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Abstract. Varying the diffusion mixing time (∆) in a Stejskal-Tanner
experiment allows one to obtain information about the tissue microstruc-
ture. These experiments require either high-gradient-field scanners, long
scanning times, or prior knowledge of the fiber orientation. On the other
hand, sampling the full q-space allows one to work with no model con-
straints in the propagator space and potentially might reveal further tis-
sue information. However, a full DSI acquisition for a given set of more
than one ∆ is clinically not feasible in terms of measuring time. There-
fore, we need a technique that allows combining DSI acquisition and
different ∆ in clinical time. In this abstract, we present a compressed
sensing algorithm and a study of five different denoising associated tech-
niques that reduce the measuring time up to a factor of R=4.

1 Introduction

Varying the diffusion mixing time (∆) in a Stejskal-Tanner experiment [11] al-
lows one to obtain information about the tissue microstructure organization [3,9].
These types of experiments require either high-gradient-field scanners, scanning
times on the order of days, or prior knowledge of the fiber orientation direction.
Nevertheless, these problems can be solved while keeping the number of measure-
ments under 120 with fixed maximum gradient strength as shown by [1] and [2].
On the other hand, sampling the full q-space allows one to work with no model
constraints in the propagator space and potentially might reveal further tissue
information. However, a full DSI acquisition for a given set of more than one
diffusion mixing time is clinically not feasible in terms of measuring time, since
only one mixing acquisition time takes about 50 minutes (511 directions and 48
slices). Therefore, we need a technique that allows combining DSI acquisition
and different diffusion mixing times while the measuring time is reduced or kept
constant, as we increase the number of acquisitions in the mixing time direction.
In this abstract, we expand the compressed sensing method presented in [6] to
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the diffusion mixing time (∆) and study five different denoising algorithms for
the compressed sensing problem.

2 Methods

Synthetic diffusion data are generated using Camino [4] for three different sub-
strates: free diffusion, parallel cylinders with fixed diameter (3 µm), and parallel
cylinders with a gamma radii distribution (0.6µm mean), for SNR levels of 5
dB, 10 dB, 15 dB, 20 dB, 25 dB and no noise, and for the last two substrates,
permeability between compartments is set to zero. The acquisition scheme col-
lects data in a single direction of q-space (from 1 to 100 m−1 in 2 m−1 steps)
orthogonal to the orientation of the cylinder, and for a set of mixing times (from
5 to 150 ms in 5 ms steps), the diffusion gradient width is constant and equal
to 4 ms, and TE is 180 ms for every shot. The data are undersampled in the
q-∆ domain, for 3 acceleration factors (R=2.02, 3.8 and 7.3), with a randomly
uniform distributed binary matrix. The compressed sensing algorithm proposed
here consists of an adaptation of an iterative shrinkable/thresholding algorithm
(ISTA) [8]. In this case, the transformation of the mixing time domain has no
direct physical interpretation, unlike q-space has over the propagator domain
(r-space) through a Fourier Transform (FT), and thus we should consider differ-
ent transforms. Here, we compare four transform domains: Laplace Transform
(LT), Fourier Transform, Cosine Transform (CT), Wavelet Transform (WT);
and one denoising method in the propagator domain: Total Variation (TV). The
full compressed sensing algorithm works as follows: the subsampled q-space data
are zero filled and transformed (FT) to the r-space for each mixing time. Data
in r-space are transformed (LT, FT, CT and WT) in the mixing time direction
and denoised with a SURE threshold [5,10], or denoised directly in r-space for
the TV case. These transformations are then inverted back to the q-space where
part of the reconstructed data is replaced with measured data. This process is
repeated for a given number of iterations (5000). Convergence is boosted by a
Nesterov [7] updating scheme when possible.

3 Results

Since the data follow an approximately exponential decay in the mixing time di-
rection, the natural transformation would be the Laplace Transform. However,
the inverse problem is numerically ill-posed and leads to instability. Thus, the LT
must be discarded. Secondly, the FT requires symmetry along the mixing time
direction. This implies that negative mixing times would need to be considered
as a mathematical abstraction. This has no meaning from a physical perspec-
tive, and thus the FT must also be rejected. Finally, CT, WT together with
SURE thresholding, and TV are compared for every substrate and for different
SNR levels. A comparison of the mean absolute error for the three denoising
approaches and the gamma radii distributed cylinders substrate is shown in Fig.
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1. According to the figure, there is no statistical evidence that any of the pro-
posed denoising algorithms performs better than the others. However, WT and
TV appear to be more stable as the acceleration factor is increased. Moreover,
WT does not perform as well as the others for infinite SNR and acceleration
factors of 2.02 and 3.8, and besides, computationally speaking it is about 30
times slower than TV. In fact, TV is the fastest algorithm, as it is also twice
faster than CT. Therefore, TV appears to be the best choice between the three
presented algorithms. Similar results are obtained for free diffusion and fixed
diameter parallel cylinders substrates.

Fig. 1. Comparison of the performance (in terms of mean absolute error) for the denois-
ing algorithms based on WT and CT, with SURE threshold, and TV, for the gamma
radii distribution cylinders substrate.

4 Discussion

In this abstract we study five different denoising algorithms, applied to a com-
pressed sensing method [6], to undersample DSI data acquired for different mix-
ing times. Considering that the typical SNR for a DSI acquisition is between 10
to 25 dB, we can say that TV seems to be the best option for an acceleration
factor up to 4. However, we must consider that in this study we are measuring
30 different diffusion mixing times. For this acceleration factor an acquisition
time of up to 94 minutes would be necessary. Therefore, at least an accelera-
tion of 8 is required to keep the current scanning time for this amount of mixing
times. At any rate, these are preliminary results and must be validated by fitting
the reconstructed and original data to a reference model [3] and comparing the
results.
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