014. 8

http://www.pointclouds.org/assets/icra2012/localization.pdf
http://search.lib.virginia.edu/catalog/hq37vn57m

[33] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux,
D. Kim, A. J. Davison, P. Kohli, J. Shotton, S. Hodges, and
A. Fitzgibbon. Kinectfusion: Real-time dense surface map-
ping and tracking. In Proceedings of the 2011 10th IEEE
International Symposium on Mixed and Augmented Reality,
ISMAR ’11, pages 127–136, 2011. 1

[34] C. V. Nguyen, S. Izadi, and D. Lovell. Modeling kinect sen-
sor noise for improved 3d reconstruction and tracking. In 3D
Imaging, Modeling, Processing, Visualization and Transmis-
sion (3DIMPVT), 2012 Second International Conference on,
pages 524–530. IEEE, 2012. 6

[35] V. Peters and O. Loffeld. A bistatic simulation approach for a
high-resolution 3d pmd (photonic mixer device)-camera. In-
ternational Journal of Intelligent Systems Technologies and
Applications, 5(3-4):414–424, 2008. 3

[36] M. Pharr, W. Jakob, and G. Humphreys. Physically based
rendering: From theory to implementation. Morgan Kauf-
mann, 2016. 4

[37] K. Rematas, T. Ritschel, M. Fritz, and T. Tuytelaars. Image-
based synthesis and re-synthesis of viewpoints guided by
3d models. In Computer Vision and Pattern Recogni-
tion (CVPR), 2014 IEEE Conference on, pages 3898–3905.
IEEE, 2014. 2

[38] A. Rozantsev, V. Lepetit, and P. Fua. On rendering synthetic
images for training an object detector. Computer Vision and
Image Understanding, 2015. 1, 3

[39] A. Saxena, J. Driemeyer, and A. Y. Ng. Learning 3-d object
orientation from images. In IEEE ICRA, pages 4266–4272,
2009. 1, 2

[40] C. Schlick. An inexpensive brdf model for physically-based
rendering. In Computer graphics forum, volume 13, pages
233–246. Wiley Online Library, 1994. 4

[41] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio,
R. Moore, A. Kipman, and A. Blake. Real-time human pose
recognition in parts from a single depth image. In IEEE
CVPR, June 2011. 1

[42] A. Shrivastava, T. Pfister, O. Tuzel, J. Susskind, W. Wang,
and R. Webb. Learning from simulated and unsuper-
vised images through adversarial training. arXiv preprint
arXiv:1612.07828, 2016. 9

[43] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus. Indoor
segmentation and support inference from rgbd images. In
ECCV, pages 746–760. Springer, 2012. 1, 8

[44] A. Singh, J. Sha, K. S. Narayan, T. Achim, and P. Abbeel.
Bigbird: A large-scale 3d database of object instances. In
IEEE ICRA, pages 509–516. IEEE, 2014. 1

[45] R. Socher, B. Huval, B. Bath, C. D. Manning, and A. Y. Ng.
Convolutional-recursive deep learning for 3d object classifi-
cation. In NIPS, pages 665–673, 2012. 1

[46] S. Song, S. P. Lichtenberg, and J. Xiao. Sun rgb-d: A rgb-d
scene understanding benchmark suite. In IEEE CVPR, pages
567–576, 2015. 1

[47] S. Song, F. Yu, A. Zeng, A. X. Chang, M. Savva, and
T. Funkhouser. Semantic scene completion from a single
depth image. arXiv preprint arXiv:1611.08974, 2016. 8

[48] M. Stark, M. Goesele, and B. Schiele. Back to the future:
Learning shape models from 3d cad data. In BMVC, pages
106.1–106.11. BMVA Press, 2010. 2

[49] H. Su, S. Maji, E. Kalogerakis, and E. G. Learned-Miller.
Multi-view convolutional neural networks for 3d shape
recognition. In IEEE ICCV, 2015. 1, 2

[50] H. Su, C. R. Qi, Y. Li, and L. J. Guibas. Render for CNN:
viewpoint estimation in images using cnns trained with ren-
dered 3d model views. CoRR, abs/1505.05641, 2015. 2, 3

[51] Y. Wang, J. Feng, Z. Wu, J. Wang, and S.-F. Chang. From
low-cost depth sensors to cad: Cross-domain 3d shape re-
trieval via regression tree fields. In ECCV, September 2014.
1

[52] P. Wohlhart and V. Lepetit. Learning descriptors for object
recognition and 3d pose estimation. In IEEE CVPR, pages
3109–3118, 2015. 1, 3, 7

[53] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and
J. Xiao. 3d shapenets: A deep representation for volumetric
shapes. In IEEE CVPR, pages 1912–1920, 2015. 1, 2

[54] R. Zhang, P.-S. Tsai, J. Cryer, and M. Shah. Shape-from-
shading: a survey. IEEE TPAMI, 21(8):690–706, 1999. 1

