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Abstract. In this paper, for the first time, we introduce a multiple
instance (MI) deep hashing technique for learning discriminative hash
codes with weak bag-level supervision suited for large-scale retrieval. We
learn such hash codes by aggregating deeply learnt hierarchical represen-
tations across bag members through an MI pool layer. For better train-
ability and retrieval quality, we propose a two-pronged approach that in-
cludes robust optimization and training with an auxiliary single instance
hashing arm which is down-regulated gradually. We pose retrieval for tu-
mor assessment as an MI problem because tumors often coexist with be-
nign masses and could exhibit complementary signatures when scanned
from different anatomical views. Experimental validations demonstrate
improved retrieval performance over the state-of-the-art methods.

1 Introduction

In breast examinations, such as mammography, detected actionable tumors are
further examined through invasive histology. Objective interpretation of these
modalities is fraught with high inter-observer variability and limited repro-
ducibility [1]. In this context, a reference based assessment, such as presenting
prior cases with similar disease manifestations (termed Content Based Image
Retrieval (CBIR)) could be used to circumvent discrepancies in cancer grading.
With growing sizes of clinical databases, such a CBIR system ought to be both
scalable and accurate. Towards this, hashing approaches for CBIR are being ac-
tively investigated for representing images as compact binary codes that can be
used for fast and accurate retrieval [2–4].

Malignant carcinomas are often co-located with benign manifestations and
suspect normal tissues [5]. In such cases, describing the whole image with a single
label is inadequate for objective machine learning and alternatively requires
expert annotations delineating the exact location of the region of interest. This
argument extends to screening modalities like mammograms, where multiple
anatomical views are acquired. In such scenarios, the status of the tumor is best
represented to a CBIR system by constituting a bag of all associated images, thus
veritably becoming multiple instance (MI) in nature. With this as our premise
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Deep Multiple Instance HashingBag Fig. 1: Overview of DMIH
for end-to-end generation
of bag-level hash codes.
Breast anatomy image is at-
tributed to Cancer Research
UK/Wikimedia Commons.

we present, for the first time, a novel deep learning based MI hashing method,
termed as Deep Multiple Instance Hashing (DMIH).

Seminal works on shallow learning-based hashing include Iterative Quantiza-
tion (ITQ) [6], Kernel Sensitive Hashing (KSH) [2] etc. that propose a two-stage
framework involving extraction of hand-crafted features followed by binarization.
Yang et al. extend these methods to MI learning scenarios with two variants:
Instance Level MI Hashing (IMIH) and Bag Level MI Hashing (BMIH) [7]. How-
ever, these approaches are not end-to-end and are susceptible to semantic gap
between features and associated concepts. Alternatively, deep hashing methods
such as simultaneous feature learning and hashing (SFLH) [8], deep hashing net-
works (DHN) [9] and deep residual hashing (DRH) [3] propose the learning of
representations and hash codes in an end-to-end fashion, in effect bridging this
semantic gap. It must be noted that all the above deep hashing works targeted
single instance (SI) hashing scenarios and an extension to MI hashing was not
investigated.

Earlier works on MI deep learning in computer vision include work by Wu
et al. [10], where the concept of an MI pooling (MIPool) layer is introduced to
aggregate representations for multi-label classification. Yan et al. leveraged MI
deep learning for efficient body part recognition [11]. Unlike MI classification that
potentially substitutes the decision of the clinician, retrieval aims at presenting
them with richer contextual information to facilitate decision-making.

DMIH effectively bridges the two concepts for CBIR systems by combining
the representation learning strength of deep MI learning with the potential for
scalability arising from hashing. Within CBIR for breast cancer, notable prior
art includes work on mammogram image retrieval by Jiang et al. [12] and large-
scale histology retrieval by Zhang et al. [4]. Both these works pose CBIR as an
SI retrieval problem. Contrasting with [12] and [4], within DMIH we create a
bag of images to represent a particular pathological case and generate a bag-
level hash code, as shown in Fig. 1. Our contributions in this paper include: 1)
introduction of a robust supervised retrieval loss for learning in presence of weak
labels and potential outliers; 2) training with an auxiliary SI arm with gradual
loss trade-off for improved trainability; and 3) incorporation of the MIPool layer
to aggregate representations across variable number of instances within a bag,
generating bag-level discriminative hash codes.

2 Methodology

Lets consider database B = {B1, . . . , BNB
} with NB bags. Each bag, Bi, with

varying number (ni) of instances (Ii) is denoted as Bi = {I1, . . . , Ini}. We aim
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at learning H that maps each bag to a K-d Hamming space H : B → {−1, 1}K ,
such that bags with similar instances and labels are mapped to similar codes.
For supervised learning of H, we define a bag-level pairwise similarity matrix
SMI = {sij}NB

ij=1, such that sij = 1 if the bags are similar and zero otherwise.
In applications, such as this one, where retrieval ground truth is unavailable we
can use classification labels as a surrogate for generating SMI.
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Fig. 2: DMIH Architecture

Architecture: As shown in Fig. 2, the pro-
posed DMIH framework consists of a deep
CNN terminating in a fully connected layer
(FCL). Its outputs {zij}ni

j=1 are fed into the
MIPool layer to generate the aggregated rep-
resentation ẑi that is pooled (max∀j {zij}ni

j=1,

mean(·), etc. ) across instances within the bag.
ẑi is an embedding in the space of the bags and
is the input of a fully connected MI hashing
layer. The output of this layer is squashed to
[−1, 1] by passing it through a tanh{·} func-
tion to generate hMI

i , which is quantized to pro-
duce bag-level hash codes as bMI

i = sgn (hMI
i ).

The deep CNN mentioned earlier could be
a pretrained network, such as VGGF [13],
GoogleNet [14], ResNet50 (R50) [15] or an ap-
plication specific network.

During training of DMIH, we introduce an auxiliary SI hashing (aux-SI) arm,
as shown in Fig. 2. It taps off at the FCL layer and feeds directly into a fully
connected SI hashing layer with tanh{·} activation to generate instance level non-
quantized hash codes, denoted as {hSI

ij }
ni
j=1. While training DMIH using back-

propagation, the MIPool layer significantly sparsifies the gradients (analogous
to using very high dropout while training CNNs), thus limiting the trainability
of the preceding layers. The SI hashing arm helps to mitigate this by producing
auxiliary instance level gradients.
Model Learning and Robust Optimization: To learn similarity preserv-
ing hash codes, we propose a robust version of supervised retrieval loss based
on neighborhood component analysis (NCA) employed by [16]. The motivation
to introduce robustness within the loss function is two-fold: (1) robustness in-
duces immunity to potentially noisy labels due to high inter-observer variabil-
ity and limited reproducibility for the applications at hand [1]; (2) it can ef-
fectively counter ambiguous label assignment while training with the aux-SI
hashing arm. Given SMI, the robust supervised retrieval loss JMI

S is defined as:

JMI
S = 1− 1

N2
B

∑NB

i,j=1 sijpij where pij is the probability that two bags (indexed

as i and j) are neighbors. Given hash codes hi =
{
hk
i

}K

k=1
and hj, we define a

bit-wise residual operation rij as rkij = (hk
i − hk

j ). We estimate pij as:

pij =
e−LHuber(hi,hj)∑NB

i ̸=l e
−LHuber(hi,hl)

, where LHuber(hi,hj) =
∑
∀k

ρk(r
k
ij). (1)
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LHuber(hi,hj) is the Huber norm between hash codes for bags i and j, while the
robustness operation ρk is defined as:

ρk(r
k
ij) =


1

2
(rkij)

2, if | rkij |⩽ ck

ck | rkij | −
1

2
c2k, if | rkij |> ck

(2)

In Eq. (2), the tuning factor ck is estimated inherently from the data and is
set to ck = 1.345 × σk. The factor of 1.345 is chosen to provide approximately
95% asymptotic efficiency and σk is a robust measure of bit-wise variance of rkij .

Specifically, σk is estimated as 1.485 times the median absolute deviation of rkij
as empirically suggested in [17]. This robust formulation provides immunity to
outliers during training by clipping their gradients. For training with the aux-SI
hashing arm, we employ a similar robust retrieval loss JSI

S defined over single
instances with bag-labels assigned to member instances.

To minimize loss of retrieval quality due to quantization, we use a differen-
tiable quantization loss JQ =

∑M
i=1(log cosh(| hi | − 1)) proposed in [9]. This

loss also counters the effect of using continuous relaxation in definition of pij over
using Hamming distance. As a standard practice in deep learning, we also add
an additional weight decay regularization term RW , which is the Frobenius norm
of the weights and biases, to regularize the cost function and avoid over-fitting.
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Fig. 3: Weight Trade-off.

The following composite loss is used to train DMIH:

J = λt
MIJ

MI
S + λt

SIJ
SI
S + λqJQ + λwRW (3)

where λt
MI, λ

t
SI, λq and λw are hyper-parameters that

control the contribution of each of the loss terms.
Specifically, λt

MI and λt
SI control the trade-off between

the MI and SI hashing losses. The SI arm plays a sig-
nificant role only in the early stages of training and
can be traded off eventually to avoid sub-optimal MI
hashing. For this we introduce a weight trade-off for-
mulation that gradually down-regulates λt

SI, while si-
multaneously up-regulating λt

MI. Here, we use λt
SI =

1− 0.5 (1− t/tmax)
2
and λt

MI = 1− λt
SI, where t is the current epoch and tmax is

the maximum number of epochs (see Fig. 3). We train DMIH with mini-batch
stochastic gradient descent (SGD) with momentum. Due to potential outliers
that can occur at the beginning of training, we scale ck up by a factor of 7 for
t = 1 to allow a stable state to be reached.

3 Experiments

Databases: Clinical applicability of DMIH has been validated on two large scale
datasets, namely, Digital Database for Screening Mammography (DDSM) [12,18]
and a retrospectively acquired histology dataset from the Indiana University
Health Pathology Lab (IUPHL) [4,19]. The DDSM dataset comprises of 11,617
expert selected regions of interest (ROI) curated from 1861 patients. Multiple
ROIs associated with a single breast from two anatomical views constitute a bag
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(size: 1-12; median: 2), which has been annotated as normal, benign or malig-
nant by expert radiologists. A bag labeled malignant could potentially contain
multiple suspect normal and benign masses, which have not been individually
identified. The IUPHL dataset is a collection of 653 ROIs from histology slides
from 40 patients (20 with precancerous ductal hyperplasia (UDH) and rest with
ductal carcinoma in situ (DCIS)) with ROI level annotations done by expert
histopathologists. Due to high variability in sizes of these ROIs (upto 9K × 8K
pixels), we extract multiple patches and populate a ROI-level bag (size: 1-15;
median: 8). From both the datasets, we use patient-level non-overlapping splits
to constitute the training (80%) and testing (20%) sets.

Model Settings and Validations: To validate proposed contributions,
namely robustness within NCA loss and trade-off from the aux-SI arm, we per-
form ablative testing with combinations of their baseline variants by fine-tuning
multiple network architectures. Additionally, we compare DMIH against four
state-of-the art methods: ITQ [6], KSH [2], SFLH [8] and DHN [9]. For a fair
comparison, we use R50 for both SFLH and DHN, since as discussed later it per-
forms the best. Since SFLH and DHN were originally proposed for SI hashing,
we introduce additional MI variants by hashing through the MIPool layer. For
ITQ and KSH, we further create two comparative settings: 1) Using IMIH [7]
that learns instance-level hash codes followed by bag-level distance computation
and 2) Utilizing BMIH [7] using bag-level kernalized representations followed by
binarization.

For IMIH and SI variants of SFLH, DHN and DMIH, given two bags Bp and
Bq with SI hash codes, sayH(Bq) = {hq1, . . . , hqM} andH(Bp) = {hp1, . . . , hpN},
the bag-level distance is computed as:

d(Bp, Bq) =
1

M

M∑
i=1

(min
∀j

Hamming(hpi, hqj)). (4)

All images were resized to 224× 224 and training data were augmented with
random rigid transformations to create equally balanced classes. λt

MI and λt
SI

were set assuming tmax as 150 epoch; λq and λw were set at 0.05 and 0.001 re-
spectively. The momentum term within SGD was set to 0.9 and batch size to 128
for DDSM and 32 for IUPHL. For efficient learning, we use an exponentially de-
caying learning rate initialized at 0.01. The DMIH framework was implemented
in MatConvNet [20]. We use standard retrieval quality metrics: nearest neigh-
bor classification accuracy (nnCA) and precision-recall (PR) curves to perform
the aforementioned comparisons. The results (nnCA) from ablative testing and
comparative methods are tabulated in Table 1 and Table 2 respectively. Within
Table 2, methods were evaluated at two different code sizes (16 bits and 32 bits).
We also present the PR curves of select bag-level methods (32 bits) in Fig. 5.

4 Results and Discussion

Effect of aux-SI Loss: To justify using the aux-SI loss, we introduce a variant of
DMIH without it (E in Table 1), which leads to a significant decline of 3% to 14%



6 S. Conjeti, M. Paschali et al.

+1 +1 +1 +1 +1 +1

0 +1 0

+1 +1 +1

+1 0+1

Fig. 4: Retrieval results for DMIH at code size
16 bits.
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Fig. 5: PR curves for DDSM and
IUPHL datasets at code size of 32.

Method
Variants DDSM IUPHL

R T VGGF R50 GN VGGF R50 GN

Ablative
Testing

A ◦ ◦ 68.65 72.76 71.70 83.85 85.42 82.29
B ◦ • 75.38 77.34 72.92 85.94 90.10 88.02
C • ◦ 70.65 76.63 70.02 83.33 85.94 86.46
D ◦ ■ 66.65 69.67 68.26 83.33 88.54 84.90
E • ■ 67.05 76.59 72.84 84.38 89.58 85.42

DMIH-mean • • 78.67 82.31 76.83 87.50 89.58 89.06

DMIH-max • • 81.21 85.68 78.67 91.67 95.83 88.02

DMIH(λq = 0) • • 75.34 79.88 73.06 87.50 89.58 88.51

DMIH NB • • 83.25 88.02 79.06 94.79 96.35 92.71

Legend

R(Robustness) ◦ = L2, • = LHuber

T(Trade-off)
◦ = Equal weights, • = Decaying SIL weights,
■ = No SIL branch

Networks R50: ResNet50, GN: GoogleNet

Table 1: Performance of ablative
testing at code size of 16 bits.
We report the nearest neighbor
classification accuracy (nnCA) es-
timated over unseen test data.
Letters A-E are introduced for
easier comparisons, discussed in
Section 4.

in contrast to DMIH. This could be potentially attributed to the prevention of
the gradient sparsification caused by the MIPool layer. From Table 1, we observe
a 3%-10% increase in performance, comparing cases with gradual decaying trade-
off (B) against baseline setting (λt

MI = λt
SI = 0.5, A,C).

Effect of Robustness: For robust-NCA, we compared against the original
NCA formulation proposed in [16] (A,B,D in Table 1). Robustness helps handle
potentially noisy MI labels, inconsistencies within a bag and the ambiguity in
assigning SI labels. Comparing the effect of robustness for baselines sans the
SI hashing arm (D vs. E) we observe marginally positive improvement across
the architectures and datasets, with a substantial 7% in ResNet50 for DDSM.
Robustness contributes more with the addition of the aux-SI hash arm (proposed
vs. E) with improved performance in the range of 4%-5% across all settings. This
observation further validates our prior argument.

Effect of Quantization: To assess the effect of quantization, we define two
baselines: (1) setting λq = 0 and (2) using non-quantized hash codes for retrieval
(DMIH - NB). The latter potentially acts as an upper bound for performance
evaluation. From Table 1, we observe a consistent increase in performance by
margins of 3%-5% if DMIH is learnt with an explicit quantization loss to limit
the associated error. It must also be noted that comparing with DMIH - NB,
there is only a marginal fall in performance (2%-4%), which is desired.

As a whole, the two-pronged proposed approach, including robustness and
trade-off, along with quantization loss delivers the highest performance, proving
that DMIH is able to learn effectively, despite the ambiguity induced by the
SI hashing arm. Fig. 4 demonstrates the retrieval performance of DMIH on the
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target databases. For IUPHL, the retrieved images are semantically similar to the
query as consistent anatomical signatures are evident in the retrieved neighbors.
For DDSM, in the cancer and normal cases the retrieved neighbors are consistent,
however it is hard to distinguish between benign and malignant. The retrieval
time for a single query for DMIH was observed at 31.62 ms (for IUPHL) and
17.48 ms (for DDSM ) showing potential for fast and scalable search.

Method A/F L
DDSM IUPHL

16-bit 32-bit 16-bit 32-bit

S
h
a
ll
o
w

ITQ [6]

R50 ◦ 66.35 67.71 78.58 80.28
R50 • 64.56 71.98 89.58 79.69
G ◦ 65.22 66.55 51.79 51.42
G • 59.73 61.03 57.29 58.85

KSH [2]

R50 ◦ 61.88 64.81 87.74 86.51
R50 • 59.81 72.17 70.83 80.21
G ◦ 60.50 61.91 57.36 57.83
G • 55.34 55.67 60.94 58.85

D
e
e
p

SFLH [8]
R50 ◦ 73.54 77.46 83.33 85.94
R50M ■ 71.98 75.93 85.42 88.54

DHN [9]
R50 ◦ 65.64 74.79 82.29 86.46
R50M ■ 72.88 80.43 88.02 90.62

DMIH-SIL R50 ◦ 76.02 78.37 87.92 88.58
DMIH R50M ■ 85.68 89.47 95.83 93.23

L
e
g
e
n
d A/F:

A: Architecture, F: Features

R50: ResNet50, R50M: ResNet50+MIPool, G: GIST

L: ◦ = IMIH, • = BMIH, ■ = End-to-end

Table 2: Results of comparison with state-
of-the art hashing methods.

Comparative Methods
In the contrastive experiments

against ITQ and KSH, hand-crafted
GIST [21] features underperformed
significantly, while the improvement
with the R50 features ranged from 5%-
30%. However, DMIH still performed
10%-25% better.

Comparing the SI with the MI vari-
ations of DHN, SFLH and DMIH, it
is observed that the performance im-
proved in the range of 3%-11%, sug-
gesting that end-to-end learning of MI
hash codes is preferred over two-stage
hashing i.e. hashing at SI level and
comparing at bag level with Eq. (4).
However, DMIH fares comparably bet-
ter than both the SI and MI versions

of SFLH and DHN, owing to the robustness of the proposed retrieval loss func-
tion. As also seen from the associated PR curves in Fig. 5, the performance gap
between shallow and deep hashing methods remains significant despite using
R50 features. Comparative results strongly support our premise that end-to-end
learning of MI hash codes is preferred over conventional two-stage approaches.

5 Conclusion

In this paper, for the first time, we propose an end-to-end deep robust hashing
framework, termed DMIH, for retrieval under a multiple instance setting. We
incorporate the MIPool layer to aggregate representations across instances to
generate a bag-level discriminative hash code. We introduce the notion of ro-
bustness into our supervised retrieval loss and improve the trainability of DMIH
by utilizing an aux-SI hashing arm regulated by a trade-off. Extensive validations
and ablative testing on two public breast cancer datasets demonstrate the supe-
riority of DMIH and its potential for future extension to other MI applications.
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