
Tracking for Distributed Mixed Reality Environments
Joseph Newman∗

University of Cambridge
Alexander Bornik†

Technical University of Graz.
Daniel Pustka‡

Technische Universität München.
Florian Echtler§

Technische Universität München.

Manuel Huber¶

Technische Universität München.
Dieter Schmalstieg‖

Technical University of Graz.
Gudrun Klinker∗∗

Technische Universität München.

ABSTRACT

By developing a taxonomy of existing systems, libraries and frame-
works used for developing Mixed Reality and Ubiquitous Comput-
ing environments, it can be seen that little effort has been made
to research applications that share the characteristics of these two
fields. Solutions have focussed on meeting the needs of each project
in turn, rather than developing a generalised middleware, which
would not only have the advantage of generality, but also facil-
itate cooperation and collaboration in what ought to be a cross-
disciplinary area. We have designed just such a solution, that can
be used to support a wide-range of Mixed Reality applications and
allow them to inter-operate in a distributed fashion, whilst simulta-
neously supporting straightforward porting of legacy applications.

Keywords: Ubiquitous Computing, Pervasive Computing, Aug-
mented Reality, Sensor Fusion.

Index Terms: D.2.11 [Software Engineering]: Software
Architectures—Domain Specific Architectures; D.2.11 [Software
Engineering]: Software Architecture—Patterns;

1 INTRODUCTION AND RELATED WORK

The field of Mixed Reality is not homogeneous, but highly di-
verse and cross-disciplinary. Whilst this field is now treated on
its own merits in courses, conferences and journals rather than as
sub-section of Virtual Reality, its practitioners come from fields as
different as Wearable Computing, Ubiquitous Computing, Graph-
ics and Computer Vision. In theory, these backgrounds ought to be
complementary but there are barriers to mutual understanding and
especially to collaboration, resulting from budgetary, technical and
social constraints. In this paper, we examine some of the techni-
cal constraints using a new application taxonomy, and propose a
new middleware framework which should reduce the overhead of
practical cooperation.

2 MILGRAM-WEISER CONTINUUM

Milgram proposed his Virtuality Continuum [5], shown in figure 2,
which described the range of applications coming under the head-
ing of Mixed Reality (MR) with the wholly virtual world of Virtual
Reality (VR) and the entirely real world we ordinarily inhabit as
extrema. There is unrealised potential in the coupling of these ap-
plications with the rich environments anticipated in Weiser’s “third
wave” [16] — computing capabilities embedded in even the most
mundane objects through networks of numerous and cheap wireless

∗e-mail: jfn20@cam.ac.uk
†e-mail:bornik@icg.tu-graz.ac.at
‡e-mail:pustka@in.tum.de
§e-mail:echtler@in.tum.de
¶e-mail:huberma@in.tum.de
‖e-mail:schmalstieg@icg.tu-graz.ac.at
∗∗e-mail:klinker@in.tum.de

sensors — enabling novel forms of visualisation and user interface.
However, Weiser himself placed Ubiquitous Computing (Ubicomp)
in opposition to Virtual Reality stating, “Ubiquitous Computing is
roughly the opposite of virtual reality” [16]. When one considers
that VR is merely at one extreme of the Milgram’s continuum, then
one can see that Ubicomp and VR are not strictly opposite one an-
other but rather orthogonal. An analogous continuum, which we
will posthumously call “Weiser’s Continuum” (see figure 3), would
have Ubicomp at one extreme and monolothic mainframe-based
computing at the other. Placing these continua at right-angles gives
us the 2D space shown in figure 1, in which different application
domains represent areas in this space.

The gamut of Milgram’s continuum runs from CAVE R©s and
tethered head-mounted display (HMD) setups, “mobile” backpack-
based HMD setups such as the MARS system from Höllerer et
al. [3], and rather more pocketable PDAs [15] and smartphones us-
ing a magic-lense metaphor. In its raw form a CAVE R© or HMD
would be the VR equivalent of an old-fashioned terminal connected
to a mainframe: a conspicuous interface to the virtual world for a
single lone user. This application therefore occupies the top-right
hand corner of the Milgram-Weiser space. Similarly, a surgeon vi-
sualising a tumour using registered 3D graphical overlays in a spe-
cially designed AR-equipped operating theatre [14], is still interact-
ing (quite appropriately in the context) with a monolithic comput-
ing architecture. Therefore, AR-assisted surgery is in the top-left
of the Milgram-Weiser space. However, two CAVE R©s in remote
locations but placing their users in a shared space within a Dis-
tributed Virtual Environment [6] (DVE), encounter similar issues to
those raised by Weiser relating to mobility within Ubicomp. Mov-
ing below the Reality-Virtuality axis in the Milgram-Weiser space
towards the bottom-left of the diagram further Ubicomp concepts
are introduced by Newman and Reitmayr in the form of “Wide Area
Indoor Sentient AR” [7] and “Outdoor Collaborative AR” [12] [13]
respectively. What these systems all have in common is a highly
tuned mix of sensors, that have been chosen and combined in such
a way as to meet specific application requirements: precise, high
bandwidth, low latency data concerning a small number of pre-
defined objects within a small volume. In contrast, Ubicomp sys-
tems have generally used numerous, cheap, low bandwidth and rel-
atively inaccurate sensors scattered over wide areas, resulting in
federated data models such as Nexus [1] and QoSDream [2].

Most studies into classic Mixed Reality or Ubicomp environ-
ments have typically picked single points within this 2D space, in
order to investigate very specific properties of a given setup, or de-
vice. The result of this has been that solutions have been devel-
oped on a case-by-case basis, rather than aiming at a more gen-
eral middleware enabling the development of systems encompass-
ing the entire Milgram-Weiser space. Klinker et al. outlined the
distributed tracking concepts [4] needed to exploit AR outside lab-
oratory settings in the context of industrial processes, which lead
to the formulation of just such a generalised middleware, which we
call Ubiquitous Tracking [9] or Ubitrack. The original intention in
developing this MR classification [8] was to identify and occupy a
new and currently empty area in the bottom-left of the Milgram-
Weiser space labelled “Ubiquitous AR”. However, in the course



of the Presenccia [10] project, which requires distributed tracking
facilities to co-exist and inter-operate in collaborative gaming ap-
plications across the entire Milgram-Weiser space, we are striving
towards concepts that are sufficiently general to support tracking
across the entire domain. This paper outlines a pragmatic design
of such an architecture, conceived specifically with the aim of han-
dling multiple paradigms and straightforward porting of legacy ap-
plications.

Real
Environment

Virtual
Environment

Ubicomp

VR visualisation,
e.g. CAVETraditional AR,

e.g. surgery, 

Monolithic
Computing

Outdoor 
collaborative

AR

Traditional
Ubicomp/
Wearable 

Computing Ubiquitous
AR

Outdoor AR,
e.g. MARS, Tinmith

Handheld AR

Sentient AR

Distributed
Virtual Environment

Internet-based
arcade games, 

e.g. Quake
mobile
gaming

Massively Multi-
player online role-

playing games
(MMORPG)

Figure 1: Milgram-Weiser Continuum

3 UBITRACK SYSTEM ARCHITECTURE

We propose a client-server-based middleware architecture for track-
ing which fulfils the requirements of the different scenarios in the
Milgram-Weiser continuum. Figure 4 shows the basic components
of the architecture and the most relevant communication channels.
The core idea of the design is to separate the coordination and con-
figuration of sensors and consumers from the actual generation,
processing and consumption of sensor data. This data can be real
or synthetic, corresponding to actual devices in the real world or
virtual devices in a MR environment respectively. This separation
permits the relatively resource-intensive coordination process to run
on the server, while clients communicate directly with one another
in accordance with the low-latency requirements of AR/VR appli-
cations. In this context, the Ubitrack architecture can be seen as a
centrally coordinated peer-to-peer architecture, rather than a pure
client-server solution.

3.1 Ubitrack Server
The Ubitrack Server is the central component of the system, which
maintains a database of all objects and their relationships as a Rela-
tionship Graph (RG), which itself consists of a subgraph made up of
coordinate frames, sensors and tracked objects together with their
spatial relationships forming a Spatial Relationship Graph (SRG).
This database, though initially empty, contains the aggregated spa-
tial (and other) relationships specified by clients and thus contains
complete knowledge about the topology of the tracking infrastruc-
ture. It does not, however, contain actual sensor measurements.

Clients can register queries concerning parts of the SRG, in-
cluding spatial relationships that cannot be measured directly, but
can only be inferred using Spatial Relationship Patterns [11]. The

server constantly matches the SRG against registered client queries
and, if a match is found, a data flow network description (see be-
low) is generated and sent to the client. The server may also order a
client to construct a data flow network that supports other clients by
processing tracking data and transmitting them over the network,
thus sharing trackers between clients.

3.2 Ubitrack Client Framework
The clients of a Ubitrack system can be sensors, rendering devices
and other user-machine interaction components, but also mixed
forms, such as virtual characters who both react to the environment
and provide information about their location in space. Additionally,
existing legacy applications can be implemented as a single client
capable of consuming additional sensor data and/or to disclose in-
formation from contained sensors or internal state. Ubitrack clients
are implemented using the Client Framework represented by the
box in the bottom-left of figure 4.

Ubitrack Client In order to keep the interface for application
programmers minimal, the client-side network communication is
encapsulated in the Ubitrack Client library. It supports interaction
with the Ubitrack system at various degrees of complexity, ranging
from simple “where is object A” queries to persistent requests for
tracking data of all objects matching a given predicates with addi-
tional specification of desired tracking quality and base coordinate
frames.

Application A developer writes this component conforming to
certain interfaces that govern how the application informs the Ubi-
track Server via the Ubitrack Client of the tracking devices and ob-
jects for which it is responsible, and by which the Ubitrack Server
can similarly inform the application of the objects in which it has
expressed interest.

Data Flow Network The data flow network is the part of the
client-side architecture responsible for generating and processing
tracking events, and for sending them over the network. The em-
phasis is on high throughput with low latency and rapid reconfigura-
bility to accommodate changes in the infrastructure. It consists of
a pipes-and-filters architecture, as used by OpenTracker [13], with
drivers for trackers and components for transformation and network
transport. Additionally, Callback and Callforward compo-
nents provide an interface through which the actual application can
send and receive events.

The structure of the data flow network is determined at runtime
by the server in response to an application’s queries and the state
of the tracking infrastructure. The (re-)configuration is done by the
Ubitrack Client, which maintains the connection to the Ubitrack
server.

3.3 Spatial Indexer
In many applications, clients are only interested in tracking objects
which are contained in a particular region such as, for example, a
room. However, this “containment” information cannot usually be
determined from the topology of the Spatial Relationship Graph,
but only by examining the sensor data itself. To avoid informa-
tion overload at the Ubitrack Server, parts of the system that de-
pend on sensor data to evaluate client queries are separated from
the server itself using a plug-in mechanism. The range of predi-
cates that clients can use to further restrict the results of a query
(e.g. containedIn) is supported by the server by running a spa-
tial indexing service, that otherwise behaves similarly to a normal
Ubitrack client.

3.4 Communication Channels
To support communication between the different components of a
Ubitrack system, standardized protocols will be necessary. We have



Virtual
Environment

Real
Environment

Augmented
Reality (AR)

Augmented
Virtuality (AR)

Mixed Reality

Figure 2: Milgram’s Reality-Virtuality Continuum

Outdoor AR,
e.g. MARS, Tinmith MainframePCPDA

mobile
phone

pervasive
computers

one person
many computers

one computer
many people

one computer
one person

Figure 3: Spectrum ranging from Ubiquitous to Monolithic Computing posthumously “Weiser Continuum”

identified three communication channels, for which different proto-
cols will have to be designed, due to their distinct natures.

Client–Server The interface between the client and the server
is the core interface of the Ubitrack system. We envision that it
will be an open standard, generic enough to allow interoperability
between different client versions and data flow network implemen-
tations. Clients need to be able to specify their coordinate frames,
sensors and tracked objects in the form of an SRG; they need to
express queries for tracking data of single or multiple objects with
optional quality constraints. Additionally, clients must be able to
specify their networking and processing capabilities for interoper-
ability of different data flow network versions and implementations.

In the opposite direction, Ubitrack Servers respond to queries by
sending replies consisting of data flow network configurations back
to the client. The protocol needs to support incremental updates bi-
directionally, notifying both clients and the server of changes to the
infrastructure at runtime.

Client–Client Clients communicate with each other by ex-
changing tracking data. This exchange is centrally coordinated by
the Ubitrack Server which instructs clients to integrate network-
ing components into their data flow networks. The exact format
depends on the data flow network implementation. For example
OpenTracker has a range of different network sources and sinks us-
ing different protocols (e.g. TCP/IP and UDP multicast).

Server–Spatial Indexer The integration of a spatial indexer
requires a dedicated interface over which the indexer can plug into
the Ubitrack Server. This requires the indexer to specify which ad-
ditional predicates it provides and a query interface the server uses
to retrieve the set of objects that currently fulfill a given predicate.

3.5 Example
A deployment scenario in an airport setting for the proposed ubi-
track architecture is shown in Figure 5 consisting of four clients:

1. RFID tags embedded in every boarding card are handed out at
the check-in desk. RFID tag readers are deployed at key loca-
tions throughout the airport. As a passenger proceeds through
security and the lounge areas to their gate, every time they
pass within range of a RFID tag reader their location, to the
granularity of the range of the reader, is detected.

2. A control centre is equipped with many large screens, which
are used to visualise the flow of passengers through the airport
and as endpoints for the pan-tilt zoom cameras and wearable
cameras deployed throughout the airport.

3. A security guard is equipped with a hands-free headset, a cam-
era and a heads-up display. The guard is able to communicate
bi-directionally with the control centre using the audio head-
set. The purpose of the camera is twofold: it can track natural
features and fiducial markers in the environment in order to
localise the guard, and secondly provide a live feed in places
where fixed cameras are occluded. The heads-up display can
be used to overlay registered 3D graphics over the guard’s
vision, allowing a suspect package identified by the control
centre to be pin-pointed or an individual to be questioned.

4. A spatial indexer takes tracking data to perform spatial rea-
soning, deducing higher level knowledge, e.g. has passenger
A gone through security, or whether they are in a particular
shop. The spatial indexer requests tracking data from as many
sensors as possible.

Upon startup the mobile client assisting the guard registers its
camera as a tracker with the Ubitrack Server, by composing a query
which is sent via the Ubitrack Client component. The data flow
network of the mobile client is initially empty, but is populated in
response to the data flow configuration returned by the Ubitrack
server. The result of this is that the pose of the guard is transmitted
over a wireless network. The control centre application expresses
its interest in all objects, also via a query, resulting in the pose of the
guard being received, via another data flow network, which allows
the pan-tilt zoom cameras to keep the guard in view. This con-
figuration is unlikely to remain valid indefinitely, so the Ubitrack
Server continually revises the data flow networks on all the clients
as queries change, passengers and guards come and go, cameras
pass out of visual range and trackers are switched on and off.

There is a feedback loop between mobile clients and the control
centre that is closed by the humans within the loop: agents acting
as security guards and supervisors from the control centre. In ad-
dition to the classic AR interfaces we might devise for the guard,
it is important to maintain the flow of human communication with
the control centre. Given sufficient cameras the guard will remain
within view of the fixed cameras which means that, for example, a
supervisor can instruct a guard to “look left a bit” for a particular
object. We envisage new interfaces that robustly enhance this sort
of collaboration, allowing people to work together more effectively
and safely, rather than replacing them with security robots.

4 FUTURE WORK

The current architecture is centralised in design, with a single Ubi-
track Server that is responsible for coordinating all the tracking de-



Ubitrack - Spatial Indexer

Data
Flow

Network
Ubitrack
Client

Data
Flow

Network
Ubitrack 
Client

Application

Query Engine

Relationship
Graph

Spatial Indexer

Ubitrack Server

Client Framework

query
 interface

config

Callback/
Callforward

queries/ 
configurations

containment
queries/resultsconfig

Figure 4: Ubiquitous Tracking Architecture

Ubitrack
Server

Spatial Indexer

Data
Flow

Network

Ubitrack
Client

Spatial
Indexer

Security Guard

Data
Flow

Network

Ubitrack
Client

Client
App.

Control Centre

Data
Flow

Network

Ubitrack
Client

Client
App.

RFID tag readers

Data
Flow

Network

Ubitrack
Client

Minimal
App.

1

2

3

4

Figure 5: Example deployment

vices, sensors and applications in the environment for which it is
responsible. Whilst we believe that this design will scale beyond
the distributed MR environments we are currently able to build, at
some point there will be an inevitable limit to the number of queries,
devices and applications it can handle. We will explore alternative
approaches whereby the responsibility for managing devices will
be shared by many distributed Ubitrack Servers that will seamlessly
hand off between one another, without the awareness of clients.

5 CONCLUSION

We have developed a taxonomy for classifying Mixed Reality
and Ubiquitous Computing applications called the Milgram-Weiser
continuum which can be visualised as a 2D space. The presence of
gaps in interesting places, as well as a lack of an architecture for
supporting inter-operability between the applications spread across
this space, has motivated us to design a middleware architecture
that can support the needs of applications from both fields and allow
them to interact, whilst also providing support for legacy applica-
tions. It is anticipated that not only will this make such applications
easier to develop and deploy, but it will stimulate cross-disciplinary
endeavours in this area by reducing technical barriers to coopera-
tion.

ACKNOWLEDGEMENTS

This work was supported by the Bayerische Forschungsstiftung
(project TrackFrame, AZ-653-05), the Austrian Science Fund FWF
(contract no. Y193) and the PRESENCCIA Integrated Project
funded under the European Sixth Framework Program, Future and
Emerging Technologies (FET) (contract no. 27731).

REFERENCES

[1] M. Bauer and K. Rothermel. Towards the observation of spatial events
in distributed location-aware systems. In Towards the Observation of
Spatial Events in Distributed Location-Aware Systems, pages 581—
582, Los Alamitos, California, July 2002. IEEE Computer Society.

[2] G. Coulouris. Review report: The qosdream project. Technical re-
port, Laboratory for Communication Engineering, University of Cam-
bridge, 2002.

[3] T. Höllerer, S. Feiner, T. Terauchi, G. Rashid, and D. Hallaway. Ex-
ploring mars: Developing indoor and outdoor user interfaces to a mo-
bile augmented reality system. Computers & Graphics, 23(6):779–
785, 1999.

[4] G. Klinker, T. Reicher, and B. Bruegge. Distributed user tracking
concepts for augmented reality applications. In Proc. of ISAR 2000,
Munich, Munich, Germany, Oct. 2000. IEEE Computer Society.

[5] P. Milgram and F. Kishino. A taxonomy of mixed reality visual dis-
plays. IEICE Transactions on Information Systems, E77-D(12), De-
cember 1994.

[6] J. Mortensen, V. Vinayagamoorthy, M. Slater, A. Steed, B. Lok, and
M. Whitton. Collaboration in tele-immersive environments. In Eighth
Eurographics Workshop on Virtual Environments, pages 093–101. Eu-
rographics Association, 2002.

[7] J. Newman, D. Ingram, and A. Hopper. Augmented reality in a wide
area sentient environment. In Proc. of IEEE and ACM Int. Symp. on
Augmented Reality (ISAR 2001), pages 77–86, New York, NY, Octo-
ber 2001.

[8] J. Newman, G. Schall, and D. Schmalstieg. Modelling and handling
seams in wide-area sensor networks. In Proc. of ISWC 2006, October
2006.

[9] J. Newman, M. Wagner, M. Bauer, A. M. lliams, T. Pintaric, D. Beyer,
D. Pustka, F. Strasser, D. Schmalstieg, and G. Klinker. Ubiqui-
tous tracking for augmented reality. In Proceedings of ISMAR 2004,
November 2004.

[10] Presenccia. —presence research encompassing sensory enhance-
ment, neuroscience, cerebral-computer interfaces and applications.
http://www.presenccia.org/ [2007, January 8].

[11] D. Pustka, M. Huber, M. Bauer, and G. Klinker. Spatial relationship
patterns: Elements of reusable tracking and calibration systems. In
Proc. IEEE International Symposium on Mixed and Augmented Real-
ity (ISMAR’06), October 2006.

[12] G. Reitmayr and D. Schmalstieg. Collaborative augmented reality for
outdoor navigation and information browsing. In Proc. Symposium
Location Based Services and TeleCartography 2004, Vienna, Austria,
2004.

[13] G. Reitmayr and D. Schmalstieg. Opentracker - a flexible software
design for three-dimensional interaction. Virtual Reality, 9(1):79–92,
December 2005.

[14] F. Sauer, A. Khamene, B. Bascle, and G. J. Rubino. A head-mounted
display system for augmented reality image guidance: Towards clin-
ical evaluation for imri-guided neurosurgery. In MICCAI ’01: Pro-
ceedings of the 4th International Conference on Medical Image Com-
puting and Computer-Assisted Intervention, pages 707–716, London,
UK, 2001. Springer-Verlag.

[15] D. Wagner and D. Schmalstieg. A handheld augmented reality mu-
seum guide. In Proceedings of IADIS International Conference on
Mobile Learning 2005 (ML2005), June 2005.

[16] M. Weiser. Ubiquitous computing.
http://www.ubiq.com/hypertext/weiser/UbiHome.html [2007, January
8], March 17 1996.


