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Abstract

This paper presents a new hybrid camera motion tracking method for bronchoscopic navigation combining SIFT, epipolar geometry
analysis, Kalman filtering, and image registration. In a thorough evaluation, we compare it to state-of-the-art tracking methods. Our
hybrid algorithm for predicting bronchoscope motion uses SIFT features and epipolar constraints to obtain an estimate for inter-
frame pose displacements and Kalman filtering to find an estimate for the magnitude of the motion. We then execute bronchoscope
tracking by performing image registration initialized by these estimates. This procedure registers the actual bronchoscopic video and
the virtual camera images generated from 3D chest CT data taken prior to bronchoscopic examination for continuous bronchoscopic
navigation. A comparative assessment of our new method and the state-of-the-art methods is performed on actual patient data and
phantom data. Experimental results from both datasets demonstrate a significant performance boost of navigation using our new
method. Our hybrid method is a promising means for bronchoscope tracking, and outperforms other methods based solely on
Kalman filtering or image features and image registration.
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1. Introduction

In minimally invasive diagnosis and treatment of lung and
bronchus cancer, physicians must obtain useful information
for the assessment of suspicious tumors and site localiza-
tion. The most popular means are 3D multidetector computed-
tomography (CT) data showing the high resolution images of
the airways and bronchoscopy providing endoluminal images
in real time. During bronchoscopic examinations, physicians
need to see previously acquired CT data aligned with the bron-
choscopic video. Unfortunately, it is very difficult for bron-
choscopists to manually fuse that information because of the
complexity of the bronchial tree and that no direct connection
exists between the CT images and real bronchoscopic images.
Therefore, we must develop a bronchoscopic guidance system
to assist physicians during this mental burden. Such a broncho-
scopic navigation system needs to accurately track the position
and orientation of the bronchoscope camera inside the patient’s
airway tree relative to the CT and in real time.

For bronchoscope tracking, two main approaches (or their
combination) have been proposed in the literature up to now:
(a) electromagnetic sensor-based and (b) image registration-
based tracking. Sensor-based guidance utilizes a sensing coil
(sensor) attached to the tip of the bronchoscope and localized
by an electromagnetic tracking system, such as the commer-

cially available superDimension navigation system (Solomon
et al., 2000; Gildea et al., 2006; Schwarz et al., 2006; Becker
et al., 2005). However, such navigation systems suffer from the
following bottlenecks: (a) sensitivity to localization problems
resulting from any patient movement (i.e., respiratory motion or
coughing). (b) measurement inaccuracies because of magnetic
field distortion caused by ferrous metals or conductive mate-
rial within or close to the working volume; (c) difficulties when
integrating sensors into ultra-thin bronchoscopes (i.e., 2.8 mm
in external diameter and 1.2 mm in working channel diameter)
because of space restrictions.

Image registration-based tracking for bronchoscopic naviga-
tion (Peters and Cleary, 2008), which is a very active topic of
research is also the topic of our paper. It is often comprised
of two major stages: camera motion estimation and image reg-
istration. In the first stage, we distinguish between two kinds
of methods: filtering-based and feature-based motion estima-
tion. Since bronchoscope tracking is a nonlinear filtering prob-
lem that requires nonlinear filtering approaches for its solution,
methods based on Bayesian or motion filtering have already
been proposed. Nagao et al. (2004) used a Kalman-based esti-
mator to increase the speed and accuracy of their registration al-
gorithm. Deligianni et al. (2005) employed the CONDensation
algorithm to avoid trapping the registration in local minima. Al-
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though filtering-based methods increase the general accuracy
and robustness of registration involved in bronchoscope track-
ing, they usually do not estimate the rotational part of the bron-
choscope motion. However, feature-based methods for bron-
choscope motion prediction seem promising for bronchoscope
tracking. In Mori et al. (2002) and Rai et al. (2008), optical
flow patterns compute bronchoscope motion between consecu-
tive real bronchoscopic (RB) images as a pre-registration step
for bronchoscopic navigation. Although good performance was
shown, it remains difficult to get an accurate estimate for the in-
sertion depth of the bronchoscope, or, in other words, for the
magnitude of translation between successive frames.

To improve the results of the first stage, image registration
can be invoked to precisely estimate the position and the orien-
tation of the bronchoscope. Therefore, a virtual bronchoscopic
(VB) view generated by placing a virtual camera inside the
3D CT data that resembles the current RB image is searched
for by altering the rendering parameters used to generate this
virtual image. During image registration, the image similarity
between VB and RB images is calculated. Numerous papers
have been published on this topic. Bricault et al. (1998) pre-
sented their pioneering work in registering RB and VB images
to assist transbronchial biopsies and utilized bifurcations in-
spected in the bronchial tree of the patient to calculate the cam-
era position corresponding to RB images. However, since their
method is constrained to bifurcations, it cannot tackle cases
where this information cannot be clearly observed. Helferty
and Higgins (2001) proposed a method for bronchoscope track-
ing using image registration based on normalized mutual in-
formation and greatly improved the tracking speed and accu-
racy by employing 2D/2D matching frameworks to obtain 3D
camera motion (Helferty et al., 2007). Deligianni et al. (2006)
proposed bronchoscope tracking using a position sensor and a
pq-based registration technique and improved its accuracy and
stability by modeling respiratory motion with an active shape
model. Their method generates VB images that most resemble
RB images by recovering a bidirectional reflectance distribution
function (BRDF) from registered RB and VB images (Chung
et al., 2006). Our group developed an image registration-based
approach to continuously track the camera motion by spatially
aligning RB and VB images (see Figure 1) on the basis of the
selective image similarity measure MoMS E (Deguchi et al.,
2009). Although our previously proposed method was accu-
rate and effective for some test cases, it still suffers from such
problems as an inability to recover from registration errors and
abrupt (jumpy) transitions between successive frames.

This paper explores a hybrid method for predicting bron-
choscope motion and first uses features obtained by scale in-
variant feature transform (SIFT) (Lowe, 2004) to estimate the
inter-frame pose displacements (up to scale) based on epipo-
lar constraints and Kalman filtering to get position estimates
and then performs intensity-based image registration initialized
by these estimates for improving the performance of broncho-
scopic guidance.

Our contributions can be summarized as follows. First, we
introduce SIFT-based motion estimation, which employs SIFT
features to predict camera motion in bronchoscopic navigation.

Combining it with a Kalman filtering-based method, we con-
struct a new hybrid method for bronchoscope motion estima-
tion that can accomplish better initialization for a subsequent
image registration process than other methods and hence im-
prove accuracy. Second, a new method for scale factor estima-
tion (i.e., estimation of the magnitude of the translation between
twosuccessive frames) is described. We demonstrate that the
tracking results of feature-based methods are sensitive to the
scale factor of the translation vector when performing 2D/3D
pose prediction. In this paper for the first time we predict the
scale factor by utilizing Kalman filtering. Third, we present
a thorough assessment of different methods of bronchoscope
motion estimation. Initially we compare two kinds of motion
estimation methods: (a) filtering-based and (b) feature-based.
Based on this comparison, we formulate a better way to predict
bronchoscope motion to improve the robustness and accuracy
of pose estimation. Additionally, we provide a complete proce-
dure to acquire bronchoscopic ground truth data by combining
camera and hand-eye calibrations and magnetic tracking.

The remainder of this paper is organized as follows. The pa-
rameters required to describe the camera motion are defined in
Section 2. Our new hybrid bronchoscope tracking method is
described in Section 3. In Section 3.1, we recall the paradigm
of camera motion estimation by feature-based methods. A new
scale factor determination method based on Kalman filtering is
presented in Section 3.2. Section 3.3 briefly summarizes the
parameters used to generate VB images and to register them
to their real counterparts. Section 4 details the experimental
environment and assessment scheme. Finally, Section 5 sum-
marizes and Section 6 discusses the assessment results, before
Section 7 concludes this work.

2. Definition

While the input of a bronchoscopic navigation system usu-
ally is a set of CT slices and bronchoscopic video from the same
patient, its output is a sequence of VB renderings, where the es-
timated bronchoscope position and orientation are represented
in CT coordinates. Bronchoscope tracking can be considered
a search procedure that determines a time series of VB images
corresponding to the RB images with maximum similarity be-
tween them.

We denote the extrinsic camera parameters for the (i)-th ren-
dered VB image as Q(i) that correspond to the RB camera posi-
tion and orientation and are described by

Q(i) =

(
R(i) t(i)
0T 1

)
, (1)

where R(i) and t(i) represent a rotation matrix and a transla-
tion vector of the bronchoscopic camera in CT coordinates, re-
spectively. This homogeneous matrix depicts the transforma-
tion from the camera coordinate system to the CT coordinate
system. When the bronchoscope performs small inter-frame
movements comprising translational motion ∆t(i) and rotational
motion ∆R(i) between the (i-1)-th and (i)-th RB images, the up-
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(a) (b)

Figure 1: Composite view of our bronchoscopic navigation system and fusion between RB and VB images. (a) Our bronchoscopic
navigation system contains four windows for displaying useful information. RB video (upper left), a VB image (lower left) gener-
ated from previously acquired CT data and corresponding to the RB image, a bird’s view (upper right) displaying the bronchoscope
trajectory, and a slice view (lower right) showing an axial slice, in which a cross cursor marks the current bronchoscope location.
All windows were synchronized to provide critical visual and structural information during bronchoscopy. (b) Other examples of
corresponding RB (left column) and VB images (right column). VB images on right are rendered at estimated camera positions of
bronchoscope. These images were rendered in the same way as those in the lower-left view of (a).

dated camera motion parameters are formulated as

Q(i) = Q(i−1)∆Q(i) = Q(i−1)
(

∆R(i) ∆t(i)
0T 1

)
, (2)

where ∆t(i) =
(
∆t(i)x ,∆t(i)y ,∆t(i)z

)T
defines a translation vector.

Relative rotation matrix ∆R(i) is constructed by Euler rotation
angles θ, φ, and ψ of the camera around the x-, y-, and z-axes
and is described by

∆R(i) =

 C3C2 C3S 2S 1 − S 3C1 C3S 2C1 + S 3S 1
S 3C2 S 3S 2S 1 + C3C1 S 3S 2C1 −C3S 1
−S 2 C2S 1 C2C1

 (3)

where the variables of this matrix are defined as: S 1 = sin θ,
S 2 = sin φ, S 3 = sinψ, C1 = cos θ, C2 = cos φ, and C3 = cosψ.

Figure 2 further shows the relationship between the camera
and the CT coordinates. Inter-frame movement ∆Q(i) is repre-
sented in the camera coordinate system at the (i-1)-th frame and
indicates the change of camera position and orientation from
the (i-1)-th to i-th frames. RB camera motion tracking is ob-
tained by continuously estimating ∆t(i) and ∆R(i) under the as-
sumption that Q(0) is given.

Additionally, we need the intrinsic camera parameters for the
generation of VB images by volume rendering and for epipolar

Figure 2: Relationship of coordinate systems and transforma-
tions during predictive camera motion tracking

geometry analysis. We define intrinsic matrix K as

K =

 fx 0 px

0 fy py

0 0 1

 , (4)

where fx and fy are the focal lengths in units of horizontal and
vertical pixels and (px, py)T is the principal point. We also
model the tangential and radial distortion of the camera lens
according to (Heikkilä and Silvén, 1997).

3



3. Hybrid Bronchoscope Tracking

In this section, we present all the components of our hy-
brid approach to bronchoscope tracking. In this context, hybrid
refers to a combination of feature-based tracking, epipolar ge-
ometry analysis, and filter-based motion tracking for construct-
ing a new motion estimation algorithm and its integration into
image registration for bronchoscope tracking1. The new hybrid
motion tracking method combines filtering- and feature-based
approaches by fusing their respective advantages to improve the
overall performance of bronchoscope tracking. Figure 3 shows
a flowchart of our hybrid tracking method. We first extract sta-
ble scale invariant feature transform (SIFT) features from the
current bronchoscopic video image and find matching features
in the previous image. The matches are used for epipolar ge-
ometry analysis, which estimates the relative camera motion up
to scale. To recover this unknown scale, we additionally apply
Kalman filtering, which gives an estimation of the relative cam-
era translation. By fusing the epipolar analysis and the Kalman
filtering estimates to a full 6 degrees of freedom (DOF) camera
motion matrix and multiplying it onto the camera pose matrix
obtained for the previous image, we get an estimate for the cur-
rent camera pose to initialize the final image registration step.

Note that our hybrid bronchoscope tracking approach ex-
hibits similarities to simultaneous localization and map-
ping (SLAM) (Durrant-Whyte and Balley, 2006), particularly
MonoSLAM (Davison et al., 2007), a technique developed to
permit a robot to build a map within an unknown environment
or update a map within a known environment using a single
camera while simultaneously determining its 3D motion trajec-
tory within this map. Our method also recovers a 3D trajectory
inside the CT images when the bronchoscope is moved along
the patient’s airways, and, similar to MonoSLAM, utilizes im-
age features as well as Kalman filtering for that purpose. How-
ever, here, we cannot rely only on image features and Kalman
filtering, since we additionally need to deal with respiratory
motion and camera trajectory mainly along the viewing direc-
tion of the camera, which has not been addressed in previous
work using MonoSLAM in endoscopy (Grasa et al., 2009). To
successfully address these issues, our method fuses the essen-
tial information from feature detection, epipolar analysis, and
Kalman filtering with image registration to achieve more stable
camera tracking.

3.1. Feature-based Motion Estimation
Feature-based algorithms for structure and motion compu-

tation, which are now widely developed for tracking a small
number of salient features in long image sequences, can be di-
vided into two major steps: (a) feature extraction and (b) feature
tracking. The first stage detects features from camera images
and identifies corresponding features in each image of the se-
quence that can be utilized in the second stage to calculate the
relative camera motion (up to scale). In this paper, we focus
on deriving features from bronchoscopic video sequences and
utilize a SIFT-based method for feature tracking in RB images.

1This is contrary to our previous hybrid method that combined electromag-
netic tracking and image registration (Mori et al., 2005).

Figure 3: Processing flowchart of our hybrid motion tracking
method

3.1.1. Feature Extraction
For feature-based motion estimation, the first important step

is the extraction of features. Currently one of the best-known
methods for extracting image features is the SIFT algorithm.
SIFT returns distinctive features from keypoints that are invari-
ant to image scale and rotation (Lowe, 2004). We introduce
SIFT in our hybrid motion estimator for predicting broncho-
scope motion. It uses SIFT features and epipolar geometric
constraints to calculate the relative translation up to scale and
the rotation between the previous and current poses of the bron-
choscope camera. Given RB image sequences observing the
bronchial structure from different viewpoints, the points of in-
terest are detected on the difference of the Gaussian pyramid,
and each point is represented by a SIFT descriptor composed
of a 128-dimensional vector containing local orientation his-
tograms around the keypoint’s position.

To speed up the feature tracking procedure in an RB image
sequence, we always store the feature context of a processed
RB image to recall it during the next iteration.

3.1.2. Point Matching Strategy
Given two consecutive RB images, we extract two sets of in-

terest points and calculate the point descriptors. Before we can
use these interest points for bronchoscope tracking, we must
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identify the corresponding points between successive RB im-
ages.

There are usually three strategies for performing point
matching, as shown in Mikolajczyk and Schmid (2005). The
simplest choice is threshold-based matching: two points are
considered to match if the distance between their descriptors
is equal or lower than a threshold. In this case, one descriptor
in the previous frame may correspond to several descriptors in
the current frame. Another choice is to add a nearest neighbor
constraint to obtain one-to-one correspondences. To achieve
even more effective matching, a third strategy can be utilized
that computes the ratio between the distance of the nearest and
the second-nearest neighbors and thresholds this ratio to discard
false matches. The third strategy is described in Lowe (2004).

In our experiments, we performed point matching based on
the third matching strategy by computing the Euclidean dis-
tance between the descriptors and the above distance ratio to
obtain L matches. Based on the experiments performed in Lowe
(2004), a distance ratio threshold between about 0.2 and 0.8
gives good results. We set the threshold to 0.6, which was
the default for the demo implementation provided by Lowe2,
since this provided a good compromise between the elimina-
tion of enough false matches and not discarding too many cor-
rect matches.

Even though the third matching strategy is effective, ob-
taining unsuitable point pairs is still unavoidable. Therefore,
we implement a simple outlier detection mechanism based on
the standard deviation of the distances between corresponding
points.

Given two sets of matching points {p(i−1)
l = (u(i−1)

l , v(i−1)
l )T }Ll=1

and {p(i)
l = (u(i)

l , v
(i)
l )T }Ll=1, which are detected in two different

RB images based on the third matching strategy, respectively,
where ul and vl are the pixel coordinates in RB images, we cal-
culate Euclidean distances dl of all point pairs p(i−1)

l and p(i)
l

dl =
∥∥∥p(i−1)

l − p(i)
l

∥∥∥ =

√
(u(i−1)

l − u(i)
l )2 + (v(i−1)

l − v(i)
l )2. (5)

Then we calculate mean d̄ and standard deviation σ of distance
set {dl, l = 1, · · · , L}. Now we define a non-zero threshold as
(d̄ + σ) to determine whether the current point pair is correct.
Pair (p(i−1)

l , p(i)
l ) is assumed to be correct only if

dl 6 (d̄ + σ), (6)

otherwise, it will be rejected. Applying our outlier rejection, we
reduce the number of matches from L to K. (d̄ − σ) is not con-
sidered a lower threshold for determining true or false match-
ings since standard deviation σ is greater than mean d̄ in suc-
cessive frames with small movement between them. Figure 4
shows an example of the matching result between two consec-
utive frames.

3.1.3. Epipolar Geometry Analysis
Inter-frame movement ∆Q(i) is determined based on epipo-

lar constraints that our corresponding point pairs (p(i−1)
k , p(i)

k )

2The demo software is available from http://www.cs.ubc.ca/~lowe/

keypoints/.

must satisfy (k = 1, · · · ,K : K is the total number of matching
points found in Section 3.1.2). The epipolar geometry, which
is the intrinsic projective geometry between two views, can
be algebraically represented by fundamental matrix F (Hartley
and Zisserman, 2004). For any pair of corresponding points
p(i−1)

k ↔ p(i)
k in two images, fundamental matrix F can be delin-

eated by

p(i)
k

T
Fp(i−1)

k = 0. (7)

Given enough (at least 7) point matches p(i−1)
k ↔ p(i)

k , Eq. 7 can
compute unknown matrix F, for example, by the normalized
eight-point algorithm of Hartley (Hartley and Zisserman, 2004).

Since we previously calibrated the bronchoscope to obtain
its intrinsic camera parameters (stored in K) (Zhang, 2000), we
can now compute essential matrix E = KT FK. We obtain inter-
frame movement ∆Q̃(i) including translation unit vector ∆t̃(i)

and rotation matrix ∆R̃(i) between the (i-1)-th and (i)-th RB im-
ages by sequentially solving the following two equations (Mori
et al., 2002):

ET ∆t̃(i) = 0, (8)

∆R̃(i)ET =
[
∆t̃(i)

]T

×
=


0 −∆t̃(i)z ∆t̃(i)y

∆t̃(i)z 0 −∆t̃(i)x
−∆t̃(i)y ∆t̃(i)x 0


T

. (9)

Note that essential matrix E is determined only up to an ar-
bitrary scale factor. Thus resulting translation vector ∆t̃(i) con-
tains arbitrary scale factor α̃(i) = |∆t̃(i)| that does not represent
the real magnitude of translation α(i) = |∆t(i)|. It is difficult
to estimate this scale factor for tracking the bronchoscope tip,
since the main motion of the bronchoscope is along its viewing
direction. This creates a very small baseline between the two
camera positions of consecutive frames, making the depth and
hence the scale factor estimation inaccurate even in the pres-
ence of metrics. In the next section, we present an effective
method for determining this scale.

3.2. Kalman Filtering-Based Scale Factor Estimation

Filtering-based motion tracking methods in general estimate
camera motion are not as accurate as feature-based methods be-
cause they only predict a new (unknown) state based on previ-
ous (known) states; feature-based methods can utilize known
features in both the previous and current images. This in partic-
ular holds for the abrupt changes of the main motion direction.
However, a prediction for only the magnitude of the motion
(scale in this paper) can be more stable, since it is less depen-
dent on the direction change itself.

Based on this idea, we construct our new hybrid motion
estimator using SIFT features to obtain inter-frame pose dis-
placements (with translation up to scale) and Kalman filtering
to determine the unknown scale factors. In the following, we
describe how to estimate the bronchoscope translation using
Kalman filtering.

Kalman filtering, as one filtering-based estimator, can be de-
scribed by a state-space model where observations occur and a

5
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(a) (b)

Figure 4: Example of point matching based on distance ratio between nearest and second-nearest neighbors and outlier detection.
(a) shows yellow and green points that denote SIFT features at frame (i − 1) (left) and i (right), respectively. Blue lines connect
corresponding points. (b) visualizes corresponding SIFT features (yellow and green points) at frame (i− 1) to see the motion of the
bronchoscope camera from frame (i − 1) to i.

state is predicted at a discrete time. The state-space model may
be formulated as

xi = Bi,i−1xi−1 + Gi−1wi−1, (10)
yi−1 = Hi−1xi−1 + oi−1, (11)

where Bi,i−1 is a state transition matrix transferring unknown
state vector xi−1 to next vector xi from time (i − 1) to time i.
During this estimation procedure, white noise wi−1 and obser-
vation noise oi−1 are assumed to be added. Gi−1 is the driving
matrix. In Eq. 11, yi−1 is designated as an observation signal
and Hi−1 is the observation matrix.

The problem of Kalman filtering is to solve a set of math-
ematical equations for the unknown state vectors in an opti-
mal manner that minimizes the estimated error covariance given
part of the initial system state. Unknown state vector xi is pre-
dicted using observation yi−1 to search for the minimal mean-
square error estimation of state xi−1. The whole procedure im-
plements predictor-corrector type estimation by solving the fol-
lowing formulations:

Corrector:

x̂i−1 = x̂i−2 + M̂k(yi−1 −Hi−1x̂i−2), (12)

Ŝi−1 = Ŝi−2 − M̂kHi−1Ŝi−2, (13)

M̂k = Ŝi−2HT
i−1(Hi−1Ŝi−2HT

i−1 + Oi−1)
−1
, (14)

Predictor:
x̂i = Bi,i−1x̂i−1, (15)

Ŝi = Bi,i−1Ŝi−1BT
i,i−1 + Gi−1Wi−1GT

i−1, (16)

where Oi−1 and Wi−1 are the covariance matrices of oi−1 and
wi−1 and M̂k is the Kalman gain. Eqs. 12 and 13 construct the
corrector, estimated state x̂i−1 and its error covariance matrix
Ŝi−1 are calculated by updating previous estimation x̂i−2 and er-
ror covariance matrix Ŝi−2. The predictor is built by Eqs. 15
and 16 that compute estimate x̂i and its error covariance ma-
trix Ŝi for approximating to state vector xi. More details on
Kalman filter-based motion estimation are described in Kalman
(1960), Welch (1996), and Welch and Bishop (2001).

In our studies, we utilize Kalman-based motion filtering to
estimate the bronchoscope translation. Let t(i−1) denote the
translation vector of the bronchoscope at frame (i − 1). As-
suming the bronchoscope is undergoing constant acceleration
a, we can define velocity v(i) at frame i as:

v(i) =
dt
dt

= v(i−1) + a∆t, (17)

where dt/dt is the derivative of translation ∆t = t(i) − t(i−1) be-
tween frame (i−1) and i and ∆t is the time interval between the
two frames. After integrating the derivative, we get

∆t = v(i−1)∆t +
1
2

a∆t2, (18)

and hence

t(i) = t(i−1) + ∆t = t(i−1) + v(i−1)∆t +
1
2

a∆t2. (19)

In our bronchoscopic navigation system, Bi,i−1, Gi−1, and
Hi−1 are assumed not to change over time because of a con-
stant frame interval and the assumption of invariant acceler-
ation in movements. We here define system state xi as xi =

(t(i)T
, v(i)T

, aT )T . Based on Eqs. 17 and 19, we define

Bi,i−1 = B =

 I3×3 (∆t)I3×3 ( ∆t2

2 )I3×3
03×3 I3×3 (∆t)I3×3
03×3 03×3 I3×3

 , (20)

Gi−1 = G = (I9×9) , (21)
Hi−1 = H = (I3×3, 03×3, 03×3) , (22)

wi−1 =
(
wT

t ,w
T
v ,w

T
a

)T
, (23)

where In×n and 0n×n are the n × n identity and zero matrices.
Assuming observation noise and its covariance matrix Oi−1 to
be zero and the covariance of the white noise to be Wi−1 =

0.05 · I9×9 (Nagao et al., 2004), we obtain the estimated system
state by the state-space model and estimate the position of the
bronchoscope:

t̂(i) = Hx̂i. (24)
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Next we use this estimation t̂(i) to compute the magnitude of
the bronchoscope motion. Therefore, our Kalman-based scale
factor determination can be expressed as

α̂(i) = |∆t̂(i)| = |t̂(i) − t̂(i−1)
|, (25)

where t̂(i−1) and t̂(i) are determined by Kalman filtering.
Using α̂(i), we update ∆t̃(i) (obtained from Eq. 8 using im-

age features and epipolar geometry analysis) to recover abso-
lute translation vector ∆t̃(i)∗ between frame (i − 1) and i by

∆t̃(i)∗ = α̂(i) ∆t̃(i)

|∆t̃(i)|
. (26)

Based on our method that integrates SIFT features, epipolar
constraints, and Kalman filtering-based scale factor estimation,
predicted motion ∆Q̃(i)

∗ of the bronchoscope camera between
frames (i − 1) and i can now be formulated as (based on Eq. 1)

∆Q̃(i)
∗ =

(
∆R̃(i) ∆t̃(i)∗

0T 1

)
, (27)

where ∆R̃(i) is calculated by Eq. 9. Finally, estimate ∆Q̃(i)
∗ is

utilized as the initialization of image registration, as described
in the next section.

3.3. Intensity-based Image Registration

Intensity-based registration iteratively optimizes the six de-
grees of freedom describing the position and rotation of a vir-
tual camera located in the 3D CT data. For each camera pose,
a 2D VB image can be generated using a ray casting-based vol-
ume rendering technique (Mori et al., 2003). In each iteration,
this VB image generated from 3D CT is compared to the 2D
RB image. The two images are most similar when the virtual
and real cameras observe the same physical scene of the patient
in the CT and world coordinates.

For calculating the similarity between the two images, sev-
eral popular schemes are available including mean squared er-
ror, normalized cross correlation, mutual information, gradient
correlation, and gradient difference (Penney et al., 1998; Vi-
ola and Wells, 1997; M.Wells et al., 1996; Hajnal et al., 2001).
However, these approaches work effectively and efficiently only
if the image similarity has a sharp peak at the camera pose
where the two images need to be registered, which is not always
the case for bronchoscopic images, particularly when register-
ing VB and RB images that are from different modalities.

Our group developed a selective image similarity measure
based on characteristic structures (i.e., fold or bifurcation pat-
terns) observed in bronchoscopic views. This method, which
can greatly improve the performance of bronchoscope tracking,
consists of four steps: (a) division of the input RB image into
subblocks, (b) feature value computation in each subblock, (c)
selection of the most appropriate subblocks, and (d) image sim-
ilarity computation in the selected subblocks. For more details
refer to Deguchi et al. (2009).

During intensity-based registration, we use a modified mean
squared error (MoMSE) similarity measure (Deguchi et al.,

2009) to compute the dissimilarity between RB image I(i)
R and

virtual bronchoscopic (VB) image IV . Let IV (Q(i)) be a VB
image that is generated using rendering parameters Q(i) =

Q(i−1)∆Q(i). We update inter-frame motion ∆Q(i) to generate
the most similar VB image IV (Q(i−1)∆Q(i)) corresponding to
RB image I(i)

R . The complete intensity-based registration pro-
cess with respect to ∆Q(i) can be summarized in the following
optimization term

∆Q(i) = arg min
∆Q

MoMS E(I(i)
R , IV (Q(i−1)∆Q)). (28)

The minimization process is executed using the Powell
method (Berghen and Bersini, 2005). In this search process,
the initialization of ∆Q in Eq. 28 significantly affects the perfor-
mance of bronchoscope tracking. In Deguchi et al. (2009), ∆Q
is initialized as an identity matrix. However, in our new hybrid
method, we initialize ∆Q with our estimate ∆Q̃(i)

∗ (see Eq. 27)
by matching stable image features. Compared to sole image
registration, these features are less dependent on airway folds
or bifurcations and hence improve the performance of bron-
choscope tracking. This is the major advantage of our hybrid
method.

4. Experimental Setup

4.1. Dataset Acquisition

To evaluate the performance of all tracking methods, we pro-
pose a procedure to acquire bronchoscopic ground truth data
(GTD) by combining camera calibration, hand-eye calibration,
and electromagnetic tracking. At the beginning of this proce-
dure, we acquire GTD for bronchoscope tracking using an elec-
tromagnetic tracking (EMT) system and a rigid airway phantom
made of a silicone rubber cast in an acrylic box with 18 bore
holes. After attaching a magnetic tracking sensor to the tip of
the bronchoscope, we calibrate the intrinsic parameters (includ-
ing the distortion coefficients) of the bronchoscope camera uti-
lizing Zhang’s method (Zhang, 2000) and estimate the transfor-
mation matrix between the camera and sensor coordinate sys-
tems by hand-eye calibration (Wengert et al., 2006). Next we
register the EMT and CT coordinate frames by taking the 3D
measurements of a magnetic sensor inserted into each of the 18
bore holes, identifying the corresponding points in the CT data,
and computing the rigid transformation matrix between the two
point clouds (Eggert et al., 1997). Afterwards, we insert the
magnetically tracked bronchoscope into the phantom and ac-
quire pairs of RB images and EMT outputs. All EMT outputs
are transformed into CT coordinates using the calibration and
CT-to-EMT registration results and in the following serve as
our GTD.

For patient dataset validation, we apply all tracking meth-
ods to nine pairs of RB video sequences and 3D CT images
based on a standard clinical protocol. The acquisition parame-
ters of the CT images are 512 × 512 pixels, 72-351 slices, 2.0-
5.0-mm slice thickness, and 0.5-2.0-mm reconstruction pitch.
Bronchoscopic videos were recorded onto digital videotapes in
operation rooms during examinations and transferred to the host
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Table 1: Methods evaluated in our experiments. ‘
√

’ denotes that a particular feature is used by a method. M8 is our proposed
hybrid method.

hhhhhhhhhhhhhhhhhhhhh
Features

Method M1 M2 M3 M4 M5 M6 M7 M8

Image Features Optical Flow — —
√ √ √

— — —
SIFT — — — — —

√ √ √

Scale Factor Constant — —
√

— —
√

— —
Optimization-Based — — —

√
— —

√
—

Kalman-Based — — — —
√

— —
√

Kalman Filtering —
√

— —
√

— —
√

Intensity-Based Image Registration
√ √ √ √ √ √ √ √

computer at 30 frames per second. The size of the video frames
was 360 × 370 and 256 × 263 pixels. We did all implementa-
tions on a Microsoft Visual C++ platform and ran the software
on a conventional PC (CPU: Intel XEON 3.80 GHz × 2 proces-
sors, 4-GByte main memory).

4.2. Comparison Methods

Our proposed hybrid method uses SIFT features, epipolar
constraints, Kalman-based scale factor determination, and im-
age registration to track the camera motion. To thoroughly eval-
uate the performance of our new method, we compared it with
previously developed state-of-the-art methods. Table 1 summa-
rizes all the methods we evaluated and the details the individual
features utilized by each method. While M1 (Deguchi et al.,
2009) solely performs image registration to track the camera,
M2 (Nagao et al., 2004) additionally applies Kalman filtering
to predict the camera motion. M8 corresponds to our proposed
method utilizing Kalman filtering to get the unknown scale of
the motion matrix obtained by epipolar geometry analysis. To
evaluate the performance of the scale factor estimation, we also
compared our method to two alternative approaches: (a) In M6,
we simply assume the motion is constant and set the scale fac-
tor to 0.3, since the bronchoscope movement is of the order
of about 0.3 mm/frame (at a video frame rate of 30 fps) (Rai
et al., 2008); (b) In M7, we performed nonlinear optimiza-
tion. Instead of optimizing the full six parameters in Eq. 28,
we performed a simple one-parameter intensity-based registra-
tion with respect to the scale factor as follows:

α̌(i) = arg min
α

MoMS E

I(i)
R , IV

Q(i−1)

 ∆R̃(i) α ∆t̃(i)

|∆t̃(i) |
0T 1

 .
(29)

As an alternative to SIFT, optical flow can be utilized to track
image features, as proposed in 2002 by Mori et al. (2002) for
bronchoscope tracking. The method calculates optical flow for
pixels at regular intervals by a simple block matching method
that finds the 2D point correspondences between two consecu-
tive RB images. To directly compare and evaluate the perfor-
mance of SIFT and the optical flow in the context of broncho-
scope tracking, our implementation allows the two methods to

be easily interchanged. M3∼M5 are the optical flow equivalents
of M6∼M8.

4.3. Evaluation Criterion

We define the position error as

ε = ‖t − tG‖ , (30)

where ε is the Euclidean distance between reference position
tG acquired by EMT and estimated position t obtained by our
hybrid tracking method.

For errors in orientation, no generally used measure is de-
fined. As in Schneider and Stevens (2007), we characterize
orientation error by the rotation error about the invariant Euler
axis:

θ = arccos((trace(RRG
T ) − 1)/2), (31)

where RG and R are the reference and estimated orientation ma-
trices, respectively. We take our EMT-based GTD as reference
data.

Additionally, we define a second measure for evaluating
whether a method is more robust than another by visually
inspecting and counting the number of successfully tracked
frames. A frame is tracked successfully if a VB image that
is generated from the estimated camera parameters resembles
its corresponding RB image. This includes a comparison of the
current frame to the previous and successive frames to check
whether the tracking result follows the actual motion of the RB
camera.

5. Results

5.1. Phantom Assessment

We generated ten phantom GTD sets using the EMT system
to evaluate all methods. This phantom study does not involve
subject motion, bubbles, and the like. We performed two kinds
of evaluations. The first evaluated the accuracy of the motion
estimation steps (i.e., excluding the intensity-based image reg-
istration step), and the second evaluated the overall tracking
performance of the hybrid method including image registration.
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Table 2: Examples of position [mm] and orientation error [degrees], always initializing the camera pose of previous frame with
GTD instead of actual tracking results and not performing intensity-based registration

GTD Case 1: Frames 3701 GTD Case 2: Frames 3711
Position [mm] Orientation [◦] Position [mm] Orientation [◦]

Method Mean Std Mean Std Mean Std Mean Std

M2 0.884 0.500 0.682 0.526
M3 1.538 11.89 0.595 2.318 3.807 27.80 1.167 6.839
M4 1.765 1.150 0.595 2.318 2.860 1.627 1.167 6.839
M5 1.466 11.89 0.595 2.318 3.709 27.81 1.167 6.839
M6 0.945 0.495 0.525 0.543 0.776 0.492 0.458 0.541
M7 1.800 1.187 0.525 0.543 2.816 1.633 0.458 0.541
M8 0.875 0.488 0.525 0.543 0.679 0.512 0.458 0.541

Table 3: Examples of position [mm] and orientation error [degrees], only initializing first frame with GTD and starting continuous
tracking

GTD Case 1: Frames 3701 GTD Case 2: Frames 3711
Position [mm] Orientation [◦] Position [mm] Orientation [◦]

Methods Mean Std Mean Std Mean Std Mean Std

M1 5.279 5.489 17.65 16.29 13.33 13.19 26.68 26.74
M2 13.19 12.05 22.27 15.43 13.30 12.64 27.64 22.72
M3 13.57 13.85 59.53 57.25 11.05 10.93 23.07 18.69
M4 19.47 16.99 19.32 12.22 29.31 24.55 42.12 36.53
M5 3.900 2.227 17.07 11.12 13.72 13.95 30.17 29.36
M6 15.05 16.49 27.42 26.41 4.058 2.227 11.95 6.278
M7 8.447 8.383 21.38 21.67 16.73 15.35 35.00 35.08
M8 2.954 1.029 11.38 4.612 2.742 0.856 9.764 3.774

During the first evaluation, we only evaluated the motion es-
timation part of all methods, i.e., the capability of Kalman fil-
tering, optical flow, SIFT, Epipolar geometry analysis, and our
scale factor estimation to predict camera motion. We (a) use
Q(i−1)

G corresponding to GTD frame I(i−1)
G to initialize the cam-

era pose corresponding to frame I(i−1)
R , predicted pose Q(i) of

current frame I(i)
R by one of the presented methods (M2∼M8),

and (b) continued to use GTD pose Q(i)
G but not tracking out-

put Q(i) to initialize next frame I(i)
R , continued tracking frame

I(i+1)
R , and so on, repeating (a) and (b). We compute the position

and orientation error between Q(i)
G and tracking output Q(i) us-

ing Eqs. 30 and 31, respectively. In other words, we check how
close to GTD the result of our motion estimation methods can
get, if they are already initialized by GTD.

Table 2 gives the quantitative results about the performance
of all methods for the first two phantom datasets (Cases 1 and
2). The average position error of the SIFT-based methods (M6,
M7, and M8) is less than 3 mm, and the average orientation
error is not greater than 0.6◦. Our accuracy evaluation shows
that M8 is the most robust method to estimate both position and
orientation. M2 also seems able to accurately predict position
information in this nearly ideal setup. Since M2 provides no
orientation information, we cannot display the orientation error
of M2 in Table 2 and Figure 5.

Figure 5 illustrates that the feature-based motion estimation
methods (i.e., optical flow- and SIFT- based methods) give
the same results regarding orientation errors within the same
group (M3∼M5 and M6∼M8) because the estimators start with
the same orientation matrices. However, we can also see that
all SIFT-based methods perform much better than their opti-
cal flow counterparts, concluding that SIFT features are more
stable and adaptive than optical flow features for image-based
bronchoscope tracking.

The second phantom evaluation benchmarks all methods (in-
cluding the intensity-based image registration step) in terms of
position and rotation error compared to GTD and the number of
frames correctly tracked. Furthermore, the performances of all
the tracking methods are also evaluated based on the number of
frames correctly tracked by visual inspection.

Table 3 and Figure 6 show the detailed assessment results for
the first two phantom datasets. In contrast to the previous eval-
uation, here we only initialized the very first frame with GTD.
Compared to the other methods, M8 gives the best results. It
successfully tracks all frames both in Cases 1 and 2 and has the
fewest errors. As for Case 2, M6 can recover tracking after a
failure in contrast to the other methods. Figure 7 visualizes the
tracking performance for the first two phantom cases and shows
examples of RB images and the corresponding VB images gen-
erated from the camera parameters calculated by each method.
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(a) Phantom Case 1

(b) Phantom Case 2

Figure 5: Examples of position and orientation error for different methods when using GTD instead of actual tracking result to
initialize pose of previous frame for bronchoscope tracking and without image registration

Table 4 summarizes the quantitative results for all ten phantom
datasets. Proposed method M8 significantly improves tracking
performance.

Note that the position and orientation errors shown in Ta-
bles 2 and 3 are stated relative to GTD. However, GTD itself
contains errors stemming from camera and hand-eye calibra-
tion, CT-to-EMT registration, and EMT distortions and jitter.

5.2. Patient Assessment

This section reports the performance of our proposed method
for human datasets. We applied the methods presented in Sec-
tions 3 and 4.2 on patient datasets recorded with acquisition
protocols described in Section 4. To evaluate the tracking qual-
ity of the eight methods, we again count the number of frames
successfully tracked. Note the difficulty of generating GTD
for real patients, especially inserting a position sensor into the
bronchoscope used in the operating room.

The results are summarized in Table 5 and Figure 9. Table 5
lists the total number of successfully tracked frames for our pa-
tient studies and illustrates the effect of intensity-based registra-
tion with and without predictive camera tracking on the overall
performance. Figure 9 shows examples of the RB images and

the corresponding VB images generated from the camera pa-
rameters calculated by each method. For the phantom evalua-
tion results, M8 outperforms all others methods.

6. Discussion

Generally speaking, for both the phantom and patient com-
parisons it is apparent that in all cases the intensity-based reg-
istration accuracy was increased significantly by our proposed
hybrid tracking algorithm (method M8).

Note that methods M2∼M8 depend on both the results of a
rough camera pose estimation step (filtering-based or feature-
based motion tracking) and a camera pose refinement step (im-
age registration). If the pose refinement step were omitted, the
error would accumulate and tracking of the bronchsocope tip
would fail after a few frames. The second image registration
step is used to counter such accumulative error. If enough char-
acteristic structure information (e.g., folds and bifurcations)
can be collected, the final bronchoscope camera pose can be
successfully determined by image registration. If characteris-
tic structure information cannot be observed, the computation
of the final bronchoscope camera pose mainly depends on the
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(a) Phantom Case 1

(b) Phantom Case 2

Figure 6: Examples of position and orientation error for different methods when using GTD to initialize only first frame for
bronchoscope tracking

rough camera pose estimation step. We believe that both steps
complement and support each other.

6.1. Phantom Study

In the phantom study, M8 successfully tracked a total of
16043 bronchoscopic images, increasing the tracking perfor-
mance by 27.8% more than M1. The tracking performance was
particularly improved for Cases 1 and 2 where the broncho-
scope took a long path (Figure 7). The intensity-based method
sometimes exhibits better tracking performance than the other
methods, except M8, because the bronchoscopic images ac-
quired inside the phantom do not have any bubbles, respira-
tion motion, or other deformations. Intensity-based registration
alone may collect enough characteristic information to success-
fully perform registration. This may also be due to epipolar-
based camera motion estimation that sometimes gives incor-
rect initial pose information of the bronchoscope. Since the
intensity-based method (M1) instead utilizes the estimation re-
sults of the previous frame as initial search parameters, it does
not get trapped into local minima.

For future studies we also want to improve GTD accuracy
because we used it to initialize the tracking and to measure the

tracking performance during our phantom studies. Basically,
obtaining good GTD due to the large errors of the EMT sen-
sor, it is very difficult in particular because the bronchoscope
contains conductive metals that distort the magnetic field.

In more detail, GTD accuracy is affected by the following
errors: (a) camera and hand-eye calibration error when calcu-
lating the transformation between the EMT sensor and the bron-
choscope camera, (b) initial registration error when predicting
the transformation between the EMT and CT coordinate sys-
tems, (c) distortion and jitter of EMT sensor measurements.

The calibration error is mainly caused by: (a) missing the
synchronization during the recording of calibration pattern im-
ages (shown in Figure 8) and corresponding EMT sensor mea-
surements, and (b) field distortions and jitter affecting the EMT
sensor measurements. During calibration, we held the bron-
choscope by hand to acquire pairs of pattern images and EMT
sensor outputs. This may result in pattern images that are not
synchronized to the EMT sensor outputs. In our experiments,
we used ten pattern images to perform the hand-eye calibra-
tion. The average back-projection error for all pattern images
was around 0.5 mm. In the future, we plan to reduce the cal-
ibration error by: (a) using a bronchoscope holder to acquire
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No. RB M1 M2 M3 M4 M5 M6 M7 M8
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(a) Phantom Case 1: M8 can successfully track all successive frames

Figure 7: Results of camera motion tracking for phantom assessment. Second column shows selected frames from a sequence
of phantom RB images and first column their corresponding frame numbers. Other columns show tracking results for methods
M1∼M8, all generated by volume rendering of airways from estimated viewpoints.
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No. RB M1 M2 M3 M4 M5 M6 M7 M8
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(b) Phantom Case 2. M8 can successfully track all successive frames.

Figure 7: Continued.
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Table 4: Quantitative comparison of tracking results for our phantom studies in terms of number and percentage of successfully
tracked frames

Phantom Num.of Number and percentage of frames successfully tracked
Datasets Frames M1 M2 M3 M4 M5 M6 M7 M8

Case 1 3701 2700 1400 2040 1610 2700 1650 2720 3701
72.9% 37.8% 55.1% 43.5% 72.9% 44.6% 73.5% 100%

Case 2 3711 1600 950 1780 1500 1600 3210 1630 3711
43.1% 25.6% 47.9% 40.4% 43.1% 84.5% 43.9% 100%

Case 3 1098 760 370 150 100 200 150 400 1012
69.2% 33.7% 13.7% 9.11% 18.2% 13.7% 36.4% 92.2%

Case 4 1000 608 540 900 550 900 760 900 900
60.8% 54.0% 90.0% 55.0% 90.0% 76.0% 90.0% 90.0%

Case 5 1400 370 200 920 320 375 312 270 1400
26.4% 14.3% 65.7% 22.8% 26.8% 22.3% 19.3% 100%

Case 6 2800 1790 1450 1180 600 1620 1740 1000 2240
63.9% 51.8% 42.1% 21.4% 57.8% 62.1% 35.7% 80.0%

Case 7 522 100 100 300 400 50 150 200 522
19.1% 19.1% 57.5% 76.6% 9.58% 28.7% 38.3% 100%

Case 8 2200 2100 900 700 390 580 580 560 1500
95.4% 40.9% 31.8% 17.7% 26.4% 26.4% 25.2% 68.1%

Case 9 1000 568 50 640 100 100 230 200 798
56.8% 5.00% 64.0% 10.0% 10.0% 23.0% 20.0% 79.8%

Case 10 1500 450 250 400 430 450 600 500 520
30.0% 16.7% 26.7% 28.7% 30.0% 40.0% 33.3% 34.7%

Total 18932 11046 6210 9010 6000 8575 9382 8360 16304
58.3% 32.8% 47.6% 31.7% 45.3% 49.6% 44.2% 86.1%

pairs of pattern images and EMT sensor measurements, so pre-
cise synchronization is unnecessary and (b) using a mid-range
transmitter instead of a flat transmitter for improving EMT ac-
curacy. Currently we use a 3D Guidance medSAFE tracker
from the Ascension Technology Corporation with a 4-coil flat
transmitter as a magnetic field generator and EMT sensors with
diameters of only 1.3 mm. As previously shown EMT sensor
outputs can be more accurate if a mid-range transmitter is used
instead of a flat transmitter because the former has higher exci-
tation than the latter (Feuerstein et al., 2009).

When performing point-based rigid registration to estimate
the transformation between the EMT and CT coordinate sys-
tems (Eggert et al., 1997; Solomon et al., 2000; Becker et al.,
2005), we achieved registration error of about 1.2 mm. This er-
ror stems from two major sources. One is that we had to man-
ually choose the landmarks in the CT coordinate system, since
they are drill holes in the phantom. For our next phantom, we
will use spheres attached to the phantom that can be easily and
automatically segmented in CT images. The other is that in the
EMT coordinate system they are again manually collected by
inserting an EMT sensor into the drill holes. The sensor mea-
surements themselves only have limited static accuracy and res-
olution. This limitation of EMT remains challenging. It is not
easy to reduce the error of an EMT system that is usually com-

prised of two kinds of error: (a) static, and (b) dynamic. While
static error can be partially corrected (Kindratenko, 2000), dy-
namic error caused, e.g., by ferromagnetic material (which also
contains the bronchoscope) is difficult to correct, unless com-
bined with optical tracking (Feuerstein et al., 2009).

Generally, we plan to use more accurate EMTs and more
elaborate calibration setup when we evaluate any new methods
for bronchoscope tracking. This will be future work.

6.2. Patient Study

In the patient comparison, the robustness of our tracking
methods decreased because of bronchoscopic video frames
problematic due to coughing, the appearance of bubbles, defor-
mation caused by complicated breathing patterns, the broncho-
scope viewing the bronchial surface, or quick insertion or ex-
traction of the bronchoscope. However, our proposed approach
M8 still shows better tracking performance than all other meth-
ods. For example, in Case K and Path 2 of Case A, bubbles,
large bronchi deformation, and motion blur were observed in
the RB images. Except M8, all methods failed to appropriately
track bronchoscopic motion. We see two main reasons behind
this improvement of M8. First, SIFT feature-based estimation
gives an accurate rotation matrix and translation vectors. Sec-
ond, Kalman-based scale calculation for camera motion pre-
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Table 5: Quantitative comparison of tracking results for our patient studies in terms of number and percentage of successfully
tracked frames

Cases Num. of Number and percentage of frames successfully tracked
(Path) Frames M1 M2 M3 M4 M5 M6 M7 M8

Case A(1) 800 618 772 690 730 690 800 800 774
77.2% 96.5% 86.2% 91.2% 86.2% 100% 100% 96.7%

Case A(2) 800 340 45 340 340 300 340 340 780
42.5% 5.63% 42.5% 42.5% 37.5% 42.5% 42.5% 97.5%

Case B 500 143 82 320 380 120 100 90 450
28.6% 16.4% 64.0% 76.0% 24.0% 20.0% 18.0% 90.0%

Case C(1) 1000 1000 800 935 793 1000 1000 1000 1000
100% 80.0% 93.5% 79.3% 100% 100% 100% 100%

Case C(2) 500 230 20 160 160 500 170 180 180
46.0% 4.00% 32.0% 32.0% 100% 34.0% 36.0% 36.0%

Case D 429 429 100 386 210 420 200 200 300
100% 23.3% 90.0% 48.9% 97.9% 46.6% 46.6% 69.9%

Case E(1) 993 993 350 900 800 993 993 400 993
100% 35.2% 90.6% 80.6% 100% 100% 40.3% 100%

Case E(2) 500 320 350 420 320 420 420 420 450
64.0% 70.0% 84.0% 64.0% 84.0% 84.0% 84.0% 90.0%

Case E(3) 1000 260 540 460 530 590 370 520 750
26.0% 54.0% 46.0% 53.0% 59.0% 37.0% 52.0% 75.0%

Case E(4) 279 279 200 279 279 279 279 279 279
100% 71.7% 100% 100% 100% 100% 100% 100%

Case F 1000 130 130 124 125 140 130 180 260
13.0% 13.0% 12.4% 12.5% 14.0% 13.0% 18.0% 26.0%

Case G 450 10 10 240 10 240 430 180 420
2.22% 2.22% 53.3% 2.22% 53.3% 95.5% 40.0% 93.3%

Case H 1200 140 20 60 80 100 1200 100 140
11.7% 1.67% 5.00% 6.67% 8.33% 100% 8.33% 11.7%

Case K 1200 560 560 180 150 220 690 150 1120
46.7% 46.7% 15.0% 12.5% 18.3% 57.5% 12.5% 93.3%

Total 10651 5452 3979 5494 4907 6012 7122 4839 7916
51.2% 37.4% 51.6% 46.1% 56.4% 66.9% 45.4% 75.0%

diction contributes to this improvement. Kalman filtering can
in most cases properly estimate the correct depth information
between consecutive frames. The Kalman-based scale deter-
mination method is generally better than the other two meth-
ods because the optimization-based method depends on the im-
age registration result, which in turn depends on characteristic
structures such as folds or bifurcations. However, if we obtain
similar 2D VB images for different frames due to missing char-
acteristic structures, we may end up with a scale factor close
or equal to 0, even though the two frames were taken from dif-
ferent RB camera positions. Moreover, for the method that as-
sumes the scale factor to be constant, this hard constraint obvi-
ously cannot be valid for all frames, since the camera does not
move at a constant motion.

Additionally, note that Kalman filtering is used in its sim-

plest form in all Kalman-based methods. We used exactly the
same implementation as in Nagao et al. (2004) for fair com-
parisons. Its main restriction is the linearity of the model. We
may improve the performance using extended Kalman filtering
(EKF) (Welch and Bishop, 2001), which is a non-linear model
of Kalman filtering. During the implementation of Kalman fil-
tering, we model the observation noise to be zero and filter our
measurements directly, since adding observation noise did not
improve the results. The tracking results are not affected either
when changing the covariance matrix settings from our testing
experience. For example, when we set the covariance of the
white noise to beWi−1 = 0.005 · I9×9 or Wi−1 = 0.5 · I9×9,
the tracking performance did not change. The only change
was an increase in the computation time. This means filtering
took “shorter or longer to believe” the measurements (Welch
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(a) (b)

Figure 8: Example of pattern image used for camera calibration and its back-projection error: (a) recorded pattern image and (b)
back-projection image after calibration. Green squares are real (segmented) positions, and red crosses are estimated positions.

and Bishop, 2001). Otherwise, we must clarify that it may not
be reasonable to assume invariant acceleration in movements
when using Kalman filtering. This assumption can only be sat-
isfied when force F, moving the bronchoscope of mass m, is
constant, because F = ma, with acceleration a. This may only
be true in the case when bronchoscopists keep constant force to
continously move the bronchoscope.

There are several cases in which the performance of some
methods was almost the same as that of the intensity-based
method (M1), such as Cases 10 and F. This is because the es-
timation failed in the intensity-based registration process, even
if predictive tracking gave good initialization. Therefore, ad-
ditional future work will address the performance of intensity-
based image registration.

6.3. Computational Efficiency

Our proposed method M8 requires approximately 1.8 sec-
onds to process a frame. This is because feature-based motion
recovery methods are time-consuming in terms of the detection
of points and finding correspondences, and so is the registration
stage of bronchoscope tracking. However, our future work will
utilize GPU to accelerate our implementations and approximate
real time, as already shown independently for SIFT (Wu, 2007)
and intensity-based image registration (Sugiura et al., 2009).

Figure 10 shows examples of computation times using meth-
ods M1, M2, and M8. The detection of SIFT features is time-
consuming, particularly if implemented on CPU.

6.4. Challenges

All the methods presented here fail to continuously track
the bronchoscope in some cases (e.g., Cases 10 and F). Apart
from problematic bronchoscope video frames that cause track-
ing failure, we made several assumptions that in practice do not
always hold.

First, we suppose that our feature-based motion estimation
can always detect good and stable features and find correct cor-
respondences. However, it is sometimes difficult to find reliable
point correspondences between images, especially for large
camera movements and (dis)appearing bubbles among succes-
sive frames. For example, in Cases C(2) and D, it is not easy to
find corresponding SIFT features because many bubbles appear
and disappear among successive images, and therefore camera
pose estimation cannot obtain good initialization for image reg-
istration.

Second, we assume that a real bronchoscope camera is in a
constant state of acceleration. This is a hard constraint since,
in practice, acceleration can change quickly. Our motion re-
covery method cannot properly predict when the camera moves
or changes direction quickly, particularly for the Kalman-based
method. This may explain why setting the scale to a constant
sometimes shows better tracking results than using Kalman-
based scale determination. For example, in Case H, the cam-
era changes its direction of movement too quickly and stops
entirely two times. This situation definitely violates the as-
sumption of Kalman filtering. This means that our method fails
whenever there is large mis-synchronization. In future work,
we plan to measure the insertion depth of the bronchoscope to
solve this problem.

Third, airways deformation caused by patient movement,
breathing, and coughing is one particular challenge in navigated
bronchoscopy. Currently we do not explicitly model respira-
tory motion in our tracking method. In general, we assume
that image registration-based tracking is not as sensitive to air-
ways deformation as EMT, because standard EMT approaches
just assume a global rigid transformation between the CT and
EMT coordinate systems, and image registration locally reg-
isters VB and RB images. However, in Case B, large airway
deformation can be observed. Although our method can track
bronchoscope motion for most frames, it still cannot precisely
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No. RB M1 M2 M3 M4 M5 M6 M7 M8

2005

2050

2122

2203

2329

2378

2426

2508

2573

2650

2698

2755

(a) Path 2 of Case A: M8 successfully tracks most frames

Figure 9: Results of camera motion tracking for patient assessment. Second column shows selected frames from a sequence of
patient RB images and first column their corresponding frame numbers. Other columns show tracking results for methods M1∼M8,
all generated by volume rendering of airways from estimated viewpoints.
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No. RB M1 M2 M3 M4 M5 M6 M7 M8

2625

2692

2715

2767

2833

2854

2873

2903

2939

2964

3000

3035

(b) Case B: M8 successfully tracks most frames

Figure 9: Continued.
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No. RB M1 M2 M3 M4 M5 M6 M7 M8

4446

4580

4639

4695

4741

4758

4785

4811

4861

4910

5265

5349

(c) Path 3 of Case E: M8 successfully tracks most frames

Figure 9: Continued.
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No. RB M1 M2 M3 M4 M5 M6 M7 M8

1678

1737

1830

1849

1861

1947

1988

2021

2463

2490

2526

2569

(d) Case K: M8 successfully tracks most frames

Figure 9: Continued.
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(a) Case A(2) (b) Case K

Figure 10: Examples of computation times using methods M1, M2, and M8 for Cases A(2) and K. It clearly shows that for M8
average processing time with at least 1.5 seconds per frame is much higher than that for M1 and M2, because it includes SIFT
feature detection. Blue line only shows time required for detecting SIFT features.

register RB and VB images because VB images are generated
from CT data acquired during patient breath holds in either in-
spiration or expiration. We have to compensate for respiratory
motion to improve the performance of bronchoscope tracking
in the future.

Fourth, we assume that the real world 3D space seen by the
bronchoscope coincides with the virtual world 3D space repre-
sented by CT. This implies that the entire bronchial structure
(characteristic parts) observed in the RB images is surmised
to also be visible in VB images at any time during registra-
tion. However, the bronchial structure is not well reproduced
in VB images due to the low resolution of the CT images. Fur-
thermore, when the CT data of patients are acquired, they are
usually asked to fully inhale or exhale and hold their breath.
However, during bronchoscopy they are breathing regularly, de-
forming the airways.

Fifth, we suppose that we can accurately initialize the first
VB camera pose in the CT coordinates corresponding to their
RB pose at the beginning of the bronchoscope tracking. In our
phantom studies, we initialize the pose of the first frame us-
ing ground truth data obtained by EMT. In our patient studies,
we manually adjusted the six degrees of freedom of the vir-
tual camera inside the 3D CT volume to generate an initial 2D
VB image that resembles the corresponding RB image using a
graphical user interface. In the operating room, we may inte-
grate this graphical user interface into the bronchoscopic nav-
igation system. However, since manual initialization is time-
consuming for a bronchoscopist, we also plan to accomplish
initialization by adding an automatic camera position estima-
tion algorithm (Shinohara et al., 2006; Merritt et al., 2006).

7. Conclusion

In this paper, we presented a new hybrid motion tracking
method for bronchoscopic navigation and compared it to other

state-of-the-art methods in a comprehensive evaluation con-
ducted on phantom and patient datasets. Our experimental
results show that our hybrid method based on SIFT features,
epipolar geometry analysis, Kalman filtering, and image reg-
istration significantly improves the tracking performance com-
pared to other evaluated methods. Moreover, we do not depend
on an additional electromagnetic tracking sensor. Our hybrid
method is promising for bronchoscope tracking during bron-
choscopic navigation.
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