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Abstract

Accurate segmentation of vascular structures is an emerging research topic with
relevance to clinical and biological research. The connectedness of the segmented
vessels is often the most significant property for many applications such as dis-
ease modeling for neurodegeneration and stroke. We introduce a novel metric
namely clDice, which is calculated on the intersection of centerlines and volumes
as opposed to the traditional dice, which is calculated on volumes only. Firstly,
we tested state-of-the-art vessel segmentation networks using the proposed met-
ric as evaluation criteria and show that it captures vascular network properties
superior to traditional metrics, such as the dice-coefficient. Secondly, we propose
a differentiable form of clDice as a loss function for vessel segmentation. We
find that training on clDice leads to segmentation with more accurate connectivity
information, higher graph similarity and often superior volumetric scores.

1 Introduction

Segmentation of blood vessels is a key step in many clinical and biological applications such as
analyzing neurodegenerative diseases, e.g. Alzheimer’s disease [1], brain-vessel, and stroke modeling
[2]. The two most commonly used categories of quantitative performance measures are a) overlap
based distance measures such as dice-score, precision, recall, and Jaccard index; and b) volumetric
distance measures such as the Hausdorff distance and the Mahalanobis distance [3, 4, 5, 6, 7].

However, in many vessel segmentation applications, the most important properties are the connectivity
of the vascular network segments. Traditional scores, e.g. dice and Jaccard rely on the average
voxel-wise hit or miss prediction [8]. On the other hand, in a task like vascular network extraction,
a proper sequence of hits in the voxel domain is preferred over spurious hits. Further, a globally
averaged metric does not equally weight vessels with large, medium and small radii. In real datasets,
where vessels of wide radius ranges exist, e.g. 30 µm for arterioles [6, 9] and 5 µm for capillaries,
training on a globally averaged loss induces a strong bias towards the volumetric segmentation of
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Figure 1: Motivation, (a) Shows an examplary 2D slice of real microscopic data, (b) and (c) are two random
segmentation results which achieve similar dice scores (not from our presented model). Note that (b) does not
capture any of the small vessels while segmenting the large vessel very accurately, on the other side segmentation
(c) captures all vessels in the image while being a less accurate on the diameter of the large vessel.

large vessels. This is pronounced in imaging modalities like fluorescence microscopy, where the
image intensities of arteriole surrounding tissue are higher than the intensity within capillaries [6]. In
Figure 1, an example illustrates the suboptimality of traditional scores in some scenarios.

Furthermore, the most traditional metrics are ambiguous when some of the objects of interest are
of the same order as the resolution of the signal. Single-voxel shifts in prediction change the local
metric score significantly, thus making the metric difficult to interpret [8]. In this context of a vascular
network extraction task, we ask the following research questions:

Q1. What is a good connectivity-aware metric to benchmark vessel-segmentation algorithms?

Q2. How can we leverage this metric in a loss function to improve connectivity in vessel-
segmentation?

2 Methods

In this section we first introduce the clDice as a metric and subsequently introduce a differentiable
loss function namely soft-clDice.

clDice Metric : We propose a novel connectivity-preserving metric to evaluate vessel segmentation,
based on intersecting centerlines of vessels with vessel volumes. We call this metric a centerline-in-
volume-dice-coefficient or clDice in short. We consider two binary volumes: first, the ground truth
label map (L), and second, the predicted segmentation volume (P ). The centerlines clP and clL are
extracted from P and L respectively. Subsequently, we compute the fraction of clL that lies within
P , which we call clL2volP and vice-a-versa to get clP 2volL [c.f. Algorithm 1]. We observe that
clP 2volL is very susceptible to false positives in the prediction while clL2volP is susceptible to false
negatives. Therefore, we proceed to interpret clL2volP as precision and clP 2volL as recall. Since
we want to maximize both precision and recall, we formulate it symmetrically similar to the dice
coefficient in Equation 1. This leads us to the final expression of clDice in Equation 2.

Dice = 2× precision× recall
precision + recall

(1) clDice = 2× clP 2volL × clL2volP
clP 2volL + clL2volP

(2)

Figure 2: 2D slice of the soft-centerline(right)
of a real valued class probability map (left).

soft-clDice Loss : The centerline can be extracted
through Euclidean distance transform or via repeated
morphological thinning. Although Euclidean distance
transform has been used in multiple occassion [10] to
induce skeletons, it is a discrete operation and an end-
to-end differentiable approximation remains unsolved,
which prevents us from using it in our loss function. On
the contrary, morphological thinning consists of dilation
and erosion operations. Further, min- and max filters
are commonly used as the greyscale alternative of mor-
phological dilation and erosion. Motivated by this fact
we replace dilation and erosion operations with iterative
min- and max-pooling. This allows us to leverage clDice to extract a parameter-free, morphologically
motivated soft-centerline on greyscale valued data. We call this loss soft-clDice and describe it in
Algorithm 1 and 2. We determine the hyper-parameter k to be in the range of the maximum radius for
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the vessel like structure. In our experiment it is 5 for the synthetic and real data. Choosing a larger k
does not reduce performance but increases computation time, on the other hand a too low k leads to
incomplete skeletonization.

Algorithm 1: soft-clDice
Input :P,L
clP ← soft-centerline(P )
clL ← soft-centerline(L)
clP 2volL ← |clP ◦L|+ε

|clP |+ε

clL2volP ← |clL◦P |+ε
|clL|+ε

clDice← 2× clP 2volL × clL2volP
clP 2volL + clL2volP

Output :clDice

Algorithm 2: soft-centerline
Input :I, k
I ′ ← maxpool(minpool(I))
cl← ReLU(I − I ′)

for i← 0 to k do
I ← minpool(I)
I ′ ← maxpool(minpool(I))
cl← cl + cl ◦ReLU(I − I ′)

end
Output :cl

Vessel Segmentation: We evaluate the proposed clDice metric on two state-of-the-art 3D veseel
segmentation networks i) a 3D U-net[11], and ii) a 3D fully connected network (FCN)[12]. We used
generalized soft-Dice [13, 14] to train our baseline model for the vessel segmentation. Since our
objective here is to achieve accurate segmentation, while giving vascular connection more importance,
we add our proposed soft-clDice with soft-Dice as following

Lc = 0.5(soft-Dice + soft-clDice) (3)

In stark contrast to previous works, where vessel segmentation and centerline prediction has been
learned jointly as a multi-task learning [15], or which only learned vessel-centerlines (or trees
[12]), we are not interested in learning the centerlines. We are interested in learning a whole vessel
segmentation, where the connections between individual vessels are robust and complete.

3 Experiments

Dataset: We test our proposed metric and loss function on a synthetic and a real dataset. The
generation of the synthetic data is described in [16], additionally, we add a Gaussian noise term to this
generated data. The real dataset consists of multi-channel volumetric scans of the brain vasculature
(voxel size: (3µm3), which were obtained using light-sheet microscopy of tissue cleared Murine
brains, as introduced in [17]. We performed experiments on a synthetic dataset using fifteen single-
channel volumes for training, two for validation and five for testing, each of the size 325× 304× 600
pixels. On the real data we used both single and two-channel inputs, the inputs correspond to different
fluorescent stains, which have been shown to contain complimentary information [6]. Eleven volumes
were used for training, two for validation and four for testing, each of the size 500× 500× 50 pixels.

Evaluation Metric: We report overlap based metrics such as the Dice coefficient, Jaccard index(IOU)
and Accuracy along with our proposed clDice for all the experiment settings. Additionally, we extract
a vascular graph from the centerline of the predicted segmentation and compute relative accuracy
of total vascular network length (Dist.), the number of detected bifurcation points (Bifurc.) and
endpoints (End Pt.) compared to the ground truth.

Results & Discussion: We trained a Unet and a FCN in different scenarios of identical settings and
datasets. From Table 1 we observe that the inclusion of soft-clDice loss not only leads to a higher
clDice in all cases, but also performs better than the standalone soft-dice in terms of dice coefficient
and IOU. We also observe that soft-clDice improves the extracted network properties significantly
for real data. We do not see any systematic change in synthetic data after adding soft-clDice. We
attribute this to the fact that the synthetic data has higher signal-to-noise ratio and lacks significant
illumination variation.

4 Conclusion

This abstract introduces a novel connectivity-preserving metric clDice for vessel segmentation. We
use the new metric to evaluate segmentation quality, and in a loss function, to train state-of-the-art
networks on real and synthetic data. We find that training on soft-clDice leads to vessel segmentation
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Table 1: Experimental results for 3D U-nets and 3D FCNs on synthetic and real data. We observe a
consistent performance improvement for real data with the combination of soft-clDice and soft-dice.

Data Loss Network Dice clDice IOU Acc. Dist. Bifurc. End Pt.

Synthetic
soft-dice FCN, 1 ch 99.41 99.45 98.83 99.97 0.92 0.91 0.91

Unet, 1 ch 99.61 99.90 97.23 99.98 0.88 0.86 0.89

Lc
FCN, 1 ch 99.16 99.77 98.34 99.96 0.92 0.91 0.92
Unet, 1 ch 98.73 99.90 97.49 99.94 0.88 0.86 0.88

Real data

soft-dice

FCN, 1 ch 75.28 90.98 60.35 89.88 0.87 0.72 0.81
FCN, 2 ch 78.54 92.03 64.67 91.66 0.90 0.82 0.84
Unet, 1 ch 87.11 95.03 77.17 95.78 0.92 0.82 0.97
Unet, 2 ch 80.20 93.05 66.94 92.33 0.95 0.93 0.70

Lc

FCN, 1 ch 85.57 96.16 74.78 95.09 0.97 0.88 0.97
FCN, 2 ch 85.28 95.75 74.34 94.91 0.91 0.91 0.97
Unet, 1 ch 86.94 95.28 76.89 95.86 0.94 0.83 0.97
Unet, 2 ch 83.96 96.10 72.36 94.18 0.96 0.89 0.85

with more accurate connectivity information, higher graph similarity and similar to better volumetric
scores. More importantly clDice and soft-clDice can be readily deployed in other tree-structured
object segmentation tasks such as neuron segmentation and bronchial tract segmentation.
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