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Abstract— In this paper a low-drift monocular SLAM
method is proposed targeting indoor scenarios, where monoc-
ular SLAM often fails due to the lack of textured surfaces.
Our approach decouples rotation and translation estimation
of the tracking process to reduce the long-term drift in
indoor environments. In order to take full advantage of the
available geometric information in the scene, surface normals
are predicted by a convolutional neural network from each
input RGB image in real-time. First, a drift-free rotation is
estimated based on lines and surface normals using spherical
mean-shift clustering, leveraging the weak Manhattan World
assumption. Then translation is computed from point and line
features. Finally, the estimated poses are refined with a map-to-
frame optimization strategy. The proposed method outperforms
the state of the art on common SLAM benchmarks such as
ICL-NUIM and TUM RGB-D.

I. INTRODUCTION

Visual Simultaneous Localization and Mapping (V-
SLAM) systems are important for autonomous robots and
augmented reality, as they are used to estimate poses and
reconstruct unknown environments. In numerous SLAM use
cases and applications, monocular cameras are the most
common sensors in indoor scenarios. Indoor environments
are often characterized by a lack of textured surfaces,
and by irregularly distributed feature points. In particular,
low-textured walls, floor and ceiling are difficult to deal
with by both state-of-the-art feature-based methods [1] as
well as direct methods [2], [3]. For low-textured scenes,
SLAM systems combining point and line features have
been proposed to target low-textured scenes, e.g. Stereo-
PLSLAM [4], PLVO [5], Mono-PLSLAM [6] and [7], ex-
tending the working scenarios to low-textured environments
with visible structural edges. Since the map is built from
a sequence of input frames, small errors accumulate over
time, resulting in drift which affects dense reconstruction by
leading to misaligned surfaces and artifacts.

There are two main strategies to overcome these errors.
Loop closure detection [8], [1] combined with pose graph
optimization detects previously seen landmarks and opti-
mizes the pose graph based on the new constraints, thus
correcting the accumulated drift. Loop closure, however,
brings in an extra computational burden and removes the
drift only when revisiting the same place. Another strategy
consists of assuming an underlying (global) structure in
the world frame, then each tracked frame can be directly
aligned to this world structure instead of the last frame or
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Fig. 1. The proposed approach targets low-textured indoor scenes to
carry out low-drift monocular SLAM based on dense normal prediction
and leveraging the Manhattan World assumption.

keyframes. The most common formulation of a structured
scene is the Manhattan World (MW) [9], [10] where the
environment shown in Fig. 1(a) consists of geometric struc-
tures (planes and lines) oriented in one of three orthogonal
orientations. It is particularly useful in indoor environments
where structures such as walls, floor and ceilings often show
consistent alignment over multiple rooms, enabling a global
alignment. The MW approach is an efficient method to keep
the accumulated drift low by providing a drift-free strategy
for rotation estimation, as the rotational component is the
main source of overall drift [11], [12].

The state of the art of monocular approaches relying on
a MW [9], [10] are based on parallel and orthogonal lines
alone, as it is difficult to extract 3D information, except for
vanishing points, from a monocular RGB image, which is a
quite strong limitation for most scenarios. Furthermore, in-
door environments often consist of large planar regions with



few features for pose estimation. RGB-D methods [12], [13],
directly measure the structure of the scene in the form of
depth maps, this allows them to compute dense surface
normals for each pixel.

Inspired by recent works based on convolutional neural
networks (CNN) and scene geometry prediction approaches
from a single view [14], [15], we propose a monocular
SLAM framework which leverages the underlying scene
structure to carry out low-drift SLAM even in presence of
low-textured environments, in the form of densely predicted
normal maps from a CNN, analogously to existing works
based on dense RGB-D sensors.

Specifically, we propose the following contributions:
• A low drift real-time monocular SLAM framework for

structured environments, with decoupled rotation and
translation

• Dense monocular normal estimation for rotation estima-
tion leveraging the MW assumption

• A method for translation estimation relying on point and
line features

We evaluate numerically on common SLAM benchmarks
such as ICL-NUIM [16] and TUM RGB-D [17] showing
that the proposed approach outperforms the state of the art
in monocular SLAM.

II. RELATED WORK

A. Monocular SLAM
PTAM [18] is a monocular, keyframe-based SLAM sys-

tem which was the first work to introduce the idea of
splitting camera tracking and mapping into parallel threads,
and demonstrate to be successful for real time augmented
reality applications in small-scale environments. Strasdat et
al. [8] present a large scale monocular SLAM system in
which the front-end bases on optical flow implemented on
a GPU, followed by FAST feature matching and motion-
only BA, and a back-end based on sliding-window BA. As a
complete SLAM pipeline, ORB-SLAM [1] combines feature
based tracking, sparse point mapping, descriptor based re-
localization and loop closure altogether. In addition to point
features several works propose the use of lines [4], [5] for
low-textured environments, we propose to use additional
dense structural information in the form of predicted normal
maps.

Inspired by the recent success of deep learning based depth
prediction, CNN-SLAM [19] incorporates a neural network
which estimates depth information within the popular LSD-
SLAM [2] framework to create dense scene reconstructions
in metric scale, where depth predictions are used to initialize
the SLAM system and merged continuously with the semi-
dense depth maps optimized by the SLAM system. Instead of
estimating depth maps only for key-frames in CNN-SLAM,
our approach predicts surface normals from every RGB
frame in real-time. In CodeSLAM [20], a neural network
learns a compact latent representation for the structure of a
scene conditioned on the RGB image, showing that the joint
optimization of both structure and pose can improve monoc-
ular pose estimation. By predicting normal maps instead of

depth maps we avoid the necessary differentiation operation
which could introduce noise. Predicting normal maps also
seems to generalize better between datasets as depth does.

B. RGB-D SLAM

Probabilistic-VO [7] combines points together with lines
and planes for pose estimation while modeling their un-
certainties. Due to the combination of 2D-3D point and
line correspondences and 3D-3D plane matches, a weighting
between re-projection and euclidean errors must be chosen
empirically. CPA-SLAM [21] extended DVO-SLAM with
global plane landmarks. Pose estimation and soft assign-
ment of depth measurements to planes are computed in
an Expectation-Maximization framework. KDP-SLAM [22]
combines photometric and geometric loss based on plane
segments instead of points for frame-to-frame pose esti-
mation and additionally aligns plane segments with global
planes in a Smoothing and Mapping (SAM) framework.

C. Manhattan World

Straub et al. [11] and Zhou et al. [23] show that the main
source of drift in traditional feature-based systems is caused
by the rotation estimation.

Even if the MW assumption is a good constraint for indoor
SLAM, it is difficult to enforce it in monocular methods
because only limited 3D information can be obtained. Zhou
et al. [10] applies J-linkage [24] to classify parallel line seg-
ments into different groups and estimate the dominant direc-
tion from the vanishing points. If depth maps are available,
surface normals can be computed directly. Joo et al. [25]
provide a branch-and-bound framework for Manhattan Frame
estimation. MVO [23] propose a unit sphere mean shift
method to find the rotation matrix between the Manhattan
World and the camera system. For the translational part, they
compute and align density distributions of points in each
orthogonal direction, avoiding the costly matching of points.
OPVO [26] use planes to estimate the Manhattan Frame ro-
tation, limiting its application to environments with at least 2
orthogonal planes. LPVO [12] adds vanishing points of lines
for the rotation estimation. Both use point based methods
for translation estimation. L-SLAM [13] replaces the graph
based translation estimation from LPVO with a Kalman filter
based SLAM update, using the LPVO translation estimation
in the prediction step. Compared with [12], [13], we build
an initialization module based on points, lines and predicted
normals. Further more, a refinement module is added to
optimize the pose after the decoupled initialization.

III. SCENE STRUCTURE ANALYSIS

The structural information used in the system is analyzed
in this section. First, we describe the methods for extraction
and triangulation of points and lines; Then, an architecture
for surface normal prediction is introduced.

A. Points and Lines Analysis

Point features, due to their descriptiveness, compactness
and robustness to illumination changes, are the most common



Fig. 2. Proposed SLAM framework (StructureSLAM). In the front-end, the encoder-decoder network predicts dense surface normals. In parallel, point and
line features are extracted from the RGB image. In the back-end, first the scene structure in the form of normals and lines is used to estimate the global
rotation of the camera. Then, the remaining 3-DoF for the translation are obtained using point and line features. The initial pose estimate is validated and
refined using the local map. Keyframes are selected based on the availability of point and line features.

features used in visual SLAM systems. In our method, ORB
features [27] are adopted which are fast enough to extract
and robust enough to get matched. Since it’s hard to extract
sufficient feature points for robust pose estimation in low-
textured environments, we further supplement them with line
segments extracted and encoded using the LSD [28] and
LBD [29] accordingly.

Similar to ORB-SLAM [1], once the 2D point features
pn =(un,vn) and line segments lm =(pm,s, pm,e) are extracted
in the new keyframe Fi, new features are triangulated to 3D
points Pn and lines Lm with correspondences located on other
connected keyframes.

Due to the factorization of rotation and translation es-
timation, it is possible to estimate the pose even in cases
with pure rotation and no translation or with small parallax,
which would not be possible with pure monocular feature
based approaches. The rotation can be estimated from the
Manhattan World Frame, this means fewer landmarks are
needed to obtain the remaining 3 degrees of freedom for the
translation.

B. Surface Normal Prediction

We use learned knowledge to reason about the 3D envi-
ronment, instead of measuring dense depth values directly.
Therefore, a 2D convolutional architecture(CNN) is trained
to segment planar regions and predict pixel-wise surface
normals. The proposed CNN is composed of a ResNet101-
FPN [14] encoder for feature extraction and a two-branch
decoder for planar area segmentation and normal estimation.
As the planar and non-planar regions are unbalanced in
indoor scenarios, we use the balanced cross entropy loss for
training

Lp =−1(1−w)∑
i∈P

log pi−w ∑
i∈Pneg

log(1− pi) , (1)

where P and Pneg represent planar and non-planar regions,
respectively. pi represents the probability of the ith pixel
being located in a planar region. We use w to balance the

contributions of planar and non-planar pixels. Then the loss
function for the normal estimation is filtered by the planar
mask.

Ln =−
1
n ∑

i∈P
ni ·n∗i , (2)

where ni and n∗i are the predicted normal and ground truth
normal for the ith pixel.

IV. INITIALIZATION

In this section, we describe the strategy of computing the
relative poses between two frames and reconstructing an
initial map. In order to be robust to different motions, we
decouple pose estimation into rotation and translation which
is explained further in the following paragraphs.

a) Rotation: First, we assume that there is a Manhattan
coordinate system M shown in Fig. 3, we compute the
relative rotation RC1M from Manhattan coordinate frame M
to the first frame C1 by clustering the normal map vs

i of
C1 on the unit Gaussian sphere [23][12] centered on the M.
Following [23][12], we project the normals onto the tangent
plane of each Manhattan world axis rn, where n ∈ [1,2,3],
for the current estimation. Instead of testing several random
matrices, we found that setting RC0M to identity and running
multiple mean-shift iterations is enough to obtain a good
estimate. In order to remove noise from normal maps, we
only consider the vectors vs′

in which are close to the axis rn.
Then, the refined surface normal vectors vs′

in are projected
to two-dimensional vectors m

′
in in the nth tangential plane.

We compute the cluster mean s
′
n for the nth tangential plane

under a Gaussian kernel by

s
′
n =

∑in e−c‖m′in‖
2
m
′
in

∑in e−c‖m′in‖2
(3)

where c is a hyper parameter that defines the width of the
kernel, which is set to 2 in our experiments. Then, we
transform the cluster centers back onto the Gaussian sphere



as sn, which are used to update the angle between the camera
and the MW axis r̂n combining with the current rotation Qn,

r̂n = Qnsn (4)

here Qn = [rmod(n,3),rmod(n+1,3),rmod(n+2,3)] and mod() is
a modulus operation. The tangent plane and the cluster
centers are iteratively computed until the rotation estimate
is converged. Then we obtain RC1M = [r̂1, r̂2, r̂3]

T .
b) Translation: As for the translation estimation, 2D

correspondences of points [p1
i , p2

i ] between two frames and
their relative rotation RC1C2 are used

X2
i =

 x2
i

y2
i

z2
i

=

 r1
r2
r3

X1
i +

 t1
t2
t3

 (5)

where X j
i represents a 3D point in the jth camera. By

eliminating the scale z2
i , we obtain x̃2

i
ỹ2

i
1

=

 (r1 ·X1
i + t1)/(r3 ·X1

i + t3)
(r2 ·X1

i + t2)/(r3 ·X1
i + t3)

1

 (6)

where [x̃ j
i x̃ j

i 1]T represents the ith normalized 3D point in
the jth camera frame. Since X1

i is also a 3D point, we need
to eliminate z1

i and build −ỹ1
i t3 + t2

x̃1
i t3− t1

−x̃1
i t2 + ỹ1

i t1

T  r1
r2
r3

 x̃1
i

ỹ1
i

1

= 0 (7)

where [x̃ j
i x̃ j

i 1]T = KT (u j
i v j

i 1) and K is the intrinsic
matrix of the camera [12]. (u j

i v j
i ) is the ith pixel in the jth

frame. Based on eq. 6 and eq.7, we construct a translation
relationship between those 2D correspondences. Then, we
solve the system in eq. 7 using SVD to obtain the translation.

V. TRACKING

Instead of estimating rotation and translation between two
frames, we estimate the rotation between each frame and the
underlying Manhattan World. The residual rotation errors are
independent of the sequence length and cannot be propagated
between frames. Point and line correspondences are used to
estimate translation (3 DoFs) by a combination of frame-to-
frame and frame-to-map methods.

A. Manhattan Rotation Estimation

This section describes the rotation estimation between
camera and Manhattan system.

Given the surface normals and mask of planar regions
from the network, we follow the mean-shift clustering ap-
proach, as desribed in IV-.0.a, to find the dominant axes
on the euclidean sphere and estimate the rotation RCKM .
Since normal maps might contain errors due to the networks
inference process, the clustering approach is used to remove
outliers first. Furthermore, the initial rotation will be refined
in following sections.

Fig. 3. Rotation estimation between multiple frames via the Manhattan
world.

B. Translation Estimation

After obtaining the rotation matrix, we use the points and
line segments to estimate the 3-DoF translational motion,
which requires less features than the full 6-DoF estimation.
We re-project the 3D points from the last frame to the current
one and define the error function, based on the re-projection
error, as follows,

ep
k, j = pk−π(Rk, jPj + tk, j) (8)

here π() is the projection function. Since the rotation matrix
Rk, j has already been estimated in the last step, we fix the
rotation and only optimize the translation using the right half
of the Jacobian matrix for eq. 8,

∂ep
k, j

∂ξ
=

[
xy fx
z2 − z2+x2

z2 fx
y fx
z − fx

z 0 x fx
z2

z2+y2

z2 fy − xy fy
z2 − x fy

z 0 − fy
z

y fy
z2

]
(9)

For the lines we obtain the normalized line function from
the 2D endpoints pstart and pend as follows,

l =
pstart × pend

‖pstart‖‖pend‖
= (a,b,c) (10)

We formulate the error function based on the point-to-line
distance between l and the projected 3D endpoints Pstart and
Pend from the matched 3D line in the keyframe. For each
endpoint Px, the error function can be noted as,

el
k, j = lπ(Rk, jPx + tk, j) (11)

The Jacobian matrix for the line error eq. 11 is given by

∂el
k, j

∂ξ
=

 − fylyz2+ fxlxxy+ fylyy2

z2 ,
fxlxz2+ fxlxx2+ fylyxy

z2 ,

− fxlxy− fylyx
z , fxlx

z ,
fyly
z , − fxlxx+ fylyy

z2

 (12)

The combined least squares cost for points and lines can be
written as

t∗= argmin
M

∑
j∈(k−2,k−1)

(ep
k, j

T ep
k, j + el

k,Px

T
el

k,Px
) (13)



The system is solved using the Levenberg-Marquardt algo-
rithm.

C. Fallback and Pose Refinement

The pose estimate is based on the MW assumption. In
cases of Non-Manhattan Worlds or where the Manhattan
Frame is not visible in the current frame the estimated
pose will be incorrect. To check whether the pose estimate
obtained from the previous steps is correct we project all
features from the last n keyframes onto the current frame
and compute the re-projection error. By applying a threshold
to filter the features we require a minimum number of inliers
to accept the pose.

When not enough inliers are found we fall back to a frame-
to-frame tracking method until we estimate a pose that agrees
again with the Manhattan World. As a fallback we first track
the new frame based on the last frame using an efficient re-
projection search scheme [30] for points and lines, using the
same least squares method as for the translation, this time
using the full Jacobian matrix. In the case we do not get a
good solution, measured based on the number of inliers, we
try to estimate the pose based on the last keyframe using
descriptor matching for the points [30] and re-projection
based search for the lines. To reduce the drift, in the final
step we optimize the pose of the new frame based on a local
map constructed from the last n keyframes [30]. Here we do
not use the MW assumption anymore, as we found that the
initial rotation estimation is enough to reduce the drift and
errors in the predicted normal maps can lead to inconsistent
pose estimates.

In contrast to other work, based on Manhattan frames for
rotation estimation this heuristic allows us to fall back to
a purely feature based pose estimation in case the estimate
from the MW pose estimation is wrong or not available.

VI. EXPERIMENTS

Implementation details We train the network implemented
for normal estimation based on the ScanNet [31] dataset with
a batch size of 32 for 8 epochs. The backbone is pretraind
on ImageNet [32] for feature extraction and PlaneRecon-
struction [14] for understanding plane regions. We use the
Adam optimizer with a learning rate of 10−4 and a weight
decay of 10−5. Our model is trained in an end-to-end manner
and can predict normal maps in real-time. As a baseline we
use the original GeoNet [15] model trained by the authors
for 400k iterations on NYU-DepthV2 [33]. Models used in
the experiments are not fine-tuned on other datasets. All
experiments were carried out with an Intel Core i7-8700 CPU
(with @3.20GHz) and a NVIDIA 2080 Ti GPU. We run each
sequence 5 times and show median results for the accuracy
of the estimated trajectory. We evaluate our proposed SLAM
system on public datasets and compare its performances with
other state-of-the-art methods. The evaluation metrics used
in the experiments are the absolute trajectory error (ATE)
and the relative pose error (RPE) [17], which measure the
absolute and relative pose differences between the estimated
and the ground truth motion.

Evaluation and datasets In order to evaluate our method, on
the one hand, we compare against several monocular SLAM
frameworks, as CNN-SLAM [19] that connects SLAM with
predicted depth maps based on keyframes, LSD-SLAM [2]
that is popular direct method and ORB-SLAM [1]. We align
the trajectories for ORB-SLAM, LSD and the proposed
method to the ground truth trajectories using a similarity
transformation [1] due to the unknown real scale. On the
other hand, we run our SLAM architecture with different
normal maps to evaluate the importance of accurate normals,
by switching our normals with the ones from the state-of-
the-art, but not real-time capable network, GeoNet [15] and
normal maps computed from the depth maps provided by the
dataset using [34].

• ICL-NUIM dataset [16] is a synthetic indoor datasets
that provide RGB images, depth maps and ground-truth
camera poses. There are two scenes, named ”living
room” and ”office” which are noted as ”lr” and ”of”
in our experiments.

• TUM RGB-D dataset [17] was collected using a real
RGB-D sensor in real scenes as well as specially
designed scenes to challenge current SLAM algorithms,
featuring challenging scenes with good structure, but
without texture.

• HRBB4 dataset [35] which has 12,000 frames of 640×
320 pixels recorded by a monocular camera in a corri-
dor.

A. Normal prediction

Fig.5 presents qualitative results on unseen images of
different normal estimation methods. In our method, we
mask out the lampshade (first row) and small boxes (second
row), as these regions are classified as non-planar. The first
two rows, show common examples for indoor environments.
Both of them show good results, GeoNet shows smaller in-
accuracies. For the last two rows, which are very uncommon
scenes, the planar region detection and normal estimation of
our model are still generating reasonable results, while the
quality of the normal predictions from GeoNet decreased
severely.

The agglomerative hierarchical clustering (AHC) algo-
rithm [34] is an efficient method to detect planes in a depth
map. However it difficult to detect planes (like in the third an
forth row) where the quality of the depth maps decrease due
to a highly slanted surface. In the Table I, the performance
of the network is evaluated on the ScanNet [31] dataset
generated by [36] against the ground truth.

TABLE I
PERFORMANCE OF THE SURFACE NORMAL PREDICTION ON THE

SCANNET [31] TEST SET.

Error Accuracy
mean median rmse <11.25◦ <22.5◦ <30◦

15.2◦ 7.8◦ 24.4◦ 0.672 0.797 0.841



Fig. 4. Trajectory analysis, comparing the proposed method, ORB-SLAM and the ground-truth on the ”of-k3” sequence in the ICL NUIM dataset.

TABLE II
COMPARISON OF TRANSLATION RMSE (M) FOR ICL-NUIM [16] AND TUM RGB-D [17] SEQUENCES USING MONOCULAR CAMERA. WE USE BOLD

NUMBERS TO MARK THE BEST RESULT PER SEQUENCE. −w MEANS THAT THE PROPOSED FRAMEWORK USES THE CORRESPONDING SURFACE

NORMALS. × INDICATES THAT THE ALGORITHM FAILS DUE TO LOST TRACKING.

Methods lr-kt1 lr-kt2 lr-kt3 of-kt1 of-kt2 of-kt3 s-t-near s-t-far s-not-near s-not-far

LSD-SLAM [2] 0.059 0.323 - 0.157 0.213 - - 0.214 - -
CNN-SLAM [19] 0.540 0.211 - 0.790 0.172 - - 0.037 - -
ORB-SLAM [1] 0.024 0.061 0.035 × 0.031 0.326 0.016 0.015 × ×

LPVO [12] 0.04 0.03 0.10 0.05 0.04 0.03 0.11 0.17 0.08 0.07

-w Ours 0.016 0.045 0.046 × 0.031 0.065 0.014 0.014 0.065 0.281
-w GeoNet [15] × 0.047 0.026 × 0.048 0.043 0.107 0.014 0.068 ×
-w AHC [34] 0.016 0.028 0.020 0.763 0.021 0.020 0.015 0.013 0.015 0.220

(a) Input (b) Ours (c) GeoNet [15] (d) AHC [34]

Fig. 5. Results of normal prediction model on ICL-NUIM (top) and TUM-
RGBD (bottom) scenes for different approaches.

B. Pose estimation

In order to evaluate our method in different environments,
we select structured image sequences from the ICL-NUIM
dataset [16] and the TUM RGB-D dataset [17]. Table II
shows the RMSE for all methods on several sequences,
’lr’ and ’of’ stand for the living room and office room

sequences in the ICL-NUIM dataset. ’s-t-near’ and ’s-not-
near’ are the structure-texture-near and structure-notexture-
near sequences in the TUM RGB-D dataset, respectively.
’s-t-near’ and ’s-t-far’ are showing the same environment
consisting of multiple textured planes, ’s-not-near’ and ’s-
not-far’ consist of a similar structure, but without texture.

From the six row to the eight row, different normal maps
are given to the same backbone. It is obvious that using
AHC-based normal maps (obtained from ground truth depth
map) obtain the best results compared to other methods. It
also shows the potential of our SLAM architecture, given
precise normal maps. Performances from −w Ours (combi-
nation of our normal prediction network and the backbone)
is more robust than −w GeoNet (combination of GeoNet
and the backbone), especially in the ’s-not-far’ sequence. For
those non-textured images, it is difficult for GeoNet to predict
accurate normals. In the backbone, conic areas around each
axis are used during the sphere mean-shift method to filter
the normal maps, this allows the handling of normal outliers
up to a certain point. In cases were the number of outliers
is too high, it is difficult to obtain a good rotation from
the back-end of the architecture. Different to the monocular
methods, LPVO [12] works directly with RGB-D images,
which prevents scale drift and allows tracking directly on the



Fig. 6. Relative translational error comparison between ORB-SLAM and our method on different sequences (left) and a comparison of the average runtime
length on each sequence before tracking is lost (right).

depthmap. In comparison our method achieves comparable
performance without the use of a depth sensor.

Our method obtains good results and shows robust per-
formance in all five sequences. In the first two sequences,
the difference between the point based ORB-SLAM and our
method, that connects structure and geometric information,
is not significant. However ORB-SLAM is not able to find
enough point matches over a sequence of frames and looses
tracking in some of the sequences, these are marked with a
cross (×). Our method, which additionally uses lines for the
translation estimation achieves even better results.

When we compare -w Ours, -w GeoNet with ORB-
SLAM in textured sequences, they obtain similar results
because those sequences have a sufficient number of fea-
tures distributed evenly on each frame. However for indoor
environments, like Fig.4, it is difficult to obtain enough
point features because of large non-textured planar regions.
In the ’of-kt3’ sequence, there is little change in the first
57 frames, so ORB-SLAM cannot initialize successfully,
because it needs enough points for homography/fundamental
model selection. After initialization, it is also challenging
for ORB-SLAM to track via the point-based motion model.
For our case, the initial rotation matrix is estimated by the
mean-shift method instead of estimating the essential or
homography matrices. This means we can deal with pure
rotational motion. Furthermore, points and line segments are
used for 3 DoFs translation only, which is more robust even
in large non-textured scene.

In order to present the robustness of our method, we com-
pute the RPE for those sequences, which can be processed
robustly by ORB-SLAM and our method. For ’s-t-far’ and
’s-t-near’ that are textured sequences, ORB-SLAM and the
proposed method have similar performences. The relative
translation errors for the sequence ’of-kt3’ in Fig. 6 (left)
is significantly larger for ORB-SLAM, which corresponds
to the result presented in Fig. 4. As shown in Fig. 7, the
proposed method, Structure-SLAM, is more stable in rotation
estimation compared with ORB-SLAM.

We also compare the number of frames tracked by dif-
ferent methods. Compared with ORB-SLAM, our method

Fig. 7. rotation error comparison between ORB-SLAM and our method
on sequence lr-k2.

Fig. 8. The estimated trajectories of the camera on the HRBB4 [35] dataset.
Left: ORB-SLAM, Right: Structure-SLAM.

retrieves the camera pose more reliable. Especially in ’lr-
kt2’, ’of-kt3’ and ’s-t-far’, our method initializes fast and
tracks all frames in the sequences, as can be seen in sequence
’of-kt3’ in Fig. 6 on the right. Similar results can be found
for HRBB4 in Fig. 8. Compared with ORB-SLAM which
only initializes after the 628th frame, our method is able to
initialization much earlier around frame 110. Furthermore,
the proposed method shows a more stable behaviour in the
upper right corner of the corridor where the environment
changes drastically.

VII. CONCLUSIONS

We have proposed a SLAM system for monocular cam-
eras based on points, lines and surface normals. Using the
Manhattan World assumption for rotation estimation and
point and line features for windowed translation estimation



we achieve state-of-the-art performance. We have shown
that normals, learned from a single RGB image, can be
used to estimate the rotation between frames leveraging the
MW assumption. Compared to other state-of-the-art methods
based on global rotation estimation, in our method there
exists a fallback level using points and lines to estimate the
full pose, in case no Manhattan frame can be found. This
enables the tracking over short sequences to later re-localize
within the Manhattan world. In the future, global bundle
adjustment could be used to correct the frames during these
sequences without global frames. Furthermore, we would
like to leverage the learned structure information for the
translation estimation as well.
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