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Abstract. In this paper we propose a novel augmentation technique
that improves not only the performance of deep neural networks on clean
test data, but also significantly increases their robustness to random
transformations, both affine and projective. Inspired by ManiFool, the
augmentation is performed by a line-search manifold-exploration method
that learns affine geometric transformations that lead to the misclassifi-
cation on an image, while ensuring that it remains on the same manifold
as the training data.
This augmentation method populates any training dataset with images
that lie on the border of the manifolds between two-classes and maxi-
mizes the variance the network is exposed to during training. Our method
was thoroughly evaluated on the challenging tasks of fine-grained skin
lesion classification from limited data, and breast tumor classification of
mammograms. Compared with traditional augmentation methods, and
with images synthesized by Generative Adversarial Networks our method
not only achieves state-of-the-art performance but also significantly im-
proves the network’s robustness.

Keywords: Manifold Learning · Deep Learning · Data Augmentation ·
Skin Lesion Classification · Breast Tumor Classification.

1 Introduction

Recently, medical imaging tasks such as classification, segmentation and registra-
tion have been successfully carried out with state-of-the-art performance by deep
learning models, which have found their way into a plethora of Computer As-
sisted Diagnosis and Intervention (CAD/I) Systems which aid physicians. How-
ever, medical imaging datasets utilized to train such models are often charac-
terized by large class variability, severe class imbalance, outliers, inter-observer
variability, ambiguity and most prominently limited data. The aforementioned
problems hinder the training of neural networks and lead to sub-optimal and
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Fig. 1: Schematic representation of proposed augmentation: The proposed aug-
mentation scheme based on ManiFool explores the present classes towards the decision
boundaries, thus adding more relevant training samples x

(i)
τ than random augmentation

(checkerboard pattern) which explores the space around the original training samples x
locally. Additionally, it is ensured that samples from ManiFool Augmentation originate
from the ground truth class.

overfit solutions. Moreover, deep learning models deployed by physicians in a
CAD/I system must be thoroughly evaluated, with respect to not only their
generalizability, i.e. performance on data originating from a given test set, but
also their behavior on data corrupted by noise, unknown transformations and
outliers, which can be described by the term robustness. Data augmentation
describes the act of increasing the size and variance of a given dataset to train a
machine learning model, in order to achieve better generalizability and capture
a better understanding of the underlying distribution of the training data. The
manifold of a class learned by a classifier can be perceived as the space that
represents the distribution of the training data.

In this work our contribution is two-fold: We propose a novel data aug-
mentation technique, utilizing an exhaustive manifold-exploration method that
increases the performance of a deep learning model on the provided test set,
and significantly improves its robustness to random geometric transformations.
Furthermore, we provide quantitative measures to assess a classifier’s robust-
ness. Such a measure provides a significant step towards a thorough evaluation
of machine learning models; a highly valuable step towards the safe and success-
ful deployment of trained models by physicians in real-world scenarios involving
patient diagnosis and treatment.
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ManiFool Augmentation is performed by populating the training dataset for
a given task with samples transformed with optimized affine geometric transfor-
mations. The method is outlined in Fig. 1, where it is contrasted with traditional
data augmentation performed with random transformations. The algorithm uti-
lized to craft samples leveraged for data augmentation is inspired by ManiFool [1]
(discussed in Section 2) and the intuition behind it is rather simple: Move an im-
age via affine geometric transformations iteratively towards a classifier’s decision
boundary by following the direction that maximizes the gradient. After every
step, project the calculated movement back onto the original training manifold
of the class of the image being transformed. This process is repeated iteratively
until either a transformation is found that causes the network to misclassify the
transformed sample or a pre-defined maximum amount of steps is reached. In
case of misclassification, we have crossed the decision boundary and stepped on
the manifold of another class. We then backtrack to the manifold of the orig-
inal class and use this calculated transformated for data augmentation during
training.

Contrary to traditional augmentation methods with random transformations,
ManiFool Augmentation ensures that the space explored by the network during
training is not limited to the local vicinity of a training sample. Instead, aug-
mentations are found globally up to the edges of each class-manifold for the
whole training set as can be seen in Fig. 1. An effective augmentation technique
should be able to ensure that the samples leveraged to increase the population of
the training dataset originate from the same manifold as the original data. Aug-
menting the training dataset with samples from a different distribution would
not necessarily facilitate the model with learning a better embedding for each of
the classes, but would rather encourage it, to map the same class to two different
sub-spaces, one for each training manifold.

Exhaustive experimentation on two challenging medical datasets showcases
that the proposed augmentation technique does not only increase the robustness
of a model to geometric transformations, but it also significantly improves its
performance on the original test data. This is additionally highlighted by cross-
dataset testing, where networks trained with ManiFool Augmentation were able
to better capture the underlying distribution of the training data.

Related Work Many have taken steps in addressing the problem of limited
data in deep learning applications in order to improve model accuracy without
carrying the burden of costly data acquisition. Approaches range from elastic
transformations [2], noise generation in a learned features space [3], to repeat,
rotate and infill approaches whereby a known sample is scaled and rotated in a
grid pattern, and background consistency is ensured [4]. Fawzi et. al. proposed an
algorithm for augmentation which can be integrated into the process of stochastic
gradient decent and seeks an augmented sample with the greatest loss within a
constrained exploration space or ”trust region” [5].

Data augmentation has also been extensively formulated as a learning task. [6]
show significant improvement in accuracy of hand-written-digit classification
with a method deploying DAGAN. AutoAugment, formulates the augmentation
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task as a discrete search problem in which the search algorithm itself is based
on a reinforcement learning approach that strives to ”learn” how to maximize
the total classification accuracy via augmentation [7].

Specifically in the field of medical deep learning applications, creative aug-
mentation approaches are necessary to combat the extreme lack of annotated
data. [8] employed generated augmented samples and annotations via GANs to
improve CT brain segmentation under severe lack of training data. [9] reported
improved accuracy for liver segmentation by employing DCGANs for data aug-
mentation.

2 Method

ManiFool [1] is an iterative algorithm that can be applied to any differentiable
classifier f . In this Section we will discuss the mathematical operations that
generate a geometrically transformed example leveraged for data augmentation.

Movement Direction For an image x with ground truth label l and a binary
classifier f an iterative process of i steps is initialized and the original image can
be defined as x(0). Initially, ManiFool finds the movement direction u towards
the decision boundary of f , by following the opposite of the gradient, −∇f(x).
The gradient at the step i for the image x(i) is the projection of ∇f(x(i)) onto
the tangent space and can be calculated utilizing the pseudoinverse operation:

u = −J+
x(i)∇f(x(i)) = −(JT

x(i)Jx(i))−1JT
x(i)∇f(x(i)). (1)

Jx(i) is the Jacobian matrix and the calculated u is the direction towards the
decision boundary for step i.

To improve the accuracy and convergence speed during the calculation of u
a manifold optimization technique similar to [10] has been adopted:

u(i) = −λi
J+

x(i)∇f(x(i))

||J+
x(i)∇f(x(i))||

+ γu(i−1), (2)

where λi is the calculated step size of the iteration and γ is a constant momen-
tum.

Mapping onto the original manifold After the movement direction u is
calculated it is mapped back onto the manifold M of the ground truth class.

Following [1], this mapping is performed using retraction Rx(i)(u) = x
(i)
τi , where

τi is the affine transformation calculated as:

τi = exp

(∑
j

ujGj

)
. (3)

Gj are the basis vectors of the Lie Group T of the calculated affine geometric
transformation. There are two conditions for the termination of the algorithm,
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namely the misclassification of the calculated transformed image by the model
or reaching the maximum number of allowed iterations imax. After imax steps
the accumulative affine transformations applied to x(0) to generate the ManiFool
sample are given by:

τ̂ = τ0 ◦ τ1 ◦ . . . τImax
. (4)

Multi-class Classifiers The extension of the method from binary to multi-
class classifiers is straightforward: We generate a ManiFool sample for each of
the remaining classes, starting from the ground truth and based on the geodesic
distance l of the transformed to the original image we leverage the sample with
the smallest transformation τlmin . The class with the smallest geodesic distance
between the transformations can be found by:

lmin = arg min
l 6=lx

d̃x(0)(e, τl). (5)

In the following subsections we discuss how the distance d̃x(0) is calculated and
the significant role it plays as a measure of robustness for neural networks.

2.1 Invariance to Geometric Transformations

Geodesic Distance Between Transformations The geodesic distance dx(i)

between two transformations τ1 and τ2 is the length L of the shortest curve
γ between τ1 and τ2. However, since the metric space of the manifold of the
training data is unknown we have to acquire a metric in the Riemannian space

by mapping the Lie group T to the differentiable image manifold of x
(i)
τ1 and x

(i)
τ2 ,

which inherits the Riemannian metric from L2 [11,12]. After this mapping, the

geodesic distance between τ1 and τ2 is equal to the shortest path connecting x
(i)
τ1

and x
(i)
τ2 , formulated as:

dx(i)(τ1, τ2) = minL(γ). (6)

Geodesic Distance Between Original and ManiFool Samples Having
explained how to calculate the distance between two transformations and two
transformed images, we can now show how to measure the geodesic distance
between the original samples of our training dataset and the ones generated with
ManiFool. The initial untransformed image x(0) can be considered the initial
point of the aforementioned γ curve if we define its transformation e as the

identity one. Thus, the distance between the original sample x
(0)
e and x

(imax)
τimax

,
can be calculated by the distance between the identity transformation e and the
final aggregated one τimax

:

d̃x(i)(e, τi) =
dx(i)(e, τ)

||x(i)||L2

. (7)

Normalization of the distance by the norm of the image is crucial, to ensure
generalizability of the distance measure.
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Fig. 2: Examples generated with
ManiFool Augmentation for the two
datasets, namely Dermofit and DDSM.

Robustness to Geometric Transformations Since every computed Mani-
Fool example originates from the edge of a class manifold, measuring the afore-
mentioned distance d̃x(imax) between an original image and its respective trans-
formed sample can act as a measure for the robustness of a classifier. Specifically
networks that have learned a high-dimensional embedding space characterized
by high class compactness and maximized distance between decision boundaries
will require a larger average d̃ to transform a class from one class to another. In
this work we compute the average distance ρ̃τ of all the ManiFool samples as:

ρ̃τ (f) =
1

m

m∑
j=1

d̃
x
(i)
j

(e, τ̃), (8)

where m is the number of crafted samples. ρ̃τ acts as a quantitative measure of
robustness of a neural network to geometric transformations, that can be used to
compare the robustness of different deep model architectures or models trained
with different augmentation techniques.

Another measure to quantify the robustness of classifier f is rτ , given by
Equation 9. rτ assesses a model’s performance when it’s evaluated on randomly
transformed images. Specifically, for a range of given geodesic distances r we craft
samples transformed with random transformations and measure misclassification
rate of f .

rτ (f) = min r s.t. P(f(x(i)
τ ) 6= f(x(i)) | d

x
(i)
τ

(e, τ) = r) ≥ 0.5, (9)

where 0.5 is a user defined threshold. A robust model can maintain higher classi-
fication accuracy for images that have larger geodesic distance from the originals.

2.2 ManiFool Augmentation

A significant difference in our approach to the original ManiFool work is that
our purpose is not to fool a deep neural network and craft an adversarial ex-
ample [13], but rather to utilize the transformed images for data augmentation.
Therefore, once we compute the affine transformation τimax

that crosses the de-
cision boundary and fools f , we backtrack onto the original class manifold M

via an iterative reduction of the final step size. Initially, for all the images in the
training set of the given dataset, we create ManiFool Augmentation samples that
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reside around the edges of the class manifolds with an independent black-box
classifier f . Afterwards, we mix the generated samples with the original data in
an equal ratio and train a model from scratch. An alternative approach would
have been to utilize all the geometrically transformed images at every step i to-
wards the decision boundary for data augmentation. However, it was crucial to
maintain an equal ratio of transformed and original samples in the final dataset,
so that models utilizing it for training would not be biased to geometrically
transformed images, due to an imbalanced amount of samples. Hence, we only
utilized the transformed samples in the vicinity of the decision boundary, to
provide the maximum possible variance to the models during training. Samples
crafted with ManiFool Augmentation are presented in Fig. 2.

3 Experimental Setup

Datasets ManiFool Augmentation has been validated on two challenging, pub-
lic, medical imaging classification datasets, namely, Digital Database for Screen-
ing Mammography (DDSM) [14], [15] and Dermofit [16]. DDSM consists of
11.617 expert selected regions of interest (ROI) of mammograms from 1861 pa-
tients annotated as normal, benign or malignant by radiologists. Dermofit is an
image library consisting of 1300 high-quality dermatoscopic images, with his-
tologically validated fine-grained expert annotations (10 classes). Both datasets
were split at patient-level with non-overlapping folds (70% training and 30%
testing).

Model Training Three state-of-the-art architectures, namely ResNet18 [17],
VGG16 [18] and InceptionV3 [19], were used for the evaluation. All networks
were initialized with ImageNet weights, therefore appropriate resizing and nor-
malization of the input were performed. The loss function selected for the afore-
mentioned classification problems was weighted Cross Entropy, since the selected
datasets are characterized by severe class imbalance. Class weights were com-
puted with median frequency balancing, as described in [20]. The models were
optimized with Adam optimizer with an initial learning rate of 0.001 across
the board. The experiments were implemented in the deep learning framework
PyTorch [21] and an NVIDIA Titan Xp was used to train the models for 50
epochs.

Baseline Methods To validate the proposed contributions we perform not
only ablative studies but also comparison against other widely used augmen-
tation techniques. ManiFool Augmentation was compared with models trained
without any augmentation (referred to as ”None” in the following Section) and
models trained with traditional random augmentation (”Random”), i.e. rota-
tion and horizontal flipping. The proposed method (noted as ”ManiFool” in the
tables of results) was also evaluated against augmentation techniques includ-
ing Random Erasing [22] (”Erasing”), a commonly used and fast augmentation
technique that replaces random patches of the image with Gaussian noise, and
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None Random Erasing ManiFool

R
e
s
N

e
t Original Test 0.7379 0.7859 0.7867 0.8126

Random Affine 0.6515 0.6962 0.6573 0.7900

Random Projectve 0.4373 0.4817 0.4555 0.6263

V
G

G

Original Test 0.7526 0.8080 0.7924 0.8258

Random Affine 0.6993 0.7387 0.6751 0.8011

Random Projective 0.4319 0.5140 0.5071 0.6200

In
c
e
p
t
io

n Original Test 0.7303 0.8051 0.7898 0.8275

Random Affine 0.5544 0.7063 0.7123 0.7883

Random Projective 0.2149 0.4388 0.4630 0.5376

Table 1: Comparative
evaluation of models
trained on Dermofit
using different augmen-
tation techniques and
ManiFool Augmenta-
tion.

data augmentation with images synthesized by GANs (”DCGAN”), following
the method described in [9].

ManiFool Augmentation Crafting A noteworthy implementation detail is
that for the crafting of the ManiFool Augmentation samples, black-box state-of-
the-art models were utilized as the differential classifier f described in Section 2.
Those models were previously trained on the given datasets but are not utilized
in the evaluation phase of this work, to avoid any bias and to ensure that the
dataset is previously unseen by all the evaluated models.

4 Results and Discussion

In this Section the detailed results of the ablative evaluation, as well as the
baseline comparisons will be discussed, along with the effects of the proposed
method to the performance and robustness of the models.

Performance improvement with ManiFool Augmentation Tables 1 and 2
report the results of the ablative and baseline evaluation of the proposed Mani-
Fool Augmentation method for the Dermofit and DDSM Datasets. Initially, it
can be observed that the performance of models without any augmentation is
significantly lower, due to overfitting and limited manifold exploration. Random
Augmentation provides an improvement in performance but offers no guarantee
regarding the increase in the variance that the model is exposed to during train-
ing. Moreover, random augmentation can result in out-of-distribution samples,
which could hinder model training. Augmented samples created by ManiFool are
guaranteed to originate from the same distribution as the original training data,
a trait particularly crucial in the setting of medical applications, where mis-
classifications can have severe and undesired outcomes. Furthermore, Manifool
Augmentation, with its improved exploration capabilities, increases the accuracy
by 2%−3% across both datasets and model architectures. Additionally, ManiFool
Augmentation consistently outperforms Random Erasing, Random Augmenta-
tion and GAN Augmentation by approximately 2% across datasets and models.
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None Random Erasing DCGAN ManiFool

R
e
s
N

e
t Original Test 0.8321 0.8254 0.8294 0.8228 0.8426

Random Affine 0.7225 0.6849 0.6073 0.6964 0.7970

Random Projectve 0.2483 0.2078 0.3245 0.2657 0.3245

V
G

G

Original Test 0.7914 0.8381 0.8377 0.8405 0.8443

Random Affine 0.2444 0.6547 0.7194 0.7371 0.8094

Random Projective 0.1901 0.2046 0.2388 0.2279 0.2733

In
c
e
p
t
io

n Original Test 0.8438 0.8454 0.8424 0.8414 0.8451

Random Affine 0.4854 0.6423 0.6006 0.6980 0.7330

Random Projective 0.1954 0.2164 0.2019 0.1980 0.2356

Table 2: Comparative
evaluation of models
trained on DDSM using
different augmentation
techniques and Mani-
Fool Augmentation.

Limitations of Augmentation with GANs Generating synthetic images
utilizing GANs is a task widely investigated recently as was discussed earlier in
Section 1. However, limitations occur regarding GANs for medical imaging: In
most cases the resolution of the synthetic images is low leading to a substantial
loss of information and quality. Furthermore, GANs trained on the entire dataset
do not provide the ground truth label of the generated samples. Therefore in
order to use synthetic images for data augmentation with their respective label
we have to train n conditional GANs [23], where n represents the number of
classes. This is both time consuming and sometimes, unachievable due to limited
data. For example, some classes of the Dermofit dataset only have 23 samples for
training, making training a conditional GAN on 23 images extremely challenging,
if at all possible. Attempts have been made to solve the GAN labelling problem
in the medical context [8], by generating Brain CT scans along with a paired
segmentation label map. However, this approach does not offer any guarantee
on the correctness of the label maps and though the performance increase on
the test set looks promising, mislabeling could induce ambiguity during training
and jeopardize the robustness of the model.

Additionally, compared to Manifool Augmentation, augmentation with GANs
does not guarantee increase in the variance to which the model is exposed, since
images are sampled randomly from the training data distribution and not from
the outer regions of the manifold as can be seen in Fig. 1.

Robustness on Random Geometric Transformations A noteworthy find-
ing highlighted in Tables 1 and 2 is the significant increase in the robustness of
models trained with ManiFool Augmentation to random transformations. The
improvement is not only impressive, because it ranges from 7% to 15%, but
also because even though the proposed augmentation exclusively utilized affine
transformations, the robustness to projective ones was drastically improved as
well. The remaining evaluated augmentation techniques, i.e. Random Erasing
and GAN augmentation, provided much lower, if any, improvement in the ro-
bustness of the networks in comparison to the standard random augmentation.

Another experiment evaluating the effect of the ManiFool Augmentation in
the robustness of the trained models is shown in Fig. 3. As described in Sec-
tion 2, Equation 9 evaluates the misclassification rate of a classifier for samples
transformed with random affine transformations for a given range of geodesic
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None Random Erasing ManiFool

Dermofit HAM10k Dermofit HAM10k Dermofit HAM10k Dermofit HAM10k

ResNet 0.7379 0.1983 0.7859 0.3847 0.7867 0.1699 0.8136 0.3854

VGG 0.7526 0.1911 0.8080 0.3101 0.7924 0.1947 0.8238 0.3419

Inception 0.7303 0.2798 0.8051 0.2520 0.7898 0.2140 0.8275 0.3009

Table 3: Comparative evaluation of models trained on Dermofit with different
augmentation methods and deployed on HAM10k, an unseen skin lesion classi-
fication dataset.

distance scores. In Fig. 4 we show images generated within a range of G ∈ [1, 5]
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Fig. 3: Robustness of mod-
els with different augmen-
tation methods to random
transformations with increas-
ing geodesic distance.

for Dermofit and G ∈ [1, 3] that were used to evaluate the misclassification rates
of the evaluated models. As can be seen in Fig. 3, the models trained with Mani-
Fool Augmentation achieve significantly lower misclassification rates for larger
values of the geodesic distance G.

Effect on Cross-Dataset Performance In order to showcase the improved
robustness provided by the ManiFool Augmentation, we perform cross-dataset
evaluation between Dermofit and HAM10000 [24], which consists of 10.000 skin
lesion images and there are 7 overlapping classes between the two datasets.
Notably all models trained with the proposed method, achieve 1%− 5% higher
accuracy on the unseen dataset, as can be observed in Table 3. This validates the
hypothesis that ManiFool Augmentation improves the model’s understanding of
the underlying data distribution and leads to the increase of the model’s robust-
ness not only on geometric transformations, but also on unseen test samples.

Geodesic Distance

ResNet VGG Inception

Dermofit 2.128 2.660 3.391

DDSM 1.510 1.240 1.242

Table 4: Reported average robustness
measure score defined in Equation 8 for
different state-of-the-art architectures.

Robustness of Different Architectures After we utilize a classifier f to craft
ManiFool Augmentation samples, we can calculate the average geodesic distance
between the original and transformed samples (Equation 8). This measure can
quantify the robustness of a machine learning model, since it implicitely mea-
sures the distance between the learned decision boundaries. Therefore, models
that achieve higher robustness will be characterized by a larger geodesic distance
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Dermofit

DDSM

G=1 G=2 G=3 G=4 G=5

R
a
n
d
o
m

A
ffi
n
e

G=1 G=1.5 G=2 G=2.5 G=3

Fig. 4: Examples generated with
Random Affine Transformations
for Dermofit [16] and DDSM [14]
for a specific range of Geodesic
Distances G.

between classes. In previous works, such as [25], attempts have been made to
evaluate the robustness of a classifier utilizing adversarial examples. However,
such examples cannot appear naturally and no quantitative measures have been
given regarding the robustness. In this work, after we generated the ManiFool
Augmentation samples we calculated the robustness scores for the given classi-
fiers, that can be seen in Table 4. This experiment showcases how the robustness
of different architectures can flunctuate according to the given dataset. There-
fore, it is not sufficient to utilize a state-of-the-art architecture, based on its
results on an independant dataset, since its robustness can significantly vary.
In our case, InceptionV3 was the most robust model for the Dermofit dataset,
while ResNet18 achieved the highest robustness score for DDSM.

5 Conclusion

In this paper we proposed a novel data augmentation technique based on affine
geometric transformations and quantified the robustness of machine learning
classifiers. Experiments on challenging medical imaging tasks, namely fine grained
skin lesion classification and mammogram tumor classification showcased the ad-
vantages of the proposed ManiFool Augmentation. On one hand the performance
achieved by the evaluated models increased for the original test set and outper-
formed other commonly used data augmentation techniques. On the other hand,
the robustness of the models trained with the proposed augmentation scheme
was increased both for random affine and projective transformations but also
cross-datasets, in an unseen test scenario. Furthermore, a qualitative measure
for the robustness of machine learning classifiers was calculated and showcased
the variations in the robustness of state-of-the-art models for different datasets.
Future work includes extension of the ManiFool Augmentation to a wider range
or transformations for a variety of medical imaging tasks.
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