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Abstract. Raster-scan optoacoustic mesoscopy (RSOM) is a powerful,
non-invasive optical imaging technique for functional, anatomical, and
molecular skin and tissue analysis. However, both the manual and the
automated analysis of such images are challenging, because the RSOM
images have very low contrast, poor signal to noise ratio, and system-
atic overlaps between the absorption spectra of melanin and hemoglobin.
Nonetheless, the segmentation of the epidermis layer is a crucial step for
many downstream medical and diagnostic tasks, such as vessel segmen-
tation or monitoring of cancer progression. We propose a novel, shape-
specific loss function that overcomes discontinuous segmentations and
achieves smooth segmentation surfaces while preserving the same volu-
metric Dice and IoU. Further, we validate our epidermis segmentation
through the sensitivity of vessel segmentation. We found a 20% improve-
ment in Dice for vessel segmentation tasks when the epidermis mask is
provided as additional information to the vessel segmentation network.

1 Introduction

Skin imaging plays an important role in dermatology; in both fundamental
research and treatment of diverse diseases [10,20,31]. Optoacoustic (photoacous-
tic) mesoscopy offers unique opportunities in optical imaging, by bridging the
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gap between microscopic and macroscopic description of tissue and by enabling
high-resolution visualizations which are deeper than optical microscopy [4,21].
Raster scan optoacoustic mesoscopy (RSOM) is a novel technique for noninva-
sive, high-resolution, and three-dimensional imaging of skin features based on
optical absorption contrast [1,17]. Several studies using RSOM have recently
demonstrated high resolution skin imaging by revealing different skin layers and
the structure of the microvasculature [1,2]. RSOM imaging has been used for
in-depth visual examination of psoriasis and analysis of vascularization of super-
ficial tumors [1,18]. A critical first step for quantitative analysis of clinical RSOM
images is to segment skin layers and vasculature in a rapid, reliable, and auto-
mated manner.

Previously, skin layers in RSOM images have been manually segmented by
visual inspection of vasculature morphology; or automatically, based on signal
intensity levels exploiting dynamic programming [15] and random forest [13].
Such procedures are slow, inaccurate, and unsuitable for processing larger num-
bers of patients, especially for making clinical decisions during the patient’s
visit. Manual segmentation is also subjective and hence compromises the repro-
ducibility and robustness of RSOM skin image analysis. In addition to the rich,
three-dimensional vascular information, RSOM images can be employed to com-
pute biomarkers such as the total blood volume, vessel density, and complexity.
These help to assess disease progression and identify skin inflammation. In cur-
rent practice, the segmentation of RSOM images is thresholding-based and thus
very sensitive to signal to noise ratio (SNR) variations. Therefore, there is a need

Fig. 1. Visual problem definition: (a) shows a maximum intensity projection (MIP)
in y direction of a volumetric RSOM image of human skin. The anatomical structure
is described by the white arrows: epidermis (EP) and dermis (DR); the dermis itself
consists of the capillary loop layer (CL) on top of the vascular plexus (VP). Here,
extracting an exact boundary is very difficult. (b) Our contribution: considering the
RSOM image on the left of (b) we automated the epidermis segmentation (semitrans-
parent white overlay on the right), which we use as a mask for the vascular segmentation
of the vascular plexus (VP). The smoothness of the layer segmentation is crucial to
input meaningful and reproducible images into the vessel segmentation.
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to develop a reliable, automatic skin layer and vessel segmentation approach
based on neural networks for rapid quantitative analysis of RSOM images.

Problem Definition: This paper sets out to develop a custom loss function
for structured and smooth epidermis segmentation in RSOM images, which can
be used in any segmentation network. This is difficult for the RSOM modality
because melanin and hemoglobin overlap in their acoustic response. I.e. it is hard
to distinguish between the melanin layer from the epidermis and the capillary
loops from the dermis layer, because the absorption spectrum of melanin and
hemoglobin is very close at the used laser wavelength (532 nm) of RSOM imaging
[16]. First, segmentation of the epidermis is necessary to compute the average
thickness of the epidermis layer, which is an important biomarker. Second, a ves-
sel segmentation is less affected by the melanin signal, if it is smoothly masked
out, see Fig. 1. Critically, the response of melanin is distributed irregularly and
nonlinear, which increases the difficulty of epidermis segmentation. The smooth-
ness is the key aspect where traditional segmentation networks trained on, e.g.,
BCE or soft-dice loss fail, because their segmentations lead to discontinuous sur-
faces, which miss parts of the epidermis, see Fig. 2. These “gaps” inevitably lead
to false vessel segmentations because the melanin and hemoglobin signal cannot
be distinguished, see Fig. 1 and Supplementary Fig. 1.

Methodologically, we overcome this by developing a custom loss function; pre-
vious works demonstrated how custom loss functions can be superior for difficult
medical imaging tasks [3,8,14,26]. Regarding smoothness, previous approaches
used post-processing steps to achieve smooth surfaces, e.g., filters [12]. More
complex neural network approaches used topological concepts as priors for his-
tology gland segmentation [5]. For general smooth shape segmentation, other
approaches [9,22] successfully combined multiple fully convolutional networks,
which incorporated arbitrary shape priors into the loss function of an additional
network. Another successful approach used graph cuts [27]. Patino et al. imple-
mented superpixel merging [20] and Li et al. graph theory to achieve smooth
surfaces [11].

Our Contributions: At the core of our contribution is a new method to achieve
an anatomically consistent and smooth epidermis layer segmentation in RSOM
images. First, we introduce a custom loss term, which enforces smooth surfaces
through a distance-based smoothness penalty. Next, we show that a combination
of binary cross entropy loss and the custom smoothness loss optimizes epidermis
segmentation. Conclusively, the resulting loss allows us to learn from very few
examples, but well defined prior knowledge with very high accuracy, leading to
the first automated RSOM epidermis segmentation algorithm, which preserves
smooth layer structures. We validate the epidermis layer segmentation by eval-
uating the performance of RSOM vessel segmentation - a downstream image
processing task - with the proposed segmentation algorithm and its alternatives.
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2 Methodology

2.1 Loss Function

Our total loss function Lj : R
X×Z
≥0 → R≥0 for a sample j consists of a per-

pixel cross-entropy part Hj : RX×Z
≥0 → R

X×Z
≥0 and a smoothness penalty Sj :

R
X×Z
≥0 → R≥0, which is weighted by a constant parameter s = const. The total

loss function is given in Eq. 1. The width and height of one 2D slice are X and Z
(see also Sect. 3), consequently the summation term denotes the spatial average
of Hj .

Lj =
1

XZ

X∑

x=1

Z∑

z=1

Hj (x, z) + s · Sj (1)

Hj is a per-pixel standard binary cross entropy. To incorporate prior knowledge
about the shape of the epidermis, the smoothness cost function Sj is defined
in Eq. 3. This concept is motivated by the clinical imaging setup, where the
epidermis layer is always approximately parallel to the x−y plane. The scenario
of arbitrary orientations, non-parallel to some coordinate plane would complicate
implementation, but is implausible, as the RSOM scan is acquired directly and
directional on the skin surface. Firstly, we split the probability map Pj ∈ R

X×Z
≥0 ,

in Z row vectors:
Pj =

[
pT
1,j

, pT
2,j

, · · · , pT
Z,j

]
. (2)

Secondly, we perform a 1D convolution or correlation operation (denoted by ∗) of
a vector p

z,j
with kernel K, defined in Eq. 4. Note that this is a discrete convolu-

tion and K is a discrete kernel, and its weights are chosen to obey
∑∞

−∞ K = 1.
Furthermore, convolving with K does not change the size of pz,j . In Eq. 3, � is
the Hadamard division [6], where 1X ∈ R

X is a vector of ones. |·| denotes the
element-wise absolute value.

Sj =
∑

x

∑

z

∣∣∣
(((

p
z,j

∗ K
)

+ 1X

)
�

(
p
z,j

+ 1X

))
− 1X

∣∣∣ (3)

K (x) =

{
1
5 |x| ≤ 2
0 else

(4)

In the case of an equal prediction probability in x direction, pz,j = cz · 11,X ,
with cz ∈ R≥0,≤1, cz = const for all z. Consequently, Sj = 0, which results in no
smoothness penalty.

However, in the common case of an unequal prediction probability in x direc-
tion, it follows that Sj > 0; and Sj contributes to the total loss function, i.e.,
penalizing a non-smooth layer in x direction. Note that Sj is differentiable with
respect to the model weights, which is a necessary condition for any loss func-
tion. Due to incorporating the smoothness penalty, the model is directly taught
to learn smooth representations, rather than requiring a manual post-processing
step. Note that the computation of Sj is very inexpensive, as it requires only
one 1D convolution, additions, and one division.
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In practice, a perfectly segmented healthy epidermis is not rectilinear across a
whole RSOM image, as the thickness of the skin layers deviates in spatially coarse
patterns. This means that the thickness differences are smooth and coarse but
not abrupt, see Fig. 3. Thus, Sj > 0, while at the same time

∑
x

∑
z Hj (x, z) = 0,

resulting in an overall nonzero loss. Therefore, the scaling factor s in Eq. 1 must
be tuned accordingly.

2.2 Network Architectures

We use two very general segmentation architectures to show that the novel loss
function is agnostic to the network architecture. First, a U-Net [23] with dropout
in all up-convolution blocks except the first one. Second, a fully convolutional
network (FCN) with 7 layers depth and no dropout [28]. We train using the
described 5 fold cross validation for all loss functions depicted in Table 1. All
networks are implemented in Pytorch using the Adam optimizer.

3 Experiments and Discussion

Since our objective is to achieve a smooth epidermis and dermis surface seg-
mentation, while maintaining the accuracy of traditional overlap and volumetric
scores (Dice, Precision, IoU), we compare the segmentation from a pure BCE
loss function to our combined loss function for a starkly varying smoothness
loss term, weighted by s. We validate our epidermis segmentation by an addi-
tional sensitivity experiment. We run a standard CNN vessel segmentation on
the masked image volume and show that the new and smooth epidermis seg-
mentation is beneficial for vessel segmentation, thereby also for even further
“downstream” tasks in clinical practice.

Dataset: The given RSOM dataset consists of two volumetric data channels
with a size of 333×171×500 pixels (X×Y ×Z). Step sizes are Δx = Δy = 12 µm
and Δz = 3 µm, resulting in image volumes of 2× 4× 1 mm3, where part of the
data can represent voxels outside the skin. For the layer segmentation, data is
processed in x−z slices of 333×500 pixels. We split our dataset consisting of 31
3D volumes according to these in 25 volumes for training and validation (5-fold
cross validation) and 6 volumes for testing. Next, we split all 3D volumes along
the x − z slices and shuffle the train and validation set across the 25 volumes.
Thereby, we have a training set of 3420 2D images (20 × 171), a validation set
of 855 2D images (5 × 171), and a completely unseen test set of 1026 2D images
(6 × 171). The GT of the epidermis was labeled using the approach in [1,2]
by experts familiar with RSOM images. In ambiguous situations, labels were
discussed to reach consensus decisions.

Assessment of the Segmentation Smoothness: Dice score and IoU do
not reveal detailed morphological information about the segmentation result.
In order to quantify the epidermis and dermis surface smoothness, we calculate
the arithmetic mean deviation in 1D, which is a common measure in material
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Fig. 2. The resulting Dice (red) and Roughness Ra (blue) values for our Epidermis
segmentation plotted against the scaling factor s between BCE and smoothness loss in
Eq. (3). To calculate the roughness value, all 2D slices of the test set are accumulated;
Ra is calculated by averaging over all x, for all slices for both, the epidermis and
the dermis surfaces. For both the U-Net and the FCN, increasing the smoothness loss
substantially improves the surface roughness, while maintaining a robust Dice score,
for a wide range of s (1–2000). Please note that s = 0 represents a pure BCE loss
function. We consider this a strong property of our loss term, as its robustness across
log-scales is evident. (Color figure online)

science to assess the quality of a surface [7,30]. Where, μ̃z (x), is the local mean
at x over a moving window of 5 pixels.

Ra =
1
X

X∑

x=1

|z (x) − μ̃z (x)| (5)

The local mean respects the coarse structure of the skin layers reducing its con-
tribution to the roughness Ra to a minimum, all while the fine structure (high-
frequency deviations) is reported. As an additional measure of the roughness,
we use the angular distribution of surface normals, see Fig. 4.

Epidermis Segmentation: We train the U-Net and FCN architectures incor-
porating loss functions with differing smoothness terms. Inclusion of our novel
loss term in any proportion improves the smoothness of the layer segmenta-
tion, as measured by Ra, independent of the network architecture, see Table 1.
The same trend is visible in the distribution of surface normals, see Fig. 4. Dice
scores are insensitive to the magnitude of the smoothness term, defined by s,
until certain tipping points, where the networks fail to converge, see Fig. 2. Two-
sided, paired Wilcoxon signed rank tests, comparing Dice scores for different
smoothness factors to the pure BCE loss, support this observation by revealing
no significant difference in underlying distributions for both U-Nets and FCNs
with p-values >0.05 across the board (p-values > 0.4 for all U-Net models and
> 0.06 for all FCN models). On the other hand, p-values for Ra show that our
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Table 1. Evaluation of the epidermis segmentation for the U-Net and FCN architec-
ture for a varying s. Overlap based scores, Dice, IoU, Precision, and Recall do not
substantially differ for both U-Net and FCN when increasing the smoothness loss term
s. In contrast, the surface roughness continuously improves with increasing s. Our U-
Net outperforms the FCN in regards to overlap based scores and roughness as it is a
substantially more complex model.

Network Loss Smoothness

factor s

Dice Precision Recall IoU Roughn. Ra

U-Net BCE 0 0.87 ± 0.09 0.87 ± 0.10 0.89 ± 0.13 0.78 ± 0.11 0.125

U-Net BCE+S 1 0.88 ± 0.10 0.88 ± 0.08 0.90 ± 0.14 0.79 ± 0.12 0.122

U-Net BCE+S 10 0.87 ± 0.10 0.87 ± 0.10 0.89 ± 0.13 0.79 ± 0.12 0.112

U-Net BCE+S 100 0.87 ± 0.10 0.86 ± 0.10 0.90 ± 0.13 0.78 ± 0.12 0.099

U-Net BCE+S 1000 0.86 ± 0.09 0.83 ± 0.11 0.90 ± 0.12 0.76 ± 0.11 0.081

U-Net BCE+S 2000 0.86 ± 0.09 0.80 ± 0.09 0.94 ± 0.11 0.76 ± 0.11 0.057

U-Net BCE+S 2500 0.85 ± 0.11 0.79 ± 0.11 0.94 ± 0.12 0.75 ± 0.13 0.055

7FCN BCE 0 0.64 ± 0.23 0.85 ± 0.12 0.62 ± 0.32 0.52 ± 0.24 2.127

7FCN BCE+S 1 0.65 ± 0.23 0.85 ± 0.12 0.63 ± 0.32 0.52 ± 0.23 1.607

7FCN BCE+S 10 0.64 ± 0.24 0.85 ± 0.12 0.62 ± 0.32 0.52 ± 0.24 1.116

7FCN BCE+S 100 0.58 ± 0.27 0.83 ± 0.14 0.55 ± 0.35 0.45 ± 0.26 0.909

Fig. 3. Magnified slice of an RSOM skin scan. The epidermis layer is marked in white.
(a) ground truth annotation (label), (b) segmentation result from the U-Net with
BCE loss, (c) segmentation result from the U-Net with BCE and Smoothness Loss
(s = 2000). Note that despite the highly unevenly distributed melanin response, the
smoothness loss based prediction segments the epidermis layer superior with a very
smooth surface, which is similar to the label.

models have significantly different Ra distributions across test samples (p-values
< 0.05 for all FCN and all U-Net where s > 1). Overall, we achieve the best
performance of around 87 % Dice and 0.06 Ra using the U-Net architecture.
Across the samples (for the U-Net), the scores of the five-fold cross validation
resulted in an agreement of the Dice scores of 0.985 ± 0.00068. From the very
low standard deviation, we conclude that the statistical divergence between the
training and validation set is very low. Visual inspection reveals that using our
smooth loss indeed yields smooth and continuous epidermis and dermis surfaces,
see Fig. 1 (b), Fig. 3 and Supplementary Fig. 3. The combined loss is robust for a
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Fig. 4. Histogram of the orientation of surface normals on the segmentation map (loga-
rithmic scale). (a) Ground truth. BCE loss (red), BCE and smoothness loss (green) for
(b) U-Net (s = 2000), and (c) FCN (s = 100). The amount of wrongly orientated sur-
face normals is reduced by one order of magnitude for the U-Net and less pronounced
for the FCN, too. The anatomically desired smooth surface is better segmented using
our smoothness loss term. For details on the calculation of the surface normals, please
see the supplementary material. (Color figure online)

largely varying s. For the U-Net, the loss was stable for s ranging from 1 to 2800
and for the FCN for an s ranging from 1 to 1000. To be clear, our smoothness
term is not a standalone loss, but works very well in combination with BCE;
increasing the factor s too much leads to instabilities during training, see Fig. 2.

Table 2. Vessel segmentation sensitivity experiment: Here we report the performance
of a standard vessel segmentation using DeepVesselNet [28]; without using our proposed
epidermis layer segmentation and using our method. Numbers in bold indicate superior
performance.

Configuration Dice Precision Recall IoU

No Mask 0.619± 0.187 0.673± 0.303 0.698± 0.160 0.474± 0.196

Our Method 0.810± 0.095 0.883± 0.100 0.760± 0.125 0.690± 0.117

Vessel Segmentation: We validate our epidermis segmentation via a sensitiv-
ity experiment of vessel segmentation, where we use the epidermis segmentation
as a mask. Vessel segmentation in optoacoustic skin scans is of great clinical inter-
est in order to characterize the vasculature of healthy human skin and in order
to diagnose several disease cases, where vasculature and capillaries are altered or
damaged; e.g., for the diagnosis of long term effects of diabetes on the patients’
body. An established method [19,28,29] for vessel segmentation is used to verify
the validity of the epidermis segmentation. Synthetically generated arterial trees
[24,25] serve as training and validation data, see Supplementary Fig. 2. Testing
is done on 32 annotated 3D RSOM volumes of size 166 × 85 × 250. Epidermis
segmentation increased the Dice similarity by more than 20% from 0.619±0.187
to 0.810 ± 0.095, yielding high confidence of the validity and necessity of our
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epidermis segmentation approach. The complete results for vessel segmentation
are given in Table 2.

4 Conclusion

In this paper, we introduced a novel, shape-specific loss function, for RSOM
image skin layer segmentation. Our loss overcomes discontinuous segmentations
and achieves smooth segmentation surfaces, while preserving the same volu-
metric segmentation performance, e.g. Dice. This is important because only
meaningful and reproducible segmentation can be used for downstream tasks
in medical practice, e.g. vessel segmentation for diagnostic purposes. We vali-
date our epidermis segmentation through a sensitivity experiment, where we use
our epidermis segmentation as a mask for vessel segmentation and improve their
performance by more than 20% Dice.
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