
Articles
https://doi.org/10.1038/s41592-020-0792-1

1Institute for Tissue Engineering and Regenerative Medicine (iTERM), Helmholtz Zentrum München, Neuherberg, Germany. 2Institute for Stroke and 
Dementia Research (ISD), Ludwig-Maximilians-Universität (LMU), Munich, Germany. 3Graduate School of Neuroscience (GSN), Munich, Germany. 
4Department of Computer Science, Technical University of Munich (TUM), Munich, Germany. 5Center for Translational Cancer Research of the TUM 
(TranslaTUM), Munich, Germany. 6Munich School of Bioengineering, Technical University of Munich (TUM), Munich, Germany. 7Institute of Pharmacology 
and Toxicology, University of Zurich (UZH), Zurich, Switzerland. 8Munich Cluster for Systems Neurology (SyNergy), Munich, Germany. 9German Center 
for Neurodegenerative Diseases (DZNE), Munich, Germany. 10These authors contributed equally: Mihail Ivilinov Todorov, Johannes Christian Paetzold. 
11These authors jointly supervised this work: Bjoern Menze, Ali Ertürk. ✉e-mail: bjoern.menze@tum.de; erturk@helmholtz-muenchen.de

Changes in cerebrovascular structures are key indicators for a 
large number of diseases affecting the brain. Primary angiop-
athies, vascular risk factors (for example, diabetes), traumatic 

brain injury, vascular occlusion and stroke all affect the function of 
the brain’s vascular network1–3. The hallmarks of Alzheimer’s dis-
ease, including tauopathy and amyloidopathy, can also lead to aber-
rant remodeling of blood vessels1,4, allowing capillary rarefaction to 
be used as a marker for vascular damages5. Therefore, quantitative 
analysis of the entire brain vasculature is pivotal to developing a 
better understanding of brain function in physiological and patho-
logical states. However, quantifying micrometer-scale changes in 
the cerebrovascular network of the brain has been difficult for two 
main reasons.

First, labeling and imaging of the complete mouse brain vascu-
lature down to the smallest blood vessels has not yet been achieved. 
Magnetic resonance imaging (MRI), micro-computed tomography 
(micro-CT) and optical coherence tomography do not have suffi-
cient resolution to capture capillaries in bulk tissue6–8. Fluorescent 
microscopy provides higher resolution, but can typically only 
be applied to tissue sections up to 200 μm in thickness9. Recent 
advances in tissue clearing could overcome this problem10, but so 
far there has been no systematic description of all vessels of all sizes 
in an entire brain in three dimensions (3D).

The second challenge relates to the automated analysis of large 
3D imaging datasets with substantial variance in signal intensity 
and signal-to-noise ratio (SNR) at different depths. Simple inten-
sity- and shape-based filtering approaches such as Frangi’s vessel-
ness filters and more advanced image processing methods with 
local spatial adaptation cannot reliably differentiate vessels from 

background in whole-brain scans11,12. Finally, imaging of the com-
plete vascular network of the brain at capillary resolution results 
in datasets of terabyte size. Established image processing methods  
do not scale well to terabyte-sized image volumes, as they do  
not generalize well to large images, and require intensive manual 
fine-tuning13–15.

Here we present VesSAP (Vessel Segmentation & Analysis 
Pipeline), a deep learning-based method for automated analysis of 
the entire mouse brain vasculature, overcoming the above limita-
tions. VesSAP encompasses three major steps: (1) staining, clearing 
and imaging of the mouse brain vasculature down to the capil-
lary level with two different dyes: wheat germ agglutinin (WGA) 
and Evans blue (EB); (2) automatic segmentation and tracing of 
the whole-brain vasculature data via CNNs; and (3) extraction of 
vascular features for hundreds of brain regions after registration of 
the data to the Allen brain atlas (Fig. 1). Our deep learning-based 
approach for network extraction in cleared tissue is robust, despite 
variations in signal intensities and structures, outperforms previ-
ous filter-based methods and reaches the quality of segmentation 
achieved by human annotators. We applied VesSAP to the three 
commonly used mouse strains C57BL/6J, CD1 and BALB/c.

Results
Vascular staining, DISCO clearing and imaging. To reliably stain 
the entire vasculature, we used WGA and EB dyes, which can be 
visualized in different fluorescence channels. We injected EB dye 
into live mice 12 h before WGA perfusion, allowing its long-term 
circulation to mark vessels under physiological conditions16, while 
we perfused mice with WGA during fixation. We then performed 
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3DISCO clearing17 and light-sheet microscopy imaging of whole 
mouse brains (Fig. 2a–c and Supplementary Figs. 1 and 2). WGA 
highlighted microvessels, and EB predominantly stained major 
blood vessels, such as the middle cerebral artery and the circle of 
Willis (Fig. 2d–i and Supplementary Fig. 3). Merging the signals 
from the two dyes yielded more complete staining of the vasculature 
than relying on individual dyes alone (Fig. 2c,f and Supplementary 
Video 1). Staining with the two dyes was congruent in midsized 
vessels, with signals originating from the vessel wall layer (Fig. 2j–l 
and Supplementary Fig. 3a–c). When using WGA, we reached a 
higher SNR for microvessels than for bigger vessels. With EB, the 
SNR for small capillaries was lower but larger vessels reached a 
high SNR (Supplementary Fig. 4). Integrating the information from 
the two channels allowed acquisition of the entire vasculature and 
resulted in optimized SNR. We also compared the fluorescence sig-
nal quality of the WGA staining (targeting the complete endothe-
lial glycocalyx lining18) to signal for a conventional vessel-specific 
antibody (anti-CD31, targeting endothelial cell–cell adhesion19) and 
found that WGA produced higher SNR for blood vessels in general 
(Supplementary Fig. 5).

Segmentation of volumetric images. To enable extraction of quan-
titative features of the vascular structure, vessels in acquired brain 
scans need to be segmented in 3D. Motivated by deep learning-
based approaches in biomedical image data analysis20–28, we used a 
five-layer CNN (Fig. 3a) to exploit the complementary signals of 
the two dyes to derive complete segmentation of the entire brain 
vasculature.

In the first step, the two input channels (WGA and EB) were 
concatenated. This yielded a matrix in which each voxel was char-
acterized by two features. Then, each convolutional step integrated 
the information from a voxel’s 3D neighborhood. We used full 3D 
convolutions20 without further down- or upsampling and fewer 
trainable parameters than, for example, 3D U-Net and V-Net29,30 
to achieve high inference speeds. After the fourth convolution, the 
information from 50 features per voxel was combined with a con-
volutional layer with a kernel size of one and sigmoidal activation 
to estimate the likelihood that a given voxel represented a vessel. 
Subsequent binarization yielded the final segmentation. In both 
training and testing, the images were processed in subvolumes of 
50 × 100 × 100 pixels.

Deep neural networks often require large amounts of annotated 
data or many iterations of training. Here we circumvented this 
requirement with a transfer learning approach31. In short, we first 
pretrained the network on a large, synthetically generated vessel-
like dataset (Supplementary Fig. 6)32 and then refined it on a small 
number of manually annotated parts of real brain vessel scans. This 
approach reduced the training iterations on manually annotated 
training data.

To assess the quality of the segmentation, we compared the 
VesSAP CNN predictions to manually labeled ground truth and the 
predictions from alternative computational approaches (Table 1). 
We report voxel-wise segmentation metrics, namely, accuracy, F1 
score33, Jaccard coefficient and cl-F1, which weights the centerlines 
and volumes of the vessels (detailed in the Methods). In comparison 
to the ground truth, our network achieved an accuracy of 0.94 ± 0.01 
and an F1 score of 0.84 ± 0.05 (for additional scores, see Table 1; all 
values are given as the mean ± s.d.). As controls, we implemented 
alternative state-of-the-art deep learning and classical methods. 
Our network outperformed classical Frangi filters11 (accuracy, 
0.85 ± 0.03; F1 score, 0.47 ± 0.18), as well as recent methods based 
on local spatial context via Markov random fields13,34 (accuracy, 
0.85 ± 0.03; F1 score, 0.48 ± 0.04). VesSAP achieved similar perfor-
mance in comparison to 3D U-Net and V-Net architectures, which 
require substantially more trainable parameters (3D U-Net: accu-
racy, 0.95 ± 0.01; F1 score, 0.85 ± 0.03; V-Net: accuracy, 0.95 ± 0.02; 
F1 score, 0.86 ± 0.07; no statistical difference in comparison to the 
VesSAP CNN: two-sided t test, all P > 0.3). However, the VesSAP 
CNN substantially outperformed the other architectures in terms of 
speed, being ~20 and ~50 times faster in the feedforward path than 

VesSAP pipeline for quantitative analysis of whole-brain vasculature
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Fig. 1 | Summary of the VesSAP pipeline. The method consists of three 
modular steps: (1) multi-dye vessel staining and DISCO tissue clearing for 
high imaging quality using 3D light-sheet microscopy; (2) deep learning-
based segmentation of blood vessels with 3D reconstruction; and  
(3) anatomical feature extraction and mapping of the entire vasculature to 
the Allen adult mouse brain atlas for statistical analysis.
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Fig. 2 | Enhancement of vascular staining using two complementary dyes.  
a–c, Maximum-intensity projections of automatically reconstructed tiling 
scans of WGA (a) and EB (b) signal in the same sample and the merged 
view (c). d–f, Magnified view of the boxed region in c. g–l, Confocal images 
of WGA- and EB-stained vessels and vascular wall (g–i, maximum-
intensity projections at 112 µm; j–l, single slices of 1 µm corresponding to the 
boxed region in i). The experiment was performed on nine different mice 
with similar results.
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V-Net and 3D U-Net, respectively. This is particularly important for 
our large datasets (hundreds of gigabytes). For example, the VesSAP 
CNN segmented a single brain in 4 h, whereas V-Net and 3D U-Net 
required 3.3 d and 8 d, respectively. The superior speed of the 
VesSAP CNN is due to the substantially fewer trainable parameters 
in its architecture (for example, our implementation of 3D U-Net 
had ~178 million parameters, whereas the VesSAP CNN had ~0.059 

million parameters) (Table 1). Next, we compared the segmenta-
tion accuracy of our network to the accuracy of human annotations.  
A total of four human experts independently annotated two volumes. 
We found that the inter-annotator accuracy and F1 scores of the 
experts were comparable to those from the predicted segmentation 
of our network (human annotators: accuracy, 0.92 ± 0.02; F1 score, 
0.81 ± 0.06; Fig. 3b). Notably, we extrapolate that human annotators 
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Fig. 3 | Deep learning architecture of VesSAP and performance on vessel segmentation. a, The 3D VesSAP network architecture consisting of five 
convolutional layers and sigmoid activation for the last layer, including the kernel size and feature size for the input/output. ReLU, rectified linear units. 
b, Accuracy and F1 score for the inter-annotator experiment (blue) as compared to VesSAP (red). c, 3D rendering of full brain segmentation from a CD1 
mouse. d, 3D rendering of the small volume boxed in c. The experiment was performed on nine different mice with similar results.

Table 1 | Evaluation metrics of the different segmentation approaches for 75 volumes of 100 × 100 × 50 pixels

Segmentation model cl-F1 Accuracy F1 score Jaccard Parameters Speed

VesSAP CNN 0.93 ± 0.02* 0.94 ± 0.01 0.84 ± 0.05 0.84 ± 0.04 0.0587 M* 1.19 s*

VesSAP CNN, trained from 
scratch

0.93 ± 0.02 0.94 ± 0.01 0.85 ± 0.04* 0.85 ± 0.04 0.0587 M* 1.19 s*

VesSAP CNN, synthetic 
training data

0.87 ± 0.02 0.90 ± 0.05 0.72 ± 0.07 0.70 ± 0.05 0.0587 M* 1.19 s*

3D U-Net 0.93 ± 0.02 0.95 ± 0.01* 0.85 ± 0.03* 0.85 ± 0.03 178.4537 M 61.22 s

V-Net 0.94 ± 0.02* 0.95 ± 0.02* 0.86 ± 0.07* 0.86 ± 0.07* 88.8556 M 26.87 s

Frangi vesselness 0.84 ± 0.03 0.85 ± 0.03 0.47 ± 0.19 – – 117.00 s

Markov random field 0.86 ± 0.02 0.85 ± 0.03 0.48 ± 0.04 – – 24.31 s

All values are given as the mean ± s.d. The best performing algorithms are in bold and highlighted with an asterisk; algorithms whose performance did not differ more than 2% from the best performing 
algorithms are in bold. The number of trainable parameters for deep learning architectures is given in millions (M).
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would need more than a year to process a whole brain instead of the 
4 h required by our approach. Moreover, we observed differences in 
the human segmentations due to annotator bias. Thus, the VesSAP 
CNN can segment the complete brain vasculature consistently 
at human-level accuracy with a substantially higher speed than  
currently available methods, enabling high throughput for  
large-scale analysis.

We show an example of the vasculature from a brain segmented 
by VesSAP in 3D (Fig. 3c and Supplementary Videos 2 and 3). 
Zooming in on a smaller patch revealed that the connectivity of the 
vascular network was fully maintained (Fig. 3d and Supplementary 
Video 2). Comparing single slices of the imaging data with the 
predicted segmentation showed that vessels were accurately seg-
mented regardless of absolute illumination or vessel diameter 
(Supplementary Fig. 7).

Feature extraction and atlas registration. Vessel lengths and 
radii and the number of bifurcation points are commonly used to 
describe the angioarchitecture2. Hence, we used our segmentation 
to quantify these features as distinct parameters to characterize the 
mouse brain vasculature (Fig. 4a and Supplementary Video 4). We 
evaluated the local vessel length (length normalized to the size of 
the brain region of interest), local bifurcation density (sum of the 
occurrences normalized to the size of the brain region of inter-
est) and local vessel radius (average radius along the full length) of 
blood vessels in different brain regions.

We report the vascular features in three ways to enable com-
parison with various previous studies that differed in the mea-
sures used (Supplementary Fig. 8). More specifically, first, we 
provide the count of segmented voxels as compared to total voxels  
within a specific brain region (voxel space). Second, we provide the 

measurements by calculating the voxel size of our imaging system 
and accounting for the Euclidean length (microscopic space). Third, 
we corrected the microscopic measurements to account for tissue 
shrinkage caused by the clearing process (anatomical space)35,36 
(Supplementary Tables 2–10). We calculated this shrinkage rate by 
measuring the same mouse brain volume with MRI before clearing.

Here we use the anatomical space to report our specific bio-
logical findings, as it is closest to the physiological state. For the 
average blood vessel length of the whole brain, we found a value of 
545.74 ± 94 mm per mm³ (mean ± s.d.). Because our method quanti-
fies brain regions separately, we could compare our results to the lit-
erature, which mostly reports either quantifications for specific brain 
regions or extrapolations to the whole brain from regional quanti-
fications. For example, a vascular length of 922 ± 176 mm per mm³  
(mean ± s.d.) was previously reported for cortical regions (size of 
508 × 508 × 1,500 µm3)10. We found a similar vessel length for the same 
region in the mouse cortex (C57BL/6J mice: 913 ± 110 mm per mm³),  
substantiating the accuracy of our method. We performed addi-
tional comparisons to other reports (Supplementary Table 11).  
Moreover, we compared the measurements acquired with our 
algorithms to manually labeled ground truth data and found devi-
ations of 8.21% for centerlines, 13.18% for the number of bifurca-
tion points and 16.33% for the average radius. These deviations 
were substantially lower than the average deviation among human  
annotators (Methods).

We quantified and visualized vessel radius along the entire vas-
cular network (Fig. 4b). After extracting vascular features for the 
whole brain with VesSAP, we registered the volume to the Allen 
brain atlas (Supplementary Videos 5 and 6). This allowed us to map 
the segmented vasculature and corresponding features topographi-
cally to distinct anatomical brain regions (Fig. 4c). Each anatomical  
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Fig. 4 | Pipeline showing the feature extraction and registration process. a, Representation of the features extracted from vessels. b, Radius illustration of 
the vasculature in a CD1 mouse brain. c,d, Vascular segmentation results overlaid on the hierarchically (c) and randomly (d) color-coded atlas to reveal all 
annotated regions available, including hemispheric difference (dashed line in d). The experiment was performed on nine different mice with similar results.
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Fig. 5 | Anatomical properties of the neurovasculature in adult mouse brain mapped to the Allen brain atlas clusters. a–c, Representations of the local 
vessel length (a), density of bifurcations (b) and average radius (c) in each of the 71 main anatomical clusters of the Allen brain atlas. Open, black and 
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the mean ± s.e.m.; n = 3 mice per strain. d, Local distribution of large, intermediate and microvessels in the same anatomical clusters. Abbreviations are 
defined in Supplementary Table 1.

NATuRE METhODS | www.nature.com/naturemethods

http://www.nature.com/naturemethods


Articles NATure MeTHODS

region could be further divided into subregions, yielding a total 
of 1,238 anatomical structures (619 per hemisphere) for the entire 
mouse brain (Fig. 4d). This allowed analysis of each denoted  
brain region and grouping of regions into clusters such as left versus 
right hemisphere, gray versus white matter, or any hierarchical clus-
ter of the Allen brain atlas ontology. For our subsequent statistical  
feature analysis, we grouped the labeled structures according to  
the 71 main anatomical clusters of the current Allen brain atlas 
ontology. We thus provide the whole mouse brain vascular map 
with extracted vessel lengths, bifurcation points and radii down to 
the capillary level.

VesSAP provides a reference map of the whole brain vasculature 
in mice. By studying whole brain vasculature in the C57BL/6J, CD1 
and BALB/c strains (n = 3 mice for each strain), we found that the 
local vessel length and local bifurcation density differed in the same 

brain over different regions, while they were highly correlated among 
different mice for the same regions (Fig. 5a,b). Furthermore, the 
local bifurcation density was highly correlated with the local vessel 
length in most brain regions (Supplementary Fig. 9), and the aver-
age vessel radius was evenly distributed in different regions of the 
same brain (Fig. 5c). In addition, the extracted features showed no 
statistical difference (by Cohen’s d; Supplementary Table 12) for the 
same anatomical cluster across the strains (Supplementary Fig. 9).  
Finally, microvessels made up the overwhelming majority of the 
total vascular composition in all brain regions (Fig. 5d). We visually 
inspected exemplary brain regions to validate the output of VesSAP. 
Both VesSAP and visual inspection revealed that the gustatory 
areas had a higher vascular length per volume than the anterodor-
sal nucleus (Fig. 6a–c). Visual inspection also suggested that the  
number of capillaries was the primary reason for regional feature 
variations within the same brain.
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Fig. 6 | Exemplary quantitative analysis enabled by VesSAP. a, Respective locations of the anterodorsal nucleus (AD) and gustatory areas (GU) in  
the mouse brain (left) and maximum-intensity projections of representative volumes from segmentation of these areas (600 × 600 × 33 µm3) (right).  
b,c, Quantification of the bifurcation density (b) and local vessel length (c) for the anterodorsal nucleus and gustatory area clusters. CD1 mice are shown 
by open circles, BALB/C mice by orange circles and C57BL/6J mice by black circles. Values are the mean ± s.e.m.; n = 3 mice per strain. d–f, Images of the 
vasculature in representative C57BL/6J (d), CD1 (e) and BALB/c (f) mice, where white arrowheads indicate anastomoses between major arteries. Direct 
vascular connections between the medial cerebral artery, the anterior cerebral artery and the posterior cerebral artery are indicated by red arrowheads. 
The experiment was performed three times with similar results.
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Finally, VesSAP offered insights into the neurovascular structure 
of the different mouse strains in our study. There were direct intra-
cranial vascular anastomoses in the C57BL/6J, CD1 and BALB/c 
strains (white arrowheads in Fig. 6d–f). The anterior cerebral artery, 
middle cerebral artery and posterior cerebral artery were connected 
at the dorsal visual cortex in CD1 mice (red arrowheads in Fig. 6d,e) 
unlike in the BALB/c strain33 (Fig. 6f).

Discussion
VesSAP can generate reference maps of the adult mouse brain vas-
culature, which can potentially be used to model synthetic cerebro-
vascular networks37. In addition to the metrics we obtain to describe 
the vasculature, advanced metrics, for example, Strahler values, 
network connectivity and bifurcation angles, can be extracted by 
using the data generated by VesSAP. Furthermore, the centerlines 
and bifurcation points can be interpreted as the edges and nodes for 
building a full vascular network graph, offering a means for study-
ing local and global properties of the cerebrovascular network in 
the future.

The VesSAP workflow relies on staining of blood vessels by 
two different dyes. WGA binds to the glycocalyx of the endothelial 
lining of blood vessels38 but may miss some segments of large ves-
sels18. EB is a dye with a high affinity for serum albumin35,36,39; thus, 
it remains in the large vessels after a short perfusion protocol. In 
addition, EB labeling is not affected by subsequent DISCO clearing.

Vessels have long and thin tubular shapes. In our images, the 
radii of capillaries (about 3 µm) are in the range of our voxel size. 
Therefore, segmentation that yields the correct diameter down to 
single-pixel resolution poses a challenge, as we observed a 16% 
deviation for the radius. This subpixel deviation did not pose a 
problem for segmenting the whole vasculature network and extract-
ing features because the vascular network can be defined by its cen-
terlines and bifurcations.

The described segmentation concept is based on a transfer learn-
ing approach, where we pretrained the CNN and refined it on a small 
labeled dataset of 11% of the synthetic dataset and only 0.02% of 
one cleared brain. We consider this to be a major advantage in com-
parison to training from scratch. Thus, our CNN might generalize 
well to different types of imaging data (such as micro-CT angiogra-
phy) or other curvilinear structures (for example, neurons), as only 
a small labeled dataset is needed to adjust our pretrained network.

On the basis of our vascular reference map, unknown vascular 
properties can be discovered and biological models can be confirmed. 
VesSAP showed a high number of collaterals in albino CD1 mice. 
Such collaterals between large vessels can substantially alter the out-
come of ischemic stroke lesions: blood-deprived brain regions arising 
from occlusion of a large vessel can be compensated by blood sup-
ply from the collateral extensions of other large vessels33,40. Therefore, 
our VesSAP method can lead to the discovery of previously unknown 
anatomical details that could be functionally relevant.

In conclusion, VesSAP is a scalable, modular and automated 
machine learning-based method to analyze complex imaging data 
from cleared mouse brains. We foresee that our method will accel-
erate the applications of tissue clearing, in particular for studies 
assessing brain vasculature.
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Methods
Tissue preparation. Animal experiments were conducted according to 
institutional guidelines (Klinikum der Universität München/Ludwig Maximilian 
University of Munich), after approval of the ethical review board of the government 
of Upper Bavaria (Regierung von Oberbayern, Munich, Germany), and in 
accordance with European directive 2010/63/EU for animal research. Animals were 
housed under a 12-h light/12-h dark cycle. For this study, we injected 150 μl (2% 
(vol/vol) in saline) EB dye (Sigma-Aldrich, E2129) intraperitoneally into 3-moth-
old male mice from the C57BL/6J, CD1 and BALB/c strains (Charles River, strain 
codes 027, 482 and 028, respectively; n = 3 mice per strain). Twelve hours after 
injection of EB dye, we anesthetized the animals with a combination of midazolam, 
medetomidine and fentanyl (administered intraperitoneally; 1 ml per 100 g body 
weight containing 5 mg, 0.5 mg and 0.05 mg per kg body weight, respectively) and 
opened their chest for transcardial perfusion. Medium with WGA (0.25 mg WGA 
conjugated to Alexa Fluor 594 dye (Thermo Fisher Scientific, W11262) in 150 µl 
PBS, pH 7.2) was supplied by peristaltic pump set to deliver the medium at a rate 
of 8 ml min–1, along with 15 ml of 1× PBS and 15 ml of 4% paraformaldehyde. This 
short perfusion protocol was established on the basis of preliminary experiments, 
where both WGA and EB staining were partially washed out (data not shown), 
with the goal of delivering fixative to brain tissue via the vessels to achieve a 
homogenous preservation effect41.

After perfusion, brains were extracted from the neurocranium while severing 
some of the segments of the circle of Willis, which is an inevitable component 
of most retrieval processes aside from corrosion cast techniques. Next, the 
samples were incubated in 3DISCO clearing solutions as described17. Briefly, we 
immersed them in a gradient of tetrahydrofuran (Sigma-Aldrich, 186562): 50%, 
70%, 80% and 90% (in distilled water) followed by 100%, at 25 °C for 12 h at each 
concentration. At this point, we modified the protocol by incubating the samples 
in tert-butanol for 12 h at 35 °C followed by immersion in dichloromethane 
(Sigma-Aldrich, 270997) for 12 h at room temperature and a final incubation with 
refractive index-matched BABB solution (benzyl alcohol + benzyl benzoate,  
1:2; Sigma-Aldrich, 24122 and W213802), for at least 24 h at room temperature 
until transparency was achieved. Each incubation step was carried out on a 
laboratory shaker.

Imaging of cleared samples with light-sheet microscopy. We used a ×4 objective 
lens (Olympus XLFLUOR 340) equipped with an immersion-corrected dipping 
cap mounted on a LaVision UltraII microscope coupled to a white-light laser 
module (NKT SuperK Extreme EXW-12) for imaging. Images were taken with 
16-bit depth and at a nominal resolution of 1.625 μm per voxel on the x and y axes. 
For ×12 imaging, we used a LaVision objective (×12/0.53 NA MI PLAN with an 
immersion-corrected dipping cap). Brain structures were visualized by Alexa Fluor 
594 (using a 580/25-nm excitation filter and a 625/30-nm emission filter) and EB 
fluorescent dye (using a 640/40-nm excitation filter and a 690/50-nm emission 
filter) in sequential order. We maximized the SNR for each dye independently to 
avoid saturation of differently sized vessels when only a single channel was used. 
We achieved this by independently optimizing the excitation power so that the 
strongest signal in major vessels did not exceed the dynamic range of the camera. 
In the z dimension, we took sectional images in 3-μm steps while using left- and 
right-sided illumination. Our measured resolution was 2.83 µm × 2.83 µm × 4.99 µm 
for x, y and z, respectively (Supplementary Fig. 2). To reduce defocus, which 
derives from the Gaussian shape of the beam, we used 12-step sequential shifting 
of the focal position of the light sheet per plane and side. The thinnest point of the 
light sheet was 5 μm.

Imaging of cleared samples with confocal microscopy. Additionally, the cleared 
specimens were imaged with an inverted laser-scanning confocal microscope 
(Zeiss, LSM 880) for further analysis. Before imaging, samples were mounted by 
placing them onto the glass surface of a 35-mm glass-bottom Petri dish (MatTek, 
P35G-0-14-C) and immersed in BABB. A ×40 oil-immersion objective lens was 
used (Zeiss, ECPlan-NeoFluar ×40/1.30 NA Oil DIC M27, WD = 0.21 mm). Images 
were acquired with the settings for Alexa Fluor 594 (using excitation at 561 nm 
and an emission range of 585–733 nm) and EB fluorescent dye (using excitation at 
633 nm and an emission range of 638–755 nm) in sequential order.

Magnetic resonance imaging. We used a nanoScan PET/MR device (3 Tesla, 
Mediso Medical Imaging Systems) equipped with a head coil for murine heads to 
acquire anatomical scans in the T1 modality.

Reconstruction of the datasets from tiling volumes. We stitched the acquired 
volumes by using TeraStitcher’s automatic global optimization function (v1.10.3). 
We produced volumetric intensity images of the whole brain while considering 
each channel separately. To improve alignment to the Allen brain atlas, we 
downscaled our dataset in the xy plane to achieve pseudouniform voxel spacing 
matching the z plane.

Deep learning network architecture. We relied on a deep 3D CNN for 
segmentation of our blood vessel dataset. The network’s general architecture 
consists of five convolutional layers, four with ReLU (rectified linear units) 

followed by one convolutional layer with sigmoid activation (Fig. 3a). The input 
layer is designed to take n images as input. In the implemented case, the input 
to the first layer of the network comprised n = 2 images of the same brain, which 
had been stained differently (Fig. 3a). To specifically account for the general 
class imbalance (much more tissue background than vessel signal) in our dataset 
and the potential for high false-positive rates associated with this, we chose the 
generalized soft-Dice as the loss function to our network. At all levels, we used full 
3D convolutional kernels (Fig. 3a).

The network’s training is driven by an Adam optimizer with a learning rate 
of 1 × 10–5 and an exponential decay rate of 0.9 for the first moment and 0.99 
for the second moment42. A prediction or segmentation with a trained model 
takes volumetric images of arbitrary size as input and outputs a probabilistic 
segmentation map of identical size. To deal with volumes of arbitrary size and 
extension, we processed them in smaller subvolumes of 100 × 100 × 50 pixels in 
size. The algorithms were implemented by using the Tensorflow framework and 
KERAS43. They were trained and tested on two NVIDIA Quadro P5000 GPUs and 
on machines with 64 GB and 512 GB of RAM.

Transfer learning. Typically, supervised learning tasks in biomedical imaging 
are aggravated by the scarce availability of labeled training data. Our transfer 
learning approach aims to circumvent this problem by pretraining our models 
on synthetically generated data and refining them on a small set of real images44. 
Specifically, our approach pretrains the VesSAP CNN on 3D volumes of vascular 
image data, synthetically generated together with the corresponding training labels 
by using the approach of Schneider and colleagues45. The pretraining is carried out 
on a dataset of 20 volumes of 325 × 304 × 600 pixels in size for 38 epochs. During 
pretraining, we applied a learning rate of 1 × 10–4. Afterward, the pretrained model 
was fine-tuned by retraining on a real microscopic dataset consisting of 11 volumes 
of 500 × 500 × 50 pixels in size. The image volumes were manually annotated by 
commissioned experts, including the expert who previously prepared the samples 
and operated the microscope. The labels were verified and further refined in 
consensus by two additional human raters. The data we used in this fine-tuning 
step amounted to 11% of the volume of the synthetic datasets and only 0.02% 
of the voxel volume of a single whole brain. For the fine-tuning step, we used a 
learning rate of 1 × 10–5. The final model was obtained after training on the real 
dataset for six epochs. This training was substantially shorter than training from 
scratch, where we trained the same VesSAP CNN architecture for 72 epochs until 
we reached the best F1 score on the validation set. The labeled dataset consisted of 
17 volumes of 500 × 500 × 50 pixels from five mouse brains. Three of these brains 
were from the CD1 strain, and two were from the C57BL/6J strain. The volumes 
were chosen from regions throughout the whole brain, to represent the variability 
in the vascular dataset in terms of both vessel shape and illumination. To ensure 
independence, volumes for the training set and test/validation set were chosen 
from independent brains. All datasets included brains from the two strains. Our 
training dataset consisted of 11 volumes, the validation dataset of 3 volumes and 
the test dataset of 3 volumes. We cross-tested on our test and validation datasets 
by rotating these. The volumes were processed during training and inference in 25 
small subvolumes of 100 × 100 × 50 pixels.

We observed an average F1 score of 0.84 ± 0.02 (mean ± s.d.), an average 
accuracy of 0.94 ± 0.01 (mean ± s.d.) and an average Jaccard coefficient of 
0.84 ± 0.04 (mean ± s.d.) on our test datasets (Fig. 3b). We tested the statistical 
significance of differences among the top three learning methods (the VesSAP 
CNN, V-Net and 3D U-Net) by using paired t tests. We found that the differences 
in F1 score were not statistically significant (all P > 0.3, rejecting the hypothesis of 
different distributions).

Because the F1 score, accuracy and Jaccard coefficient are all voxel-wise  
volumetric scores and can fall short in evaluating the connectedness of 
components, we developed the cl-F1 score. cl-F1 is calculated from the intersection 
of centerlines and vessel volumes and not from volumes only, as the traditional 
F1 score is46. To determine this score, we first calculated the intersection of the 
centerline of our prediction with the labeled volume and then calculated the 
intersection of the labeled volume’s centerline with the predicted volume. Next, we 
treated the first intersection as recall, as it is susceptible to false negatives, and the 
second intersection as precision, as it is susceptible to false positives, and input this 
into the traditional F1 score formulation:

F1 ¼ 2 ´
precision ´ recall
precision þ recall

ð1Þ

We report an average cl-F1 score of 0.93 ± 0.02 (mean ± s.d.) on the test set.
All scores are given as mean and s.d. Our model reached the best model 

selection point on the validation dataset after six epochs of training.

Comparison to 3D U-Net and V-Net. To compare our proposed architecture to 
different segmentation architectures, we implemented V-Net and 3D U-Net, both 
of which use more complex CNNs with substantially more trainable parameters, 
which further include down- and upsampling. While our experiments showed 
that 3D U-Net and V-Net reached marginally higher performance scores, the 
differences were not statistically significant (two-sided t test, P > 0.3). The amount 
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of parameters for these tools makes them 51 and 23 times slower than VesSAP 
during the inference stage. For segmentation of one of our large whole-brain 
datasets, this translated to 4 h for VesSAP versus 8 d for 3D U-Net and 3.8 d for 
V-Net. This difference was also prevalent in the number of trainable parameters. 
The VesSAP CNN had 0.058 million parameters, whereas 3D U-Net consisted 
of more than 178 million and V-Net of more than 88 million parameters. 
Furthermore, the light VesSAP CNN already reached human-level performance. 
We therefore consider the problem of vessel segmentation as solved by the VesSAP 
CNN for our data. It should be mentioned that the segmentation network is a 
modular building block of the overall VesSAP pipeline and can be chosen by each 
user according to his or her own preferences and, importantly, according to the 
computational power available.

Preprocessing of segmentation. Preprocessing factors into the overall success of 
the training and segmentation. The intensity distribution among brains and among 
brain regions differs substantially. To account for intensity distributions, two 
preprocessing strategies were applied successively.

1. High-cut filter. In this step, the intensities x above a certain threshold c are 
set to c; c is defined by a global percentile. Next, they were normalized by f(x).

g xð Þ ¼ c; x>c

x; x≤c

�
ð2Þ

2. Normalization of intensities. The original intensities were normalized to a range 
of 0 to 1, where x was the pixel intensity and X was all intensities for the volume.

f xð Þ ¼ x �min Xð Þ
max Xð Þ �min Xð Þ ð3Þ

Inter-annotator experiment for segmentation. To compare VesSAP’s segmentation 
to human-level annotations, we implemented an inter-annotator experiment. 
For this experiment, we determined a gold-standard label (ground truth) for two 
volumes of 500 × 500 × 50 pixels from a commissioned group of three experts, 
including the expert who imaged our data and was therefore most familiar with the 
images. Next, we gave the two volumes to four other experts to label the complete 
vasculature. The experts spent multiple hours labeling each patch in the ImageJ 
and ITK-snap environment and were allowed to use their favored approaches 
to generate what they considered to be the most accurate labeling. Finally, we 
calculated the accuracy and F1 scores for the different annotators, as compared to 
the gold standard, and compared them to the scores for our model (Table 1).

Feature extraction. To quantify the anatomy of the mouse brain vasculature, we 
extracted descriptive features on the basis of our segmentation. First, we calculated 
the features in voxel space. Later, we registered them to the Allen brain atlas.

As features we extracted the centerlines, the bifurcation points and the radii of 
the segmented blood vessels. We consider these features to be independent from 
the elongation of the light-sheet scans and the connectedness of the vessels due to 
staining, imaging and/or segmentation artifacts.

Our centerline extraction was based on a 3D thinning algorithm47. Before 
extracting the centerlines, we applied two cycles of binary erosion and dilation 
to remove false-negative pixels within the volume of segmented vessels, as these 
would induce false centerlines. On the basis of the centerlines, we extracted 
bifurcation points. A bifurcation was the branching point on a centerline where 
a larger vessel split into two or more smaller vessels (Fig. 4a). In a network 
analysis context, bifurcations are meaningful as they represent the nodes of a 
vascular network48. Furthermore, bifurcation points have relevance in a biological 
context. In neurodegenerative diseases, capillaries are known to degenerate49, 
thereby substantially reducing the number of bifurcation points in an affected 
brain region as compared to healthy brain. Next, we implemented an algorithm 
to detect bifurcation points. We achieved this by calculating the surrounding 
pixels for every point on each centerline and determined whether a point was 
a centerline. The radius of a blood vessel is a key feature to describe vascular 
networks. The radius yields information about the flow and hierarchy of the vessel 
network. The proposed algorithm calculates the Euclidean distance transform for 
every segmented pixel v to the closest background pixel bclosest. Next, the distance 
transform matrix is multiplied by the 3D centerline mask, equaling the minimum 
radius of the vessel around the centerline.

d v; bclosestð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X3

1

vi � bclosest;i
� 2

vuut ð4Þ

Feature quantification. Here we describe in detail how we calculated the features 
between the three different spaces.

Voxel space to microscopic space. To quantify the length of our vessels in SI units 
instead of voxels, we calculated their Euclidean length, which depends on the 
direction of the connection of skeleton pixels (Supplementary Fig. 9). To calculate 

the Euclidean length of our centerlines, we carried out a connected component 
analysis, which transformed each pixel of the skeleton into an element of an 
undirected weighted graph, where zero weight means no connection and non-zero  
weights denote the Euclidean distance between two voxels (considering 26 
connectivity). Thus, we obtained a large and sparse adjacency matrix. An element-
wise summation of such a matrix provides the total Euclidean length of the 
vascular network along the extracted skeleton.

As measuring connected components is computationally very expensive, we 
calculated the Euclidean length of the centerlines for 12 representative volumes of 
500 × 500 × 50 pixels and divided by the number of skeleton pixels. We calculated an 
average Euclidean length εCl of 1.3234 ± 0.0063 voxels (mean ± s.d.) per centerline 
element. This corresponds to a length of 3.9701 ± 0.0188 µm (mean ± s.d.) in cleared 
tissue. Because the s.d. of this measurement was low, at less than 0.5% of the length, 
we applied this correction factor to the whole brain centerline measurements. This 
correction does not apply to the bifurcation points and our radius statistics, as 
bifurcations are independent of length and also radius extraction returns a Euclidean 
distance by default. Depending on the direction of the connection of skeleton pixels, 
the Euclidean length of a skeleton pixel is different (Supplementary Fig. 9).

Microscopic space to anatomical space. To account for tissue shrinkage 
(Supplementary Fig. 9), which is inherent to DISCO clearing, we carried out 
an experiment to measure the degree of shrinkage. Before clearing, we imaged 
the brains of three live BALB/c mice by MRI and calculated each brain’s average 
volume, through precise manual segmentation by an expert. Next, we cleared 
three BALB/c brains, processed them with VesSAP and measured the total brain 
volume with atlas alignment. We report an average volume of 423.84 ± 2.04 mm3 
for the live mice and 255.62 ± 6.57 mm3 for the cleared tissue. This corresponds to 
a total volume shrinkage of 39.69%. We applied this as a correction factor for the 
volumetric information (for example, for brain regions).

Similarly to previous studies, shrinkage was uniform in all three dimensions. 
This is important when considering shrinkage in one dimension, as needed to 
account for the shrinkage in centerlines and radii. The one-dimensional correction 
factor КL then corresponds to the cube root of the volumetric correction factor КV.

Accounting for these factors, we calculated the vessel length per volume (Z) in 
cleared (Zcleared) and real (Zreal) tissue in equation (5), where NV,vox is the number of 
total voxels in the reference volume and NCl,vox is the number of centerline voxels in 
the image volume:

Zcleared ¼ NCl;vox

NV;vox
´ εCl Zreal ¼ NCl;vox

NV;vox
´ εCl ´ κL

κV
ð5Þ

Similarly, we calculated the bifurcation density (B) in cleared and real tissue in 
equation (6), where NBif,vox is the number of bifurcations in the reference volume:

Bcleared ¼ NBif ;vox

NV;vox
Breal ¼ NBif ;vox

NV;vox
´ 1

κV
ð6Þ

Please note that the voxel spacing of 3 µm has to be taken into consideration 
when reporting features in SI units.

Inter-annotator experiment for features. To estimate the error in VesSAP’s feature 
quantification, we extracted the features on a labeled test set of five volumes of 
500 × 500 × 50 pixels. When comparing to the gold-standard label, we calculated 
errors (disagreements) of 8.21% for the centerlines, 13.18% for the number of 
bifurcation points and 16.33% for the average radius. To compare VesSAP’s 
extracted features to human-level annotation, we implemented an inter-annotator 
experiment. For this experiment, we had four annotators label the vessels and radii 
in two volumes of 500 × 500 × 50 pixels by using ImageJ and ITK-snap. Finally, 
we calculated the agreement of the extracted features between all annotators and 
compared to the gold-standard labeling.

We calculated this for each of the volumes and found an average error 
(disagreement) of 34.62% for the radius, 25.20% for the bifurcation count and 
12.55% for the centerline length.

The agreement between the VesSAP output and the gold standard was higher 
than the average agreement between the annotators and the gold standard. This 
difference underlines the quality and reproducibility of VesSAP’s feature extraction.

Registration to the reference atlas. We used the average template, the annotation 
file and the latest ontology file (Ontology ID: 1) of the current Allen mouse 
brain atlas: CCFv3 201710. Then, we scaled the template and the annotation file 
up from 10 to 3 µm3 to match our reconstructed brain scans and multiplied the 
left side of the (still symmetrical) annotation file by −1 so that the labels could 
be later assigned to the corresponding hemispheres. Next, the average template 
and 3D vascular datasets were downsampled to 10% of their original size in each 
dimension to achieve reasonably fast alignment with the elastix toolbox50 (v4.9.0). 
For the sake of the integrity of the extracted features, we aligned the template 
to each of the brain scans individually by using a two-step rigid and deformable 
registration (B-spline; optimizer, AdaptiveStochasticGradientDescent; metric, 
AdvancedMattesMutualInformation; grid spacing in physical units, 90; in the 
VesSAP repository, we host the log and parameter files for each brain scan) and 
applied the transformation parameters to the full-resolution annotation volume 
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(3-μm resolution). Subsequently, we created masks for the anatomical clusters on 
the basis of the current Allen brain atlas ontology.

Statistical analysis of features. Data collection and analysis were not performed 
with blinding to the strains. Data distribution was assumed to be normal, although 
this was not formally tested. All data values of the descriptive statistics are given 
as mean ± s.e.m. unless stated otherwise. Data were analyzed with standardized 
effect size indices (Cohen’s d)51 to investigate differences in vessel length, number 
of bifurcation points and radii between brain areas across the three mouse strains 
(n = 3 mice per strain). Descriptive statistics were evaluated across brain regions in 
the pooled (n = 9) dataset.

Data visualization. All volumetric datasets were rendered with Imaris, Vision4D 
and ITK-snap.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
VesSAP data are publicly hosted at http://DISCOtechnologies.org/VesSAP and 
include original scans and registered atlas data.

Code availability
VesSAP codes are publicly hosted at http://DISCOtechnologies.org/VesSAP and 
include the imaging protocol, trained algorithms, training data and a reference 
set of features describing the vascular network in all brain regions. Additionally, 
the source code is hosted on GitHub (https://github.com/vessap/vessap) and on 
the executable platform Code Ocean (https://doi.org/10.24433/CO.1402016.v1)52. 
Implementation of external libraries is available on request.
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