
Efficient Visual Hull Computation for Real-Time 3D Reconstruction using CUDA

Alexander Ladikos Selim Benhimane Nassir Navab

Department of Computer Science, Technische Universität München
Boltzmannstr. 3 , 85748 Garching, Germany

ladikos@in.tum.de, benhiman@in.tum.de, navab@in.tum.de

Abstract

In this paper we present two efficient GPU-based visual
hull computation algorithms. We compare them in terms
of performance using image sets of varying size and differ-
ent voxel resolutions. In addition, we present a real-time
3D reconstruction system which uses the proposed GPU-
based reconstruction method to achieve real-time perfor-
mance (30 fps) using 16 cameras and 4 PCs.

1. Introduction

The visual hull [16], defined as the shape which is max-
imally consistent with the silhouette projections of an ob-
ject, lies at the heart of almost all 3D reconstruction systems
aimed at real-time performance. Other 3D reconstruction
methods (see [25] for a recent overview) which are targeted
at producing high quality results are too computationally
expensive, since they require costly optimizations over the
shape of the object. The visual hull on the other hand is
straightforward to compute from a set of calibrated silhou-
ette images. The downside is that it does not recover con-
cavities which are not seen in the silhouettes. However, this
is sufficient for many application areas (for instance body
pose estimation [7]) since the visual hull still captures the
essence of most shapes. In addition, once the reconstruc-
tion is textured the difference to the true reconstruction is
even less apparent.

The visual hull is computed by building the general-
ized cones created by the viewing rays emanating from the
camera center and passing through the silhouette contours.
Having computed the generalized cones for every silhou-
ette image, they are intersected in 3D producing the visual
hull. There are two different approaches for performing this
computation, namely the polyhedral and the volumetric ap-
proach.

In the polyhedral approach geometric properties are
used to compute a mesh representation of the visual hull

[21, 9, 17]. In [9], for instance, the silhouette contours
are first discretized into line segments. Then the silhou-
ette vertices are backprojected to 3D viewing lines which
are restricted to so called viewing edges lying on the visual
hull by clipping the lines based on their projections in the
other silhouette images. The initial viewing edges are then
connected by considering the intersection of the backpro-
jections of the silhouette line segments, so that a complete
mesh is obtained. The accuracy of the reconstructed visual
hull depends on the discretization of the silhouette contours.
The computational cost increases with finer silhouette dis-
cretization and an increasing number of images. One short-
coming of this approach is that it is susceptible to errors
in the silhouette images and calibration errors, since then
lines might not intersect exactly. To achieve real-time per-
formance a method for distributing the computations over
multiple processors has been proposed [10].

In the volumetric approach the visual hull is computed
using a voxel representation [24, 29]. The reconstruction
volume is discretized into voxels and each voxel is projected
into the silhouette images. If the projection of a voxel lies
inside a silhouette in all images it is marked as occupied,
otherwise it is marked as empty. This method is very ro-
bust, since it does not rely on the silhouette contours but
on the occupied/non-occupied image regions. Depending
on the application it might also be more useful to obtain a
voxel representation of the visual hull, for instance to com-
pute the volume of the intersection between an object and a
region of space. In addition, the accuracy of the reconstruc-
tion can be easily limited to the desired accuracy, which is
much harder in the case of the geometric approach, since the
discretization is done in image space and not in the volume.
To speed this approach up octree representations of space
are used. In addition, the computations can be distributed
over multiple processors [27].

In [6] a method is proposed which combines both the
polyhedral and the volumetric approach. There are also
other approaches [22, 18, 19, 20] which do not compute the
visual hull explicitly, but only render images of the visual

1



hull from a given viewpoint.

In the last decade many systems for 3D reconstruction
mostly using the visual hull have been proposed. One early
system which was using stereo instead of the visual hull was
the CMU dome [23]. However, the computations were per-
formed offline. Cheung et al. [7] present a voxel-based sys-
tem which achieves a frame rate of 16 fps using 5 cameras
at a voxel resolution of 643. Borovikov et al. [4, 5] propose
a system using a voxel-based reconstruction method. They
report frame rates of about 10 fps using 14 cameras at a vol-
ume resolution of 643. Arita et al. [3] present a system with
a resolution of 1003 and 14 fps. Wu et al. [30, 31] propose
a system which is using a plane intersection test for the re-
construction. They report values of 12 fps with 9 cameras.

More recently there have been several systems which are
capable of running at frame rates of 30 fps. Franco et al.
[10] parallelize the polyhedral approach over a cluster of 8
dual Xeon 2.66 GHz PCs to achieve frame rates of 30 fps
using four cameras. Allard et al. [1, 2] also use the poly-
hedral reconstruction algorithm in a system with 11 dual-
Xeon 2.6 GHz PCs. They report frame rates of 30 fps using
6 cameras. Soares et al. [27] compute the visual hull of an 8
image data set at octree level 8 in 16.82 ms using a PC with
8 AMD Opteron dual core 2.2 GHz CPUs. Hasenfratz et al.
[13, 14] also report frame rates of 30 fps with four cameras
using a voxel-based method (resolution 643) implemented
on the GPU of a SGI Onyx IR-3000 with 8 R12000 proces-
sors.

One thing all these systems have in common is that they
are using very powerful and expensive hardware to achieve
real-time frame rates. We on the other hand would like
to achieve equivalent results using more readily available
hardware. Specifically we are using only four PCs with
2.6 GHz Quad-Core CPUs and Geforce 8800 GTX graph-
ics adapters to obtain 30 fps using 16 cameras. We achieve
this by performing the visual hull computation on the GPU.
Previous GPU-based methods make use of hardware tex-
turing. Hasenfratz et al. [13, 14] use the GPU to map the
silhouette images as textures onto slices through the recon-
struction volume and intersect them using image blending.
Hornung et al. [15] suggest to project every voxel into the
images using a fragment shader and texture mip-mapping.
We propose a method making use of CUDA [8] to perform
the reconstruction by using kernels which compute the pro-
jection of every voxel and accumulate the occupancy infor-
mation. We present two implementations of this approach
and compare them in terms of performance. We also show
results obtained with our real-time 3D reconstruction sys-
tem which uses our GPU-based visual hull computation al-
gorithm.

2. GPU-based Visual Hull Computation

The voxel-based visual hull computation is a perfect ex-
ample of a highly parallel algorithm. Therefore, it is well
suited to be implemented on the GPU. However, there are
still different design choices for performing the computa-
tions. We evaluated two different approaches. In the first
approach we precompute the bounding boxes of the voxel
projections in each image and store them in a lookup ta-
ble which is used during the visual hull computation. In
the second approach we downsample the images so that a
voxel approximately projects into one pixel. This allows us
to only project the voxel center point to obtain the corre-
sponding pixel in the image.

The first approach is most useful when the camera con-
figuration is static which is the case for a 3D reconstruction
system. If on the other hand one just wants to compute the
visual hull once for a given camera configuration, the over-
head in terms of memory and time that the precomputation
requires, make this approach less attractive. The second ap-
proach does not perform any precomputations and is there-
fore suited for both cases.

We implemented both an octree version and a non-octree
version of each approach. Using an octree representation
of space speeds up the computations, but limits the size of
the reconstruction volume to cubes with power of 2 side
lengths. The non-octree version also allows to compute the
visual hull on non-cubic volumes but requires a longer com-
putation time.

2.1. Precomputation-based Algorithm

In this algorithm, called GPU1, we first compute the
bounding boxes of the voxel projections in each image and
store them in a lookup table. This is done in an offline step.
The memory required by the lookup table is proportional to
the number of images and the voxel resolution used. For the
octree version we compute a lookup table for every octree
level. The lookup table is copied onto the GPU during an
initialization step.

For every new set of silhouette images, we first com-
pute the corresponding integral images. This allows us to
efficiently evaluate the number of occupied pixels given a
bounding box in the image by using only four memory ac-
cesses instead of looking at every pixel in the bounding box.
The time required to compute the integral images is signifi-
cantly shorter than the overhead of looking at every pixel in
the bounding box. All the before mentioned steps are per-
formed on the CPU. To speed them up, the computations
are also parallelized.

The integral images are then copied onto the GPU using
page-locked memory to increase the transfer rates. In the
non-octree version, a kernel is executed for each voxel. The
kernel accesses the lookup table to find the corner points of



the voxel bounding box. The corner coordinates are used
as an index into the integral images to compute the number
of occupied pixels. The sum of occupied pixels and the
sum of total pixels is accumulated over all images and their
quotient is assigned as the occupancy to the voxel. This
gives smoother results than only assigning 1 and 0 for the
voxel occupancy. If a bounding box is found to be empty
in one image the remaining images are not checked and the
voxel is assigned a value of 0.

In the octree version of the algorithm (GPU1 OT) a simi-
lar procedure is executed for each octree level. We maintain
a list of active octree cells (we talk of cells instead of voxels
since an octree cell consists of multiple voxels except at the
highest octree level) containing the ids of the cells which
have to be checked at the current octree level. We start at
level 4 because the overhead of using the octree approach is
higher than computing the result directly when starting at a
lower level. We therefore initialize the active cell list with
the id of every cell at level 4 (4096 cells). We only start as
many kernels as there are active octree cells and use the id
of the kernel as an index into the active octree cell list to get
the cell id. The computation of the occupancy is performed
the same way as in the non-octree version, except that a dif-
ferent lookup table is used for every level. Depending on
the result of the occupancy test, we set an entry in a cell list.
If the cell is either totally occupied or totally empty, we set
the entry to 0, indicating that we are not considering the cell
at the next level and then fill in the corresponding voxels in
the volume. In case of partial occupancy we mark the eight
sub-cells corresponding to this cell on the next octree level
in the cell list. After the kernel has finished executing we
use the CUDPP library [26] and a small additional kernel
to compact the cell list to only contain the ids of the ac-
tive cells, which are then used as the input to the kernel on
the next level. The resulting voxel volume is copied off the
GPU using page-locked memory.

2.2. Direct Algorithm

The direct algorithm (GPU2) does not perform any pre-
computations. Instead we downsample the silhouette im-
ages so that every voxel approximately projects into a sin-
gle pixel. This allows us to only compute the projection
of the voxel center point and to perform a single memory
access in the silhouette images. In the non-octree version
we downsample the image to match the voxel resolution us-
ing a Gaussian smoothing followed by a downscaling. The
kernel is then executed for every voxel. It derives the 3D
position of its corresponding voxel from its id and projects
the voxel center point into the image. The occupancy value
of the voxel is computed as the minimum over the values
at all voxel projections. If a value is 0 in one image the
remaining images are not checked anymore and the voxel
occupancy is set to 0.

Figure 1. Lab setup for our real-time 3D reconstruction system.
The cameras are marked with red circles (not all cameras are seen
in this image).

In the octree version (GPU2 OT) the silhouette images
are downsampled in a Gaussian pyramid, so that one image
is obtained for every octree level. The kernel is then exe-
cuted for every level using only the active octree cells which
are determined in the same way as in the precomputation-
based algorithm. The resulting voxel volume is copied off
the GPU using page-locked memory.

3. Real-time 3D Reconstruction System

3.1. System Architecture

3.1.1 Hardware

Our system consists of 4 PCs used for the reconstruction,
1 PC used for visualization and 16 cameras mounted on
the ceiling (see figure 1). The cameras have an IEEE
1394b interface and provide color images at a resolution of
1024x768 and a frame rate of 30 Hz. To cover a big work-
ing volume we use wide angle lenses with a focal length
of 5 mm. The cameras are externally triggered to achieve
synchronous image acquisition. Groups of four cameras
are connected to one PC using two IEEE 1394b adapter
cards. There are four PCs (slaves) dedicated to capturing
the images and computing the visual hull and one PC (mas-
ter) dedicated to visualizing the result and controlling the
acquisition parameters. The four PCs used for image ac-
quisition and reconstruction are equipped with an Intel 2.6
GHz Quad-Core CPU (Q6700), 2 GB of main memory and
a NVIDIA 8800 GTX graphics board with 768 MB of mem-
ory. The master PC uses an Intel 3.0 GHz Dual-Core CPU
(E6850), 2 GB of main memory and a NVIDIA 8800 GTS
graphics board with 640 MB of memory. The PCs are con-
nected through a Gigabit Ethernet network.



3.1.2 Software

To achieve real-time performance the reconstruction pro-
cess (running on the slave PCs) is implemented as a four
stage pipeline consisting of image acquisition, silhouette
extraction, visual hull computation and volume encoding
and transmission. Each pipeline step is realized as a thread
and will be described in detail in the following sections. On
the master PC the processing is also distributed into sev-
eral steps. There is a separate thread for handling network
communication, compositing the partial reconstructions and
visualizing the result. In addition, an application specific
stage can be introduced to perform additional postprocess-
ing on the volume. Figure 2 gives an overview of the pro-
cessing steps in the system.

Figure 2. Each workstation acquires images from its locally at-
tached cameras and computes the visual hull using the GPU. The
resulting voxel volumes are sent to the master PC which combines
them and visualizes the result.

3.2. Calibration

In order to perform the reconstruction the cameras have
to be calibrated. The calibration is performed using the
multi-camera calibration method proposed by Svoboda et
al. [28] because it is easy to use and yields good calibration
results. The method relies on point correspondences be-
tween the cameras created by means of a point light source
such as an LED. First, the lighting in the room is dimmed,
so that it becomes easier to extract the point created by the
LED in the camera images. By moving the light source
through the reconstruction volume a large number of corre-
spondences is created which is then used in a factorization-
based algorithm to determine the camera intrinsic and ex-
trinsic parameters. This requires synchronized cameras to
make certain that the point seen in each image is created by
the same physical point. The method is robust to occlusions
of the points in some cameras. The computed camera coor-
dinate system is registered to the room coordinate system by
using a calibration target at a known position in the room.

3.3. Reconstruction

3.3.1 Silhouette Extraction

The silhouettes are computed using a robust background
subtraction algorithm [11] working on color images. Before
the system is used background images are acquired. Dur-
ing runtime the images are first corrected for illumination
changes using a color mapping table which is built using
the color distributions of corresponding non-foreground re-
gions in the current image and the background image. After
applying this mapping to the background image, a thresh-
olding is applied to extract the foreground pixels in the cur-
rent image. Small holes in the segmentation are filled using
morphological operations.

3.3.2 Handling Static Occluders

One problem which has to be addressed during silhou-
ette extraction is the presence of static occluders in the
scene. Static occluders are objects inside the working vol-
ume which cannot be removed, such as tables mounted to
the floor. Hence static occluders are also present in the
background images. The assumption during background
subtraction, however, is that all foreground objects are lo-
cated in front of the background. This is not the case in
the presence of an occluder because a foreground object
could move behind the occluder and effectively disappear
from the silhouette image. This will result in the partial
or complete removal of the object from the reconstruction.
To overcome this problem, the areas in the silhouette im-
ages corresponding to the static occluder have to be disre-
garded during the visual hull computation. We achieve this
goal by building a 3D representation of the object and pro-
jecting it into the cameras or by manually segmenting the
object in the reference images. This gives us a mask for
every camera in which the static occluder is marked as fore-
ground. This mask is then added (logical OR) to the silhou-
ette images computed during runtime. A similar approach
was suggested in [12].

This method is also useful when it is not convenient to
remove a static occluder from the working volume every
time background images are taken. For instance it could be
used to reconstruct a table which has been removed from
the volume when the background images were taken. Now,
every time something in the background changes it is possi-
ble to just take new background images including the table
and use the static occluder mask to integrate the table into
the scene without having to move it out of the scene first.

3.3.3 Visual Hull Computation

Using the silhouette images the object shape is re-
constructed using the GPU-based visual hull algorithm
(GPU2 OT) described in section 2. In order to increase the



working volume we also reconstruct regions which are only
seen by at least four cameras instead of only using the over-
lapping region of all 16 cameras. This allows us to avoid
the use of extreme wide angle lenses for covering a big area,
which also results in a higher spatial resolution of the cam-
era images. To reconstruct the non-overlapping regions, one
has to consider the handling of voxels which project outside
of the image in other cameras. The traditional approach is
to just mark these voxel as empty. Instead we do not con-
sider the contribution of the images in which the voxels are
not visible, thereby also reconstructing regions only seen by
a few cameras. To avoid the introduction of artifacts due to
a too low number of cameras, we only use regions which
are seen by at least four cameras. This is implicitly accom-
plished in our system by performing an unconstrained re-
construction on the slave PCs which also reconstructs the
regions seen by only one camera. On the master PC the lo-
cal reconstructions are combined using a logical AND op-
erator, which will remove any regions which have not been
observed by at least one camera at each of the four slave
PCs.

3.4. Visualization

For visualization the voxel representation is converted
to a mesh representation using a CUDA-based marching
cubes implementation. A CPU-based implementation was
not able to generate meshes at the desired frame rate.

4. Results
4.1. Evaluation of the Visual Hull Algorithms

To evaluate the performance of the visual hull computa-
tion algorithms, we tested them on three data sets at differ-
ent voxel resolutions.

The first data set is used to assess the performance for
a scene typically encountered in a real-time 3D reconstruc-
tion system. This data set was captured with our system
and shows a person walking through the room. This is a
very typical scenario for a real-time 3D reconstruction sys-
tem. We first computed the visual hull using all 16 im-
ages (resolution 1024x768). The runtimes are shown in
figure 3. It can be seen that even at a resolution of 1283

we still achieve real-time performance using the direct al-
gorithm (GPU2 OT) which consistently provides the best
reconstruction times at all resolutions. Also note that the
precomputation-based algorithms (GPU1, GPU1 OT) fail
to run at a resolution of 2563 because the lookup table size
exceeds the available storage on the GPU (768MB).

To test the scalability of the algorithms, we ran them on
the same data set using different numbers of images. Figure
4 shows the resulting runtimes, plotted over the number of
input images. The first plot shows the results of the non-
octree algorithms. It can be seen that the precomputation-

Method 643 1283 2563

GPU1 46.40 ms 64.44 ms x
GPU2 18.60 ms 113.88 ms 870.06 ms

GPU1 OT 45.46 ms 51.94 ms x
GPU2 OT 15.24 ms 25.91 ms 73.53 ms

Figure 3. Runtimes on the person dataset consisting of 16 images
(1024x768). The precomputation-based algorithms cannot run at
level 2563 due to the size of the lookup table.

based algorithm (GPU1) has a complexity linear in the num-
ber of images, while the direct algorithm (GPU2) has a
complexity which first increases steeply with the number
of images and then only grows very slowly. The highly lin-
ear behavior of the precomputation-based method can be
explained by the the computation of the integral images
which is linear in the number of images. In the direct algo-
rithm this step is not necessary, so that it only grows much
slower (the down-sampling of the images is very fast). It
should also be noted that the probability of finding a totally
empty voxel projection early is increasing with a higher
number of images, so that it is not unexpected to see only
minor changes in the runtime as the number of images in-
creases. An interesting observation is that the non-octree
algorithms can provide real-time results. In particular the
GPU1 method can be used with four images and a resolu-
tion of 1283 to obtain reconstruction times of about 30 ms.
Since no octrees are used, this means that it is also possi-
ble to reconstruct non-cubic volumes with the same perfor-
mance as long as they have a similar number of voxels. In
this case it is advisable to use the precomputation-based al-
gorithm (GPU1) since it is faster at higher resolutions than
the direct algorithm when using a reasonable number of im-
ages.

The second plot shows the performance of the octree-
based algorithms. We can observe the same behavior as for
the non-octree algorithms, albeit at a higher performance
level. The direct algorithm (GPU2 OT) exhibits a slightly
higher growth rate using the octree than without using it.



Figure 4. Runtimes on the person data set over number of images
used. The image resolution used was 1024x768.

This is due to the computation of the image pyramid in
the octree version. The fact that for a low number of im-
ages the runtimes of the algorithms are sometimes decreas-
ing when using more images can be explained by the fact,
that by using more images the visual hull will be more con-
strained and hence smaller. This allows the octree methods
to stop checking some octree cells at an early octree level,
which increases the performance. After a certain number of
images this effect disappears, because adding new images
only changes the visual hull slightly. When using the octree
version of the algorithms the direct method should be used
(GPU2 OT), because it shows a consistently better perfor-
mance than the precomputation-based method.

The second and third data set are taken from the Mid-
dlebury multi-view evaluation [25]. We used them to test,
how the algorithms perform with large numbers of images
and complex scenes. The results obtained with the dinoR-
ing data set consisting of 48 images (resolution 640x480)
are shown in figure 5. The memory requirements of the
precomputation-based algorithms were so high that they
could only run at the lowest resolution. The direct octree
algorithm on the other hand computes the visual hull quite

Method 643 1283 2563

GPU1 95.26 ms x x
GPU2 52.76 ms 417.79 ms 3033.89 ms

GPU1 OT 63.95 ms x x
GPU2 OT 39.94 ms 99.89 ms 296.71 ms

Figure 5. Runtimes on the dinoRing dataset consisting of 48 im-
ages (640x480). The precomputation-based algorithms can only
run at 643 due to the size of the lookup table.

fast, at a resolution of 643 even at 25 fps. The results ob-
tained with the templeRing data set consisting of 47 images
(resolution 640x480) are shown in figure 6. This data set
was used to test how the performance changes with increas-
ing scene complexity. While the non-octree methods show
a similar performance as on the dinoRing data set, the oc-
tree methods have an increased runtime. This is expected,
because the probability of being able to terminate the com-
putations on a low octree level is lower, when the scene is
more complex. It is clear from these experiments that for
large data sets and high resolutions the direct octree method
(GPU2 OT) provides the best results.

One also has to consider the precomputation times when
using the precomputation-based algorithms. They usually
lie in the range of a few seconds for moderately sized data
sets. This means that if one wants to only compute the vi-
sual hull once with a given camera configuration, it is better
to use the direct method. In a real-time system where the
camera configuration does not change this is not an issue.

4.2. Results with the Real-Time System

To test the quality of the reconstruction achieved by our
real-time 3D reconstruction system and the static occluder
handling, we set up an application, in which we want to
avoid collisions between objects in the working volume and
a device. This application is for instance of interest when
working with fast-moving robots, where it is dangerous to
enter the working area. The device used is a medical X-ray
device. We first took the device out of the working area and
took background images. Then we reconstructed it using
our system and used the resulting model as a static occluder.
We then restarted the system taking new background images
containing the static occluder. We defined the area extend-
ing 20 cm outside of the bounding box of the device as its



Figure 7. Results of the collision avoidance application. Each column shows one of the input images in the upper row and the reconstruction
in the bottom row. The first column shows the reconstructed device. The second column shows the device in a safe state (green bounding
box), while the third and fourth column contain an object in the working volume (red bounding box).

Method 643 1283 2563

GPU1 97.42 ms x x
GPU2 51.61 ms 372.95 ms 3022.10 ms

GPU1 OT 62.83 ms x x
GPU2 OT 56.48 ms 170.91 ms 516.80 ms

Figure 6. Runtimes on the templeRing dataset consisting of 47
images (640x480). The precomputation based algorithms can only
run at 643 due to the size of the lookup table.

working volume. We then proceeded to place different ob-
jects in the vicinity of the device. When a intersection with
the device working volume was detected, the bounding box
was painted red. Figure 7 shows some reconstruction results
and some configurations with objects inside and outside the
working volume.

To speed up the segmentation the input images were
downsampled to a resolution of 512x384. The volume reso-
lution used was 1283. The runtimes of the different steps of
the system as described in section 3 are as follows: segmen-

tation 15 ms, reconstruction 7-15 ms and volume encoding
and transmission 10 ms. The volume is encoded on the CPU
using run-length encoding. The visualization runs easily at
30 fps. The total latency of the system is approximately
120 ms. We compared the performance of both octree al-
gorithms and found, that at the resolution and the volume
size used, both had a worst-case performance of about 15
ms depending on the scene complexity with the GPU2 OT
method being faster on average.

5. Conclusion

We presented two GPU-based approaches for efficient
visual hull computation. One approach uses a precomputed
lookup table, while the other directly computes the voxel
projections. Both methods were implemented in an oc-
tree and a non-octree version on the GPU using CUDA.
We compared the performance of both methods on differ-
ent data sets. Our results indicate that for small non-cubic
resolutions the precomputation-based non-octree algorithm
(GPU1) should be used, while for high resolution volumes
and large numbers of images the direct octree algorithm
(GPU2 OT) performs better. In addition, we presented a
real-time 3D reconstruction system using the proposed oc-
tree visual hull computation algorithm (GPU2 OT). The
system uses 16 cameras with only four PCs for the recon-
struction and runs at a frame rate of 30 fps at a resolution of
1283. We also showed results obtained with this real-time
3D reconstruction system in a collision avoidance applica-
tion.

Acknowledgement: This research is funded by Siemens
Medical Solutions, Forchheim, Germany. We would also
like to thank Dr. Thomas Redel and Dr. Klaus Klingenbeck-
Regn for their support.



References
[1] J. Allard, J.-S. Franco, C. Ménier, E. Boyer, and B. Raffin.

The grimage platform: A mixed reality environment for in-
teractions. In IEEE International Conference on Computer
Vision Systems, 2006.

[2] J. Allard, C. Menier, B. Raffin, E. Boyer, and F. Faure. Grim-
age: Markerless 3d interactions. In SIGGRAPH - Emerging
Technologies, 2007.

[3] D. Arita and R. Taniguchi. Rpv-ii: A stream-based real-
time parallel vision system and its application to real-time
volume reconstruction. In IEEE International Conference
on Computer Vision Systems, 2001.

[4] E. Borovikov and L. Davis. A distributed system for real-
time volume reconstruction. In IEEE International Work-
shop on Computer Architectures for Machine Perception,
2000.

[5] E. Borovikov, A. Sussman, and L. Davis. A high perfor-
mance multi-perspective vision studio. In ACM International
Conference on Supercomputing, 2003.

[6] E. Boyer and J. S. Franco. A hybrid approach for comput-
ing visual hulls of complex objects. In IEEE Conference on
Computer Vision and Pattern Recognition, 2003.

[7] G. Cheung, T. Kanade, J. Y. Bouguet, and M. Holler. A real-
time system for robust 3d voxel reconstruction of human mo-
tions. In IEEE Conference on Computer Vision and Pattern
Recognition, 2000.

[8] CUDA. http://www.nvidia.com/cuda.
[9] J. S. Franco and E. Boyer. Exact polyhedral visual hulls. In

British Machine Vision Conference, 2003.
[10] J. S. Franco, C. Menier, E. Boyer, and B. Raffin. A dis-

tributed approach to real time 3d modeling. In Proceed-
ings of the 2004 Conference on Computer Vision and Pattern
Recognition Workshops, 2004.

[11] S. Fukui, Y. Iwahori, H. Itoh, H. Kawanaka, and R. Wood-
ham. Robust background subtraction for quick illumination
changes. In PSIVT, 2006.

[12] L. Guan, S. Sinha, J.-S. Franco, and M. Pollefeys. Visual
hull construction in the presence of partial occlusion. In
3DPVT ’06: Proceedings of the Third International Sympo-
sium on 3D Data Processing, Visualization, and Transmis-
sion (3DPVT’06), 2006.

[13] J.-M. Hasenfratz, M. Lapierre, J.-D. Gascuel, and E. Boyer.
Real-time capture, reconstruction and insertion into virtual
world of human actors. In Vision, Video and Graphics, pages
49–56, 2003.

[14] J.-M. Hasenfratz, M. Lapierre, and F. Sillion. A real-time
system for full body interaction with virtual worlds. Euro-
graphics Symposium on Virtual Environments, pages 147–
156, 2004.

[15] A. Hornung and L. Kobbelt. Robust and efficient photo-
consistency estimation for volumetric 3d reconstruction. In
European Conference on Computer Vision, 2006.

[16] A. Laurentini. The visual hull concept for silhouette-based
image understanding. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 16(2):150–162, 1994.

[17] S. Lazebnik, Y. Furukawa, and J. Ponce. Projective visual
hulls. International Journal of Computer Vision, 74(2):137–
165, 2007.

[18] M. Li, M. Magnor, and H. Seidel. Hardware accelerated vi-
sual hull reconstruction and rendering. In Proc. of Graphics
Interface, 2003.

[19] M. Li, M. Magnor, and H. Seidel. Improved hardware-
accelerated visual hull rendering. In Vision, Modeling, and
Visualization, 2003.

[20] M. Li, M. Magnor, and H.-P. Seidel. A hybrid hardware-
accelerated algorithm for high quality rendering of visual
hulls. In GI ’04: Proceedings of Graphics Interface 2004,
pages 41–48, 2004.

[21] W. Matsuik, C. Buehler, and L. McMillan. Polyhedral visual
hulls for real-time rendering. In Eurographics Workshop on
Rendering, 2001.

[22] W. Matsuik, C. Buehler, R. Raskar, S. Gortler, and L. McMil-
lan. Image-based visual hulls. In SIGGRAPH, 2000.

[23] P. J. Narayanan, P. Rander, and T. Kanade. Constructing vir-
tual worlds using dense stereo. In International Conference
on Computer Vision, pages 3 – 10, 1998.

[24] M. Potmesil. Generating octree models of 3d objects from
their silhouettes in a sequence of images. Comput. Vision
Graph. Image Process., 40(1):1–29, 1987.

[25] S. Seitz, B. Curles, J. Diebel, D. Scharstein, and R. Szeliski.
A comparison and evaluation of multi-view stereo recon-
struction algorithms. In IEEE Conference on Computer Vi-
sion and Pattern Recognition, 2006.

[26] S. Sengupta, M. Harris, Y. Zhang, and J. D. Owens. Scan
primitives for gpu computing. In Graphics Hardware 2007,
pages 97–106. ACM, 2007.

[27] L. Soares, C. Ménier, B. Raffin, and J.-L. Roch. Parallel
adaptive octree carving for real-time 3d modeling. In IEEE
Virtual Reality, 2007.

[28] T. Svoboda, D. Martinec, and T. Pajdla. A convenient
multi-camera self-calibration for virtual environments. Pres-
ence: Teleoperators and Virtual Environments, 14(4):407–
422, 2005.

[29] R. Szeliski. Rapid octree construction from image se-
quences. CVGIP: Image Understanding, 58(1):23–32, 1993.

[30] X. Wu and T. Matsuyama. Real-time active 3d shape recon-
struction for 3d video. Proceedings of the 3rd International
Symposium on Image and Signal Processing and Analysis,
1:186–191 Vol.1, 2003.

[31] X. Wu, O. Takizawa, and T. Matsuyama. Parallel pipeline
volume intersection for real-time 3d shape reconstruction on
a pc cluster. In IEEE International Conference on Computer
Vision Systems, 2006.


