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ABSTRACT

Unlike dense stereo, optical flow or multi-view stereo, template-
based tracking lacks benchmark datasets allowing a fair comparison
between state-of-the-art algorithms. Until now, in order to evaluate
objectively and quantitatively the performance and the robustness
of template-based tracking algorithms, mainly synthetically gener-
ated image sequences were used. The evaluation is therefore often
intrinsically biased.

In this paper, we describe the process we carried out to perform
the acquisition of real scene image sequences with very precise
and accurate ground truth poses using an industrial camera rigidly
mounted on the end-effector of a high-precision robotic measure-
ment arm. For the acquisition, we considered most of the critical
parameters that influence the tracking results such as: the texture
richness and the texture repeatability of the objects to be tracked,
the camera motion and speed, and the changes of the object scale in
the images and variations of the lighting conditions over time.

We designed an evaluation scheme for object detection and inter-
frame tracking algorithms and used the image sequences to apply
this scheme to several state-of-the-art algorithms. The image se-
quences will be made freely available for testing, submitting and
evaluating new template-based tracking algorithms, i.e. algorithms
that detect or track a planar object in an image sequence given only
one image of the object (called the template).

1 INTRODUCTION

In the last few years, markerless visual tracking reached the level
where a large variety of algorithms could be successfully used in
a wide range of Augmented Reality applications [9, 20]. Until
now, the performance of state-of-the-art algorithms was either eval-
uated quantitatively using synthetically rendered images or eval-
uated qualitatively using ad hoc recorded videos demoing a new
method.

Using synthetic images has the advantage that the camera pose
with respect to the synthetic scene can be set perfectly. On the
one hand, comparing the pose estimation obtained using a given
tracking algorithm with the camera pose set during the rendering
process allows the establishment of the estimation error. On the
other hand, it is very hard to create synthetic images that repro-
duce the real effects of every phenomenon such as lighting, noise,
motion blur, discretization, blooming or limited color depths dur-
ing the real image acquisitions. In general, these effects can only
be approximated which makes the evaluations intrinsically biased.
Such images could be used during the design of new algorithms and
to get a rough impression of the behavior of the tracking but they
do not guarantee the performances that will be obtained with real
world data.
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Using recorded videos of real scenes can, however, demonstrate
that a given algorithm can or cannot work in real world conditions
but the evaluation of the performances remains qualitative. For ex-
ample, it makes it possible to visually see that the camera pose was
or was not correctly estimated if the virtual augmentation is or is
not positioned and oriented as expected.

Since the research community is working on markerless visual
tracking very actively, the need of common objective datasets with
ground truth is growing. We believe that image sequences acquired
with a real camera where the pose of the camera for every frame of
the sequences is known quite perfectly will give very strong bene-
fits to the community. Such datasets will allow a fast performance
estimation in terms of speed and accuracy of a newly designed al-
gorithm and its fair comparison with the existing ones.

In this paper, we present the methodology we used to record im-
age sequences with ground truth knowledge about the position and
orientation of the camera in every frame. We used an industrial
camera mounted on the end effector of a high-precision robotic
measurement arm as hardware setup. The camera is calibrated
intrinsically with an industrial 3D calibration target which is also
used to compute the hand-eye-calibration, i.e. the transformation
between the camera center and the measurement tip.

For this first version of the dataset, we recorded sequences of
planar targets using the calibrated setup. We identified four dif-
ferent types of tracking targets classified by texture richness and
repeatability. Each type is represented by two targets in the dataset.
Next, we determined five standard factors that have the biggest in-
fluence on the performance of the tracking and which are related to
the camera motion, the size of the tracked object in the image and
the lighting conditions; one sequence per target is dedicated to each
influence. The dataset has in total 40 sequences of 1200 images
each.

The recorded sequences were first checked against very accu-
rately detected corners of fiducials, the resulting average residual
was below one pixel. We also used the dataset in order to evaluate
four popular (and at least in compiled form available) state-of-the-
art algorithms, three tracking-by-detection methods and one frame-
by-frame tracking method. We summarize the evaluation results in
the end of the paper.

2 RELATED WORK

For a long time, Quam’s Yosemite sequence [8] used to be the ref-
erence used for evaluating optical flow algorithms. Quam created a
model by mapping aerial photos onto a depth map of the Yosemite
valley and generated a sequence by simulating a flight through the
valley.

Today, the Middlebury datasets [4] are the reference for optical
flow. Besides having generated synthetic images, they also cre-
ated dense ground truth by using hidden fluorescent texture. The
same group additionally made ground truth datasets for dense stereo
matching using structured light and datasets for multi-view stereo
using a laser scanner [16, 17]. Theoretically, these images could
be used to evaluate tracking algorithms as well. However, due to
the very limited number of frames/image pairs given and the com-
pletely different goal set when creating these datasets, the result
from an evaluation using these datasets will be missing important



factors such as e.g. motion blur and the irregular movements com-
ing from a human camera operator.

In markerless visual tracking, Baker and Matthews [3] used syn-
thetically warped images to compare four different tracking algo-
rithms, the warping amplitude and the noise of the image were
simulated synthetically. Mikolajczyk and Schmidt [11] used still
images for comparing affine region detectors, their dataset consist-
ing of 48 images was also used by many others. Moreels and Per-
ona [12] used a turn table together with a static stereo camera setup
to evaluate the performance of feature detectors and descriptors on
3D objects. They generated a database consisting of 100 objects
with calibrated views, one image pair for each 5◦ rotation of the
turntable. In general, turn table sequences with a static camera only
model a limited range of transformations wich are not specifically
representative for AR applications.

Recently, Zimmerman, Matas and Svoboda [21] published a
dataset consisting of three grayscale image sequences with trans-
formations of the targets that cover all six degrees of freedom and
that could be used to evaluate frame-by-frame tracking algorithms.
The ground truth poses of these sequences were obtained by man-
ually clicking on either crosses that were attached to objects or by
clicking directly on the corners of an object. The three image se-
quences consist of approximately 12000 images in total and feature
three different targets.

The problem is that this dataset only considers a very limited
number of objects and factors influencing the tracking, e.g. the
lighting conditions were kept fixed. Moreover, the ground truth
data was based on information exclusively coming from the im-
ages, it was mainly done by clicking points in the images with
pixel-accurate localization (no sub-pixel localization). Following
this approach, it is not possible to have reliable ground truth in the
case of blurry or noisy images. It is also not possible to recover the
camera position and orientation when the points used to determine
the pose are not in the field of view of the camera. Consequently,
the performance of the tested algorithms could not be evaluated in
the presence of noise, motion blur or for some relative position be-
tween the camera and the tracked objects.

We propose a novel dataset that methodically focusses on differ-
ent types of tracking targets as well as on the factors with biggest
influence on the tracking performance. The ground truth was estab-
lished using dedicated hardware and was not exclusively dependent
on the acquired image data.

3 DESCRIPTION OF THE SETUP

In the following, we describe the hardware components we use to
obtain the ground truth pose data. In order to reach a very high
precision, we use proven industrial hardware components wherever
possible and appropriate.

A FaroArm Platinum [7], a robotic measurement arm, was used
as key component for the ground truth measurements. It has seven
axes and an accuracy better than 0.013 mm within its reach of
around 1.2 m from its base. The arm uses internal temperature sen-
sors to compensate the effect of thermal variations. We assume
that the residual noise in the measurement arm is neglectibly small.
An industrial AVT Marlin F-080C camera [2] was rigidly mounted
on the end effector of the measurement arm. The camera is able
to capture progressive VGA frames with 40 Hz while the measure-
ment arm provides absolute pose data with 75 Hz. We used an ad-
justable panel light providing daylight-balanced 5600 Kelvin light
for controlling the illumination. An image of the setup can be seen
in figure 1.

The following steps were done to make the system operational:
First, the intrinsics and undistortion coefficients of the camera were
computed using a professional photogrammetric calibration target
and the accompanying software from AICON [1]. The camera cali-
bration was conducted following the guidelines of the provider, the

Figure 1: The measurement arm, the camera and one of the targets.

residual error was less than 0.07 pixels.
The intrinsics of the robot, namely its tip and the seven joints,

were also calibrated according to the guidelines of the manufac-
turer. After that, the hand-eye-calibration was conducted. For
this, we again used the AICON calibration target and software, but
this time only used the extrinsic orientation together with poses
of the faro arm. Ten pose pairs were recorded and the hand-eye-
calibration was computed with a method similar to the one pro-
posed by Tsai and Lenz [18].

4 DESIGNING THE DATASET

The motivation for creating the dataset is to evaluate and to allow
a fair comparison between a wide range of template-based tracking
algorithms. There are algorithms that use corners, edges and whole
regions of an image. We tried to make the dataset balanced and
focussed on real world usage. In the following, we describe how
we tried to achieve these goals.

4.1 Targets
The most basic, essential and quasi-incontrovertible task is the
tracking of planar structures. In fact, in order to be able to deter-
mine the relative position and orientation of a camera with respect
to different objects of the environment in real-time, most of the
model-free detection and tracking algorithms have to assume that
the objects are locally planar or piecewise planar. That is why we
used planar targets. These targets were chosen to represent a broad
overview of all types of possible tracking targets. We classified
them into four different groups, namely “Low Texture”, “High Tex-
ture”, “Repetitive Texture” and “Normal Texture”, meaning some-
where in between. Each class is represented by two targets each,
shown in figure 2. We did not track any of these targets in advance
in order to not make the selection of the targets biased.

The “Low Texture” group consists of images of road signs which
are composed of two distinct colors and large uniform areas, thus
large edges are visible. In the “Repetitive” group there are images
of electronic boards, one image with mainly large, one image with
mainly small components. An image of a car and of a cityscape are
in the group of the “Normal” reference targets. Finally, the group of
“Highly Textured” images is composed of an image of a wall made
of different sized stones and of an image with English lawn which
features many extremely small structures everywhere.

Each target image was resampled to a resolution of 800×600
before printing. The algorithms later were provided with the in-
ner 640×480 area of these target images. We compared the results
of the ground truth with the results of the tracking of six fiducials



Figure 2: The reference targets used in our dataset. From left: Low, Repetitive, Normal, High Texturedness.

(markers) placed next to the reference targets (see figure 5) for final
validations.

The targets were printed with a color laser printer. Both the
printer and the camera were not specifically color calibrated such
that the captured images of the printed targets match the reference
targets exactly. These steps were skipped on purpose as they are
common in real world scenarios and hard to emulate with synthetic
images. The printed pages were glued onto foamboard which was
later fixed on a table rigidly connected with the base of the mea-
surement arm.

4.2 Sequences
Next, we designed the dynamic part of the evaluation. Here we fo-
cus on five different types of dynamic behaviors: “Angle”, “Range”,
“Fast Far”, “Fast Close” and “Illumination”.

In the sequences of type “Angle”, we focus on varying the angle
between the normal of the reference target and the optical axis of
the camera between 0◦ and approximately 80◦ while trying to keep
the distance to the target constant. The target covers around 10 -
30% of the image.

The “Range” sequences focus on the size of the reference im-
age in the camera image. The maximum distance of the camera to
the target resulted in a visible area of the reference target of about
130×100 pixels or 4% of the original area, whereas the maximum
of the visible area is around 100%, i.e. the reference template oc-
cupied the whole camera image. The reference template is always
facing the camera near fronto-parallel in these sequences, there is
only rotation around the normal of the target.

The next type of sequences is “Fast Far”; here we go away from
the target until it covers again an area of approximately 4% of the
image. Then we move the camera with increasing speed resulting in
big inter-frame motion. Towards the end of these sequences, the ef-
fect of motion blur shows strongly. These motions are also applied
to the “Fast Close” sequences, the only difference here being that
the reference image typically covers 60% and more of the image
where parts of the targets go often outside the image.

The last type of sequences we recorded, “Illumination”, varies
the lighting conditions of the scene while the camera is moving
slowly. For this, we switch off and on again two sets of fluores-
cent tubes during the sequence, additionally a shadow is cast by a
waving hand onto the reference target. In this scenario, the target is
always covering more than 15% of the camera image.

Selected frames from the sequences can be seen in figure 3. Ev-
ery sequence consists of 1200 RGB images with a resolution of
640×480 pixels acquired from the camera at 40 Hz, the measure-
ment arm provides its absolute poses with 75 Hz. These data were
recorded directly into the main memory of the attached computer
in order to minimize the influence of slowing down the recording
at arbitrary moments because of hard disk access. The images and
poses are written to disk as batch job after each sequence. We also
chose not to fuse the images with the poses while recording, instead
we synchronize them offline. Thus, we make sure that also fast and
sudden motions are accurately represented in the dataset.

5 POST-PROCESSING THE DATASET ACQUISITION

After recording the images and poses of all 40 sequences, we still
had to assign a specific pose to each image and compute the residual

Figure 4: The transformations used in our setup.

error of the sequences. Figure 4 shows an overview of the transfor-
mations in our setup which will be discussed briefly.

The internal pose Tint of the robot is known to be very precise.
The hand-eye-calibration Thec is based on the AICON calibration
pattern and the internal pose of the robot, thus it is also very pre-
cise. The transformation Talg is given by the evaluated algorithm
and compared to the ground truth pose computed via a concatena-
tion of Thec, Tint and Text . The external offset of the measurement
arm Text has to be provided by generating 3D-3D correspondences
with the tip of the arm by moving it to coordinates of known 3D
reference points. We chose the 24 corners of six fiducials next to
the reference target for those points. These corners were also used
for computing the residuals, for the synchronization of the measure-
ment arm with the camera and also for fine-tuning Text . Although
the detection of the fiducials is not perfect, it is extremely accu-
rate [14] and thus appropriate for these tasks.

To synchronize the measurement arm to the images of the cam-
era, we did the following: As soon as an image is fully captured
from the camera, i.e. available to our software, we attach a times-
tamp t i

img to it; the same is done with the poses of the measurement

arm, these timestamps are denoted by t j
meas. We assume that there

is a constant offset to f f set between the timestamps t i
img and t j

meas
that can be thought of the time needed to capture the image, to
transfer the image information via the various busses to the main
memory and finally to invoke all hard- and software interrupts until
the image is available to our software. The optimal offset together
with the optimal Text should give the lowest residual, i.e. in our
case the lowest RMS of the reprojection error of the fiducals for a
full sequence (1200 images). Due to the difference in the acquisi-
tion frequency between the camera and the measurement arm, the
pose assigned to an image was interpolated from the two nearest
neighbors using linear interpolation for the translational part and
spherical interpolation for the rotational part. We used the Nelder-
Mead algorithm [15] to jointly optimize to f f set and Text for each
sequence, starting with to f f set = 0 and with the result of the manual
registration for Text .



(a) Target “Bump Sign”, from top to bottom: Sequence “Angle”, “Range”, “Fast Far”,“Fast Close” and “Lighting”.

(b) Targets “Isetta”, “Philadelphia”, “Wall” and “Lucent”

Figure 3: Sample images taken from some of the sequences each 200 frames. In this figure, the real background is blended with the image the
algorithms process during the evaluation to highlight the randomized borders used.



Figure 5: A reference target with the six fiducials. The inner area of
each template is provided to the algorithms as reference image, they
have to compute the position of the four points on the diagonals.

After the synchronization was completed, we arrived at an aver-
age RMS reprojection error of 0.86 pixels for all sequences. This
error also incorporates all errors from the internal and external cal-
ibrations. The “Fast Close” sequences typically have the highest
residual error (mean 1.54 pixels) due to the motion blur and the
large size of the reference target in the image, the lowest residual er-
ror (mean 0.54 pixels) was found for the “Illumination” sequences.

6 EVALUATING TEMPLATE-BASED TRACKING ALGORITHMS

We differentiate between tracking-by-detection and frame-by-
frame tracking algorithms: Frame-by-frame tracking algorithms re-
quire an initial pose/homography, but then should be able to track
the reference target in the images with high precision and over
many consecutive frames. Similar to the Middlebury datasets [4],
we are not planning to publish the ground truth for every frame.
However, to support the frame-by-frame algorithms, we give the
pose/homography for the first and every 250th frame in the dataset.
Thus it is possible to initialize a frame-by-frame algorithm five
times per sequence in case it lost tracking.

However, tracking-by-detection algorithms were provided with
the reference images only, they had to locate the target in the im-
ages of the sequences without any further prior knowledge about
its pose. The missing need of an approximate initial pose is a ben-
efit over the frame-by-frame tracking algorithms, they are usually
initialized using detection-style algorithms. The total number of
sucessfully detected frames is more important for this type of algo-
rithms than the number of consecutively tracked frames.

We evaluated four popular tracking algorithms: SIFT [10],
SURF [5], FERNS [13] and ESM [6]. These will be discussed in
the next sections.

6.1 Evaluation
The evaluation of the four algorithms was conducted as follows.
Each algorithm was given the 640×480 uncompressed image of
the reference targets, more specifically of the centered inner area of
each reference targets (marked white in figure 5). Then all algo-
rithms were given time to transform the data in the format suitable
for tracking, i.e. for SIFT and SURF the descriptors of the features
of the reference images were constructed, for FERNS the classifiers
were trained.

After that they were given the undistorted images of the se-
quences. To prevent algorithms from being distracted by a cluttered
background, we replaced the background with white. In addition to
that, we also removed the original borders of the reference target to
prevent algorithms from simply using the image borders instead of
the template image itself. The original borders of the 800×600 ref-
erence target were replaced by randomized borders, but at the same

Figure 6: The steps taken to prepare an image for evaluation: Left
the captured image, in the middle the undistorted image with the
background removed, on the right the final image with randomized
borders.

time we made sure that the 640×480 image the algorithms were
given is not cut by the new randomized borders. Figure 6 visualizes
these steps.

While removing the background is clearly a simplification, we
chose this approach with the current datasets to focus on the best
performance of the algorithms possible with images of the tracked
object coming from a real camera. In later datasets we could add
a cluttered background to the real scene or add a virtual cluttered
background after recording.

The evaluation is based on four reference points which are placed
on the diagonal lines of the reference images (marked with blue
crosses in figure 5); they are at the XGA resolution boundaries,
i.e. at (±512;±384). For every image Ii per sequence, the RMS
distance erri of each imaged reference point x j to the ground truth
point x?

j was computed as

erri =

√√√√1
4

4

∑
j=1
‖x j−x?

j‖2

After computing these errors for a sequence, all frames with an
erri ≥ 10px are removed as we regard the cases with a higher RMS
error as sign that the tracking algorithm lost the target. Based on
these filtered results, we compute the ratio of tracked frames and
analyze the distribution of the error.

6.2 Results
We used the original implementations of ESM, FERNS and SURF
for the evaluation, for SIFT we used the implementation from
Vedaldi and Fulkerson [19]. The majority of the parameters were
left at their authors’ default settings, we only constrained SURF
and FERNS to use the 800 strongest points, a number we had to
provide to the implementations that was high enough to not de-
grade their performance. To compute the poses with the feature-
based algorithms, we used nearest-neighbour matching to generate
2D-3D correspondences, then removed outliers via RANSAC and
finally computed a pose via DLT that was refined with Levenberg-
Marquardt. For ESM, we used the output homography to project
the corners of the reference template into the current frame and also
computed a pose via DLT and Levenberg-Marquardt.

The targets were evaluated in the order as shown in figure 2,
i.e. “Low”, “Repetitive”, “Normal”, “High Texturedness”. Each
target was evaluated following the discussed foci in the order “An-
gle”, “Range”, “Fast Far”, “Fast Close”, “Illumination”. The results
of the evaluation indicated that SIFT is, most of the time, outper-
forming FERNS and SURF in terms of accuracy and percentage of
tracked frames. However, it should be mentioned that the evalua-
tion of SIFT took more than 2.5 days (approximately 3 s per frame)
to compute whereas FERNS, SURF and ESM finished in less than
6 hours each.

The focus of the evaluation in this paper is primarily to see
whether the targets and the chosen sequences per target were suit-
able for building a dataset that is both challenging and at the same
time not undoable so that it can be useful to the computer vision



community. That is why we concentrated on the accuracy of the
algorithms in close-to-ideal situations. The timings were not con-
sidered since the best possible framerates of the algorithms are gen-
erally achieved with extensive finetuning of parameters and this was
of minor interest to us.

In figure 7 the percentage of correctly tracked frames is given for
all algorithms and targets. The evaluation showed that ESM often
depends on the selected area to be tracked. In contrast to the feature
points approaches that typically select positions with high corner-
ness, ESM gives the same weight to every pixel in its area. This can
severely degrade the accuracy if e.g. the border of the image is ap-
proximately uniform. Thus, to make the comparison fair, we manu-
ally selected patches in the low texture targets for ESM. After that,
it tracked the extremely low textured yellow road sign for 100% of
the “Angle” sequence, also surpassing all three other algorithms in
terms of accuracy. Concerning low texturedness, both FERNS and
SURF showed a better performance on the slightly more textured
stop sign target. The reason for the performance of SURF for the
first target is that SURF does not find sufficient feature points on
the yellow traffic sign, the same again applies to the grass target
which for ESM also turned out to be an extremely difficult target.
FERNS was in general very well adapted to the “Angle” sequences
which might come from the explicit training phase that warps the
reference targets numerous times.

The “Fast Close” sequences with large amounts of motion blur
were the most difficult to detect for all four algorithms, whereas
“Range” and “Illumination” sequences were often correctly de-
tected. Figure 8 shows the RMS errors for all targets, sequences and
algorithms as box-and-whiskers-like diagram; the whiskers mark
the minimum and maximum error while the box spans from the
first to the third quartile, the mean is given via the red horizontal
line. The targets per target group are separated by a vertical black
line. In general, the “Fast Close” sequences were detected with the
largest error per target while “Illumination” yielded, most of the
time, the lowest error.

7 CONCLUSION

We presented a methodology to create a dataset for evaluating
template-based tracking algorithms. The goal was to create image
sequences with precisely known poses of the camera so that they
can be used as objective ground truth to evaluate algorithms and
enable fair comparisons.

The ground truth sequences were recorded using a highly precise
measurement arm together with an industrial camera. They fea-
ture realistic imaging conditions and motions and are very precise.
When generating the dataset, we carefully selected the texture of the
chosen targets and the camera motions to be as much representative
as possible. Using these sequences, we evaluated four state-of-the-
art algorithms. Our sequences can now be used by the vision and
AR communities, we offer a webpage at http://metaio.com/research
to give other authors the opportunity to extensively evaluate their
template-based tracking algorithms and to be able to objectively
compare them to other methods. By using not every consecutive
image of the sequences, but only every nth image, it is also pos-
sible to analyze the effect bigger interframe motions, or even for
wide-baseline matching.

The dataset is not frozen and it is meant to be evolutive, e.g. we
would be able to add new sequence types in case it is requested by

a large number of users. Although we focussed on planar reference
targets, extending the presented approach in order to evaluate 3D
tracking methods is straight forward.
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FERNS Angle Range Fast Far Fast Close Illumination
Low 17,08% 8,08% 1,58% 3,75% 6,58%

47,33% 71,00% 22,92% 40,50% 76,08%
Repetitive 36,42% 65,17% 15,42% 48,50% 91,83%

42,50% 45,17% 6,25% 50,00% 81,33%
Normal 69,50% 80,58% 24,92% 68,00% 95,92%

38,75% 53,08% 9,00% 64,67% 81,67%
High 34,92% 38,17% 5,92% 16,00% 31,58%

71,75% 61,50% 13,42% 63,00% 96,92%

SIFT Angle Range Fast Far Fast Close Illumination
Low 47,25% 49,08% 10,33% 19,58% 59,17%

36,08% 95,42% 25,50% 55,58% 99,75%
Repetitive 59,00% 99,33% 43,33% 71,92% 100,00%

69,50% 95,67% 15,17% 62,83% 98,17%
Normal 63,50% 84,25% 21,75% 55,17% 96,08%

53,00% 96,08% 31,67% 77,67% 99,58%
High 66,83% 85,08% 18,33% 37,42% 97,00%

79,50% 94,75% 31,42% 72,75% 99,50%

SURF Angle Range Fast Far Fast Close Illumination
Low 0,50% 0,33% 0,08% 0,00% 0,00%

27,17% 67,00% 11,83% 33,50% 55,17%
Repetitive 16,50% 38,42% 5,25% 47,33% 41,00%

25,58% 50,00% 6,08% 54,17% 49,50%
Normal 37,92% 50,17% 6,17% 50,33% 67,75%

45,33% 70,75% 14,25% 69,67% 89,58%
High 0,00% 7,75% 0,00% 0,08% 0,00%

64,00% 44,42% 6,50% 51,50% 72,33%

ESM Angle Range Fast Far Fast Close Illumination
Low 100,00% 92,33% 35,00% 21,58% 71,08%

100,00% 64,17% 10,58% 26,83% 56,25%
Repetitive 61,92% 50,42% 22,50% 50,17% 34,50%

2,92% 11,33% 6,83% 35,83% 11,33%
Normal 95,42% 77,75% 7,50% 67,08% 76,75%

99,58% 99,00% 15,67% 86,75% 90,67%
High 0,00% 0,00% 0,00% 0,00% 0,00%

100,00% 61,42% 22,83% 45,50% 79,67%

Figure 7: Ratio of successfully tracked images (with erri < 10 pixels).
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Figure 8: Distribution of the RMS error for each sequence, only successfully tracked frames were taken into account. The whiskers denote
minimum and maximum, the box spans from first to third quartile; a red line segment shows the mean RMS error.


