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Abstract. We propose a learning based approach to perform automatic
segmentation of the left ventricle in 3D cardiac ultrasound images. The
segmentation contour is estimated through the use of a variant of Hough
forests whose object localization capabilities are coupled with a patch-
wise, appearance driven, contour estimation strategy. The performance
of the proposed method is evaluated on a dataset of 30 images acquired
from 15 patients using different equipment and settings.

1 Introduction and related work

The MICCAI 2014 Endocardial Three-Dimensional Ultrasound Segmentation
Challenge provides the community with a challenging multi-site, multi-scanner
echocardiography dataset of 45 subjects. Their heart is scanned in end-diastolic
(ED) and end-systolic (ES) phase instances, with the aim of automatic left ven-
tricular (LV) volume assessment. The challenging nature of 3D realtime echocar-
diography images, which are affected by a large amount of noise and artefacts
such as coarse speckle patterns and dropout regions, makes an automatic seg-
mentation algorithm highly desirable.

In our contribution to the MICCAI echocardiography segmentation chal-
lenge, we propose cascaded Hough forests, a special application of Random
Forests [2], for simultaneous object detection and segmentation.

The localization of the left ventricle in the images is obtained in a fully auto-
matic manner, using the Hough forest voting strategy. The contour is estimated
by making use of a code-book of surface patches associated with the votes. Each
contribution to the contour is weighted considering local appearances.

Compared to active surface methods, which are often regulated by statistical
shape models (SSM) [1, 4], Hough-forest-based methods neither rely on complex
construction of a SSM, nor is it necessary to initialize the pose of the SSM into
the image. Among others, the distinctive power of Random Forests was demon-
strated in localization and bounding box detection for multiple organs simulta-
neously, for example in CT [2] or in MRI Dixon sequences [8]. Fast and accurate



voxel-classification for multi-organ segmentation was achieved by Montillo et al.
[6], through entangled Decision Forests. Compared to that, Riemenschneider et
al. propose a joint single-object localization and segmentation using Hough Re-
gions and Bayesian labeling of a random field [10], implicitly modeling object
shape. Rematas and Leibe [9] refined this approach and proposed a unified Hough
Forest framework predicting object location and fuzzy segmentation in a stream-
lined manner. Random Forest lesion detection in 3D transcranial ultrasound, a
modality with similar properties as echocardiography, was demonstrated in [7].
Ionasec et al. combine several Probabilistic Boosting Trees and Marginal Space
Learning to fit a complex aortic-mitral valve model to 4D Cardiac CT and 4D
transesophageal echocardiography data [5].

Our approach builds upon [9]. As our main contribution, in order to deal with
the characteristics of the US images, we additionally incorporate an appearance
prior enhancing the implicit shape model with an implicit appearance model.

2 Method

We propose a fully automatic method to segment the left heart ventricle in 3D
ultrasound scans.

Preprocessing. Our approach comprises a training phase and a test phase.
We normalize the spatial resolutions of the 3D-US volumes and then equalize
their intensity histograms. In ultrasound images, high contrasts are produced
locally by tissue interfaces such as the ventricular wall. Therefore, we define the
foreground region as a narrow band around the annotated contour boundary
and the rest of the image as background, represented with the class labels c ∈
C = {fg, bg}.

Hough forests differ from simple random forests because, beside the clas-
sification outcome, they provide means to localize object instances through a
voting strategy. In our approach, we couple the voting strategy with a code-base
of segmentation patches and associated intensity patches, enabling the forest to
natively estimate a segmentation contour [9].

Training stage. During the training phase, the 3D-US volumes are dis-
cretized into a regular grid with uniform spacing ∆d. At each position of the
grid, one data-point p and its associated features fp are extracted. Each data-
point is also associated to a segmentation patch Sp, an intensity patch Ip and
a vote vp, encoding its displacement vector from point p to the estimated left
ventricle center LVC (cf. Fig. 1).

The segmentation and intensity patches Sp and Ip, respectively, are pairs of
equal-sized 3D volumetric patches of dimension (px×py×pz) around the center
voxel p. The patches Sp are extracted from the expert labeling volumes of the
training dataset, and the patches Ip from the associated intensity volumes.

The N -dimensional feature vectors fp ∈ RN associated with each data-point
are extracted applying a bank of N box filters within a radius Rf around each
sampling position, obtaining mean intensities over randomly displaced, asym-
metric cuboidal regions similar to Criminisi et al. [3] (see Fig. 1 left). The set
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Fig. 1. Schematic representation of the information carried by each training data-point.

Fig. 2. Left: votes cast by data-points classified as foreground during testing. Right:
probabilistic segmentation contour.

of all the training data-points constitutes the training set T , which is used to
train the forest. Each tree is trained with a random subset of T (circa 70%),
which is recursively split in each node until a termination criterion is met and
leaf nodes are established. The axis-aligned splits are performed according to
a threshold θ defined on one randomly selected feature. The criterion for the
threshold selection is randomly chosen among the following two:

IG(T, θ) = H(T )−
∑

i∈{left,right}

|Ti|
|T |

H(Ti) (1)

V U(T, θ) =
∑

i∈{left,right}

∑
j:ci 6=bg

dist(vij ,vi). (2)

The first criterion aims at maximizing the info-gain (IG), which is a measure
expressing the change of Shannon entropy H(T ) = −

∑
c∈{fg,bg} p(c)log(p(c)) of

the data labels after the split. The second criterion, vote uniformity (V U), aims



at maximizing the similarity of the votes v associated with the training data,
such that the most similar, in terms of Euclidean distance, are grouped together
after a split.

The splitting procedure is terminated and a leaf node is instantiated if either
the maximal height of the tree or the minimal number of training examples is
reached at a certain node, leaving no further possibility of splitting. A leaf of
a tree stores not only the class distribution, but also the segmentation and the
intensity patches of the training data-points falling in that leaf as well as the
displacement vectors between the coordinates of the left ventricle (LV) centroid
and each stored data-point belonging to the foreground.

Test stage. During the test phase, feature vectors extracted from unlabeled
data-points are sent down each tree, where, at each node, a test stored during
training is applied to each feature vector to send it either to the left or to
the right child node until a leaf is reached. The points that were classified as
foreground with an average confidence across the forest greater than 0.5, are
allowed to cast votes to determine the LV centroid in the image. The votes are
obtained according to the displacement vectors stored in the leaves of the trees
during training. Each vote is weighted by the classification confidence and is
accumulated in a volume having the same dimension of the test volume. The
location holding the maximum number of votes is chosen to be the LV centroid,
LVC . All the votes in a radius RLVC

from the estimated centroid are re-associated
with the data-points that have casted them. Assuming that a number of M votes
fell within RLVC

, for each of these M votes, the corresponding intensity and
segmentation patches, Ipi and Spi , respectively, are retrieved from the code-base
obtained during the training phase.

The intensity patches Ipi
are compared with the image content around each

data-point using Truncated Normalized Cross Correlation (TNCC) to obtain

weights wi ∈ [0, 1]. We obtain a probabilistic segmentation S =
∑M

i=1 wi · Spi ,

where wi = TNCCi/
∑M

i=1 TNCCi, as the result of the weighted back-projection
of the patches Spi

around the corresponding data-points. The final LV contour
is obtained by truncating the probabilistic segmentation at 0.5 (cf. Fig. 2).

Using this strategy not only we obtain a fully automatic method that does
not rely on manual initialization, but we can limit the influence of false positives.
In contrast with methods that perform segmentation relying on pixel-wise clas-
sification, our approach can easily discard misclassified data-points since they
are unlikely to cast votes that accumulate around the actual object’s center.
Additionally, the intensity patches associated to each vote model the expected
appearance in correspondence of the segmentation patch stored in the code-book,
further helping in rejecting false-positive segmentation votes.

3 Results

We evaluated our algorithm on the MICCAI echocardiography segmentation
challenge datasets. Our method was mainly implemented in Matlab R©, while
some parts, like the segmentation stage, were implemented in C++. We trained



Fig. 3. Typical contour estimates. In these pictures just one slice of the contour is
depicted although the contour is estimated in 3D.

a forest containing 20 Hough trees, having a maximal height of 16 and a minimum
leaf population of 10 data-points. We performed two experiments, where in the
first we perform a leave-one-out-cross validation on the training set, and in the
second we do the training on the entire training set, and testing on the test
volumes one-by-one.

In the first experiment, in order to maintain computational efficiency, the
data-points were sampled from a coarsely spaced grid, where the data-points
were located at every ∆d = 8mm circa. The segmentation and intensity patches
Sp and Ip stored in the code base had a size (px × py × pz) of approximately
18mm× 16mm× 13mm. The features were extracted using a bank of N = 200
random box-filters that could be displaced at most Rf = 15mm from the grid-
points. All the votes in a radial neighborhood of RLVC

= 4mm from the detected
centroid were considered for back-projection. The results of the cross validation,
in terms of modified Dice coefficient, are shown graphically in Fig. 4 (blue bars)
while more detailed numerical results are provided in Table 1. In this experiment,
training required circa 5 minutes while segmenting each volume took circa 6
seconds.

In the second experiment, during testing, since we needed to train the forest
only once using the entire training set, we sampled the volumes more densely,
reducing the grid point distance to ∆d = 6mm circa. All other parameters
remained constant. The results are depicted graphically in Fig. 4 (red bars),
while more accurate numerical results are provided in Table 2. The training
stage required 15 minutes and one testing image could be segmented in circa 30
seconds.

4 Discussion

As reported in the results section, our method is able to segment a considerable
number of images accurately and in a fully automatic manner. Nevertheless, in a
few cases the contour differed significantly from the ground truth. In some cases
this was due to the fact that the LV was not fully contained in the 3D volume,
while most fail cases were due to the fact that during end systolic phase the
mitral valve was not very distinguishable and therefore the contour was placed



Table 1. Evaluation of our approach on training data via leave-one-out cross valida-
tion. In the upper half of the table we present the statistics in terms of mean absolute
distance, Hausdorff distance, modified dice coefficient and minimum surface error, re-
spectively. In the second half of the table we report the correlation coefficient, bias and
limit of agreement that we achieved with respect to the clinical indices; ED volume,
ES volume, ejection fraction and stroke volume.

MaD HD Mod. Dice Min Err.

Mean ED 2.66 mm 9.01 mm 0.129 0.09 mm

Mean ES 2.43 mm 8.09 mm 0.131 0 mm

ED Volume ES Volume Ejection Fraction

Corr. Coeff 0.986 0.974 0.861

Bias 38.42 -2.57 19.33

Table 2. Evaluation of our approach on test data. In the upper half of the table we
present the statistics in terms of mean absolute distance, Hausdorff distance, modified
dice coefficient and minimum surface error. In the second half of the table we report
the correlation coefficient, bias and limit of agreement that we achieved with respect
to the clinical indices; ED volume, ES volume, ejection fraction and stroke volume.

MaD HD Mod. Dice Min Err.

Mean ED 2.09 mm 8.3 mm 0.109 0 mm

Mean ES 2.77mm 8.48 mm 0.16 0 mm

ED Volume ES Volume Ejection Fraction

Corr. Coeff 0.913 0.968 0.849

Bias 1.05 -16.52 13.21

past this point. We observed that ES images are more difficult to segment with
our method than ED images, since the LV appears smaller and our implicit
statistical shape model might allow the contour to be placed past real boundaries
due to misclassified data-points occurring very close to the correct boundary. The
clinical indices can be strongly negatively affected by this, despite accurate ED
volume segmentation, since the stroke volume and the ejection fraction rely on
the correct estimation of both ES and ED volumes.

Nevertheless, it is important to note that our method is largely capable of
automatically discarding mis-classified data-points due to the presence of the
voting strategy. In contrast to methods based on pixel-wise classification, our
approach is more robust since it requires a group of data-points to agree on the
location of the object and discards all those data-points that do not agree with
the prediction. When a data-point that belongs to the background is classified as
foreground, it is very unlikely to cast a vote that is coherent with the others, and
even if the vote will be accepted, its contribution in terms of segmentation will
be averaged out by the other votes. On the other hand, a false negative data-
point will have a limited impact on the final contour since its contribution is
not essential in presence of strong agreement by other data-points. Furthermore,
compared to previous Hough-Forest based segmentation techniques, the novel
inclusion of an appearance prior in our method further helped in reducing false-



Fig. 4. Histogram of number of images vs. modified Dice coefficient. The results ob-
tained during cross-validation and test are shown respectively in blue and red.

positive foreground classifications, which in turn smoothed the segmentation
contour and increased its accuracy.

In the future, we will focus on the integration of more intensity information
during the estimation of the contour and more robust features to avoid those
outliers that are usually not discarded automatically by our system. It is worth
mentioning that our method is able to detect and segment the LV in isolated ES
and ED states, while we will investigate the usage of in-between stages of the
cardiac cycle, as provided in the CETUS dataset. Furthermore, the inclusion
of additional anatomic regions such as mitral valves and other ventricles, as
demonstrated in [5], could further help in delineation of the LV contour. Through
multi-class detection and segmentation, our framework could easily incorporate
such additional anatomical context.

5 Conclusion

In this work, we have proposed a novel, fully automatic 3D segmentation tech-
nique built on top of the Hough forest framework. The proposed method differs
from the previous approaches since we utilize an appearance code-book coupled
with a segmentation code-book to obtain a robust detection of object boundaries.
Experiments conducted on a challenging multi-patient, multi-scanner echocar-
diographic ultrasound dataset demonstrate the robustness of the proposed ap-
proach as well as its potential use in similar scenarios.
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