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Figure 1: We present a methodology to evaluate inertial sensor-aided feature descriptors, such as GAFD [17] (left) and GREFD [16] (center), on
benchmark datasets, that do not contain any inertial sensor measurements. At the example of metaio’s template tracking benchmarking set [18],
we show how synthesizing inertial sensor measurements from the ground truth poses enables the evaluation of such methods at virtually no
extra cost while providing comparable results to using real inertial sensor data, which was validated using the setup in the right photo.

ABSTRACT

This paper investigates means to benchmark methods for camera
pose localization and tracking that in addition to a camera image
make use of inertial sensor measurements. In particular the direc-
tion of the gravity has recently shown to provide useful information
to aid vision-based approaches making them outperform vision-
only methods. Obviously, it is desirable to benchmark the perfor-
mance of such methods and to compare them with state-of-the-art
approaches, but to the best of our knowledge, all publicly available
benchmarking datasets unfortunately lack gravity information.

We present different simple means to generate one’s own bench-
marks for inertial sensor-aided localization and tracking methods
and most considerably show how existing datasets, that do not have
inertial sensor data, can be exploited. We demonstrate how to eval-
uate Gravity-Aligned Feature Descriptors (GAFD) and Gravity-
Rectified Feature Descriptors (GREFD) on an existing benchmark
dataset with ground truth poses. By synthesizing gravity measure-
ments from these poses we achieve similar results to using real sen-
sor measurements at significantly less effort. Most importantly, the
proposed procedure enables the comparison with existing evalua-
tion results on the same data. The paper concludes with a require-
ments analysis and suggestions for the design of future benchmark-
ing datasets for localization and tracking methods.

1 INTRODUCTION AND MOTIVATION

A fundamental task in video-see-through Augmented Reality (AR)
is camera pose localization and tracking. To be able to render vir-
tual 3D content precisely registered with a real object visible in
a camera image, the position and orientation of the camera with
respect to this object must be known. Classical computer vision
methods aim to determine the camera pose based on information in
the camera image only. For such methods it does theoretically not
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make any difference if the camera moves or the object moves or
both move. They only consider the relative transformation between
the camera and the real object. In many applications, however, it is
known that only the camera moves while the object does not. This
in particular applies for handheld AR applications, when the real
object is the entire environment or part of it.

If this is known to be the case, inertial sensors attached to the
camera can be used to aid computer vision-based methods. Both
relative and absolute orientation measurements can be useful and
applied in different ways. While relative values, such as the rotation
rate measured with a gyroscope, can be used to improve frame-to-
frame tracking, e.g. by providing better priors [5], absolute mea-
surements, such as the direction of the gravity, also allow for im-
proving the initialization of a localization and tracking system.

Different approaches to vision-based camera localization and
tracking have been proposed in the literature that make use of in-
ertial sensors. In this paper, we will focus on two approaches
to aid feature detection, description and matching by measuring
the direction of the gravity, that are highly suitable for handheld
AR. Gravity-Aligned Feature Descriptors (GAFD) [17] can be ap-
plied for static and (close to) vertical surfaces, such as building
façades, cf. figure 1 (left). They use the direction of the gravity as
canonical feature orientation instead of the dominant gradient direc-
tion around the feature as in standard rotation-invariant approaches.
Thereby discriminative power between similar features at different
orientations is improved. For (close to) horizontal surfaces, such as
a magazine lying on a table, we recently proposed Gravity-Rectified
Feature Descriptors (GREFD) [16] that rectify the camera image
based on the measured gravity prior to the detection and descrip-
tion of features, see figure 1 (center). This results in an improved
matching precision, particularly under steep viewing angles.

After discussing related work in section 2, we will explain simple
means to create benchmark tests for the feature description methods
explained above that include gravity measurements. In section 4,
we will explain how to exploit existing benchmark schemes with
given ground truth poses to enable the evaluation of inertial sensor-
aided approaches. For future benchmarking datasets, it makes sense
to include inertial sensor data and in general as much information as
available. This is discussed in section 5 in more detail. Eventually,
the final section 6 concludes the paper.



2 RELATED WORK

Visual tracking has been an active research area since decades.
Over the years, a variety of methods were proposed, such that even-
tually common benchmarks were introduced where ground truth
concerning the camera pose or image homographies were given.
Such a benchmark can be based either on synthetically rendered im-
ages or on images captured by a real camera. For example, Baker
and Matthews [3] used synthetic image warping to compare four
template tracking algorithms by varying the warping amplitude and
noise level of the image.

While creating synthetic images has the advantage that every pa-
rameter involved can be set with very high precision, the creation of
realistic images is a challenging task as there are numerous effects
involved in the physical imaging process, like non-linear sensitivity
to light of the camera sensor, motion blur, photon-based lighting,
sensor noise, discretization, non-synchronous pixels due to rolling
shutter, blooming or limited color depths. In the following, we thus
concentrate on datasets generated from real image data, which com-
puter vision methods are ultimately designed for.

Mikolajczyk and Schmid [20] used still images to compare affine
region detectors. Their dataset consists of eight sets of six images
each and was used by many others (e.g. [9, 4, 22]). The homogra-
phies that relate the images of each set were computed from manual
correspondences which were afterwards refined automatically.

Moreels and Perona [21] generated a database for 3D objects
based on a turntable setup using a static stereo camera. One image
pair was captured for each 5◦ rotation of the turntable.

None of the aforementioned datasets was designed for handheld
AR, and consequently they do not embody the effects of a rather un-
constrained 6 DoF motion on the live image acquisition of a camera.
Zimmerman, Matas and Svoboda [23] published a dataset which
partly relied on a handheld camera. Ground truth homographies
were created by manually defined correspondences for all images.
To our knowledge, this was the first dataset that can be used to
quantitatively evaluate the precision and accuracy of detection and
tracking methods given real images from a handheld camera.

Similarly, Gauglitz et al. [13] used a setup that relies on color-
coded balls on the plane of the target to estimate ground truth ho-
mographies, which allows for automatic image alignment as long
as all four balls are visible. The setup was used to evaluate different
combinations of feature descriptors and detectors and also feature
orientation assignment strategies [14] based on image intensities.

Lieberknecht et al. [18] presented a dataset where the ground
truth camera frames are based on an mechanical measurement arm
which operates at sub-millimeter precision. Despite the necessity of
having fiducials visible in part of the sequences for the synchroniza-
tion between captured poses of the arm and captured images from
the camera mounted on its end effector, no constraint is imposed
on the motion of the camera or lighting conditions. The dataset
uses eight targets belonging to four different texturedness levels and
consists of five similar types of motions. Each target and motion is
represented by 1200 images. The dataset has originally been used
to evaluate four detection and tracking methods and was later used
by other researchers, e.g. [10, 19, 11].

Gruber et al. [15] presented a dataset which contains the ground
truth pose data from a mechanical measurement arm, an outside-
in infrared tracking system and a coordinate measurement system.
The benchmark is called “City of Sights” as it consists of 3D paper
models of popular real buildings which can be easily rebuilt to allow
others to e.g. perform qualitative evaluations or also extend the
dataset given appropriate reference tracking systems.

The very recently published dataset by Chen et al. [7] was used
to evaluate an accompanying image-based landmark identification
algorithm. The dataset was recorded on the streets of San Fran-
cisco and consists of 1.7 M images created from 150k panoramic
images. For the panoramic images, a multitude of additional mea-

surements was recorded such as spherical LIDAR data, GPS, in-
ertial measurements and distance measurements. There are further
800 geo-tagged query images captured with mobile phones. The
authors assume that there is a coarse inertial estimate in the form of
90◦ steps (e.g. landscape or portrait mode) and use a fixed feature
description alignment.

On a separate track, there are also specialized projects online
which deal with the e.g. variable exposure or panorama video [12]
or multi-sensor data originating from robotic SLAM systems [1].
However, up to now there is no dataset available which consists of
real images from a handheld camera that include high-resolution
readings from inertial sensors.

3 CREATING SIMPLE BENCHMARKS

The goal of a benchmark for localization and tracking is, given a
camera pose determined by a tracking system, to be able to tell if
it is correct or not. The most reliable method is to compare the
determined pose with a ground truth pose.

As presented in the previous section, one way to gain ground
truth poses for real camera images is to use an additional tracking
system which is considered very accurate and reliable to determine
the camera pose. For instance, a mechanical measurement arm is
mounted to the camera in [18] measuring ground truth poses. While
this procedure provides very accurate results, it is in general very
time-consuming and requires both expensive hardware and accurate
calibration.

In the following, we will take a look at the benchmark methods
used in [16] which are less costly and discuss their pros and cons.
The captured data in these evaluations comprises camera images
or sequences of camera images taken with a mobile phone and the
corresponding measurement of the gravity vector for each image.

3.1 Fully Automatic Pose Verification

It is possible to benchmark camera poses without any ground truth
data by evaluating an error function which is assumed to correspond
to the accuracy of the pose. In [16], feature-based localization of
a planar template using GAFD or GREFD is evaluated based on
the Zero-mean Normalized Cross Correlation (ZNCC) between the
reference template and the current camera image warped with the
homography which led to the computed pose. The ZNCC values
can eventually either be used as a continuous quality measure or be
thresholded to decide if a localization was correct or not.

This method is very convenient, as it does not require any manual
work nor any special hardware. It can be used to evaluate huge
amounts of images and corresponding poses very efficiently. But
unfortunately, it can be unreliable in particular cases. An obvious
example are repetitive structures in the environment. If the method
is for instance supposed to determine the camera pose with respect
to one particular window at a building façade and there are many
similar looking windows, it is impossible for this method to tell if
the correct window was chosen as reference or not.

3.2 Manual Ground Truth Generation

Another option to gain ground truth poses is by manually defin-
ing the position of certain points of the reference model in every
camera image. For planar objects the transformation an object un-
dergoes when imaged can be fully described with a homography,
which is a (3× 3) matrix. This transformation can be computed
with a closed-form solution given only four corresponding points.
Based on this homography, not only a computed pose but also point
correspondences between reference and current images can be eas-
ily validated, as we did in [16] to benchmark feature descriptors by
their matches. For arbitrarily shaped (i.e. non-planar) objects, at
least four correspondences need to be manually defined per image
for the computation of a unique ground truth pose.



While this approach provides in theory all information needed
for reliable benchmarks, it is in practice only applicable for small
datasets. Not only is the manual definition of points, e.g. by click-
ing on them, very time-consuming but also it is tedious and there-
fore error-prone. Ideally, all manually defined correspondences
need to be manually double-checked which makes this procedure
impractical for image sets containing thousands of images. In ad-
dition to that, motion blur, defocus, partial occlusions and camera
poses for which particular reference points are not visible in the
camera image make the precise manual definition of their position
in the image impossible.

4 EXPLOITING EXISTING BENCHMARKS

As can be seen in section 2, a variety of benchmark datasets already
exist. However, none of them contains inertial sensor data making
an evaluation of inertial sensor-aided methods impossible. Even
the very recently published dataset by Chen et al. [7] containing
several hundred images captured with mobile phones having GPS
information, does not provide inertial sensor data. For the publicly
available dataset by metaio [18], there exist ground truth poses for
every frame gained with a measurement arm attached to the camera,
but no gravity information. Creating new sequences with a similar
setup does not only require expensive hardware but also takes a lot
of effort. Most importantly, it will result in new sequences that do
not enable comparison with methods that were tested on the original
dataset. If it was possible, we would ideally not take new sequences
but instead record the inertial sensor measurements for the already
existing sequences to ensure comparability.

4.1 Proposed Benchmarking Method

We propose to synthesize inertial sensor measurements from the
ground truth pose provided in existing benchmark datasets. Know-
ing the camera pose allows for transformation of any vector in a
world coordinate system, including an arbitrarily defined gravity
vector, into the camera coordinate system. The transformed vector
can then be used in the same way an algorithm would use the grav-
ity vector measured with inertial sensors. In this paper, we evaluate
this procedure at the example of metaio’s template benchmark [18].
We study the effect of both GAFD [17] and GREFD [16] in com-
parison with regular rotation-invariant feature descriptors which try
to assign a repeatable orientation to every feature based on local
image gradients.

4.2 Comparison With Real Sensor Measurements

In order to validate of the proposed method, it is essential to com-
pare the synthetic gravity vectors used in this approach with gravity
vectors measured with real inertial sensors. Therefore, we rebuilt
the setup used in [18] but replaced the industrial camera by a mobile
phone (Apple’s iPhone 4) which in addition to a camera is equipped
with inertial sensors. The interested reader is referred to [18] for
details on the calibration procedure of the setup.

Using the calibrated setup, we record a sequence of 500 frames
showing the “Isetta” template and six fiducial markers located on
a horizontal surface (as in figure 1) while alternating view points
and camera angles. The images have a resolution of (480 × 360)
pixels and are recorded at approximately 25 Hz. With every camera
image, we store a time-stamp and the corresponding gravity vector
measured with inertial sensors on the phone. In parallel, a PC that
is connected to the measurement arm, stores corresponding ground
truth camera poses.

As in the original paper, the synchronization of ground truth
poses and camera images is done based on the detected corners of
the markers visible in the camera image. After synchronization, the
residual of the reprojected corners is 0.94 pixels which makes the
sequence usable as ground truth data.
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Figure 2: Correlation between the measured and the ground truth
gravity vectors as a function of the delay between the two (a). The
observed error distribution of the real gravity measurements can be
modeled with a Gaussian distribution (b).

Now that we have camera images with corresponding gravity
measurements and ground truth poses, we aim to compare the
real gravity measurements gsensor(t) with the corresponding ground
truth vector ggtruth(t) = −cRw(t)zw. As the print-out is located in
a horizontal orientation, gravity corresponds to the the negative z-
axis of the world coordinate system (−zw) which needs to be trans-
formed to the camera coordinate system by the rotational part of
the ground truth pose cRw. Once we know the characteristics of
the real data, we are able to synthesize gravity vectors gsynth(t) that
behave comparably to the real measurements.

The degradation model we use comprises a noise term and a de-
lay between the moment a camera image was taken and the point in
time where the corresponding gravity vector was measured. Since
the camera images were used for synchronization, they are in sync
with the ground truth poses and therefore with the ground truth
gravity vectors. Since this is not necessarily the case for real sen-
sor measurements, we first measure the temporal offset between the
real gravity measurements and the ground truth gravity vectors. To
this end, we compute the delay ∆, for which the mean of the scalar
product between the measured and the ground truth gravity vectors
over all frames has its global maximum.

∆ = argmax
δ

(
1
n ∑

t

(
gsensor(t)

> ·ggtruth(t +δ )
))

Figure 2a plots this correlation as a function of the delay δ . As
can be seen, for the device we used, the maximum is reached at ∆

= 16 ms, which will be used as offset in the following.
After synchronization of the real measurements and the ground

truth, we aim to quantify the distribution of the error between the
noisy real measurements and the close to perfect ground truth. We
therefore parametrize the normalized gravity vectors with two an-
gles (αs,βs) and (αg,βg) which are computed as

gsensor =

 cosαs cosβs
sinαs cosβs

sinβs

and ggtruth =

 cosαg cosβg
sinαg cosβg

sinβg

 .

The distribution of the angular differences between sensor mea-
surements and ground truth data αe = (αs−αg) and βe = (βs−βg)
is plotted in figure 2b and can be modeled with a two-dimensional
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Figure 3: Distribution of correctly tracked images in a sequence of 500 frames showing the “Isetta” template using regular feature descriptors,
real gravity measurements in GREFD(gsensor) and the proposed method in GREFD(gsynth). The latter two methods provide comparable results.

Gaussian distribution parametrized with expected value µ = (0,0)
and variance σ2 = 0.00092. We use the BoxMuller transform [6]
to compute noise with the modeled distribution of the real inertial
sensors to synthesize gravity vectors as

gsynth(t) =

 cos(αg(t +∆)+X)cos(βg(t +∆)+Y )
sin(αg(t +∆)+X)cos(βg(t +∆)+Y )

sin(βg(t +∆)+Y )


where X and Y are two independent random variables with a

normal distribution of standard deviation σ .
Using the above, we create synthesized gravity vectors that are

comparable in terms of noise and delay to those provided by the
inertial sensors of an iPhone 4. In order to validate that using these
vectors also provides comparable results on the template localiza-
tion performance, we ran our method on the above mentioned im-
age sequence in three different configurations. First, we use reg-
ular feature descriptors to receive a reference performance mea-
sure. We then run the method again using GREFD and the real
gravity vectors measured with inertial sensors (GREFD(gsensor)).
Finally, we run the test again using synthesized gravity vectors
(GREFD(gsynth)). The results are shown in figure 3 and clearly
confirm that GREFD performs similarly when using the proposed
method compared with real sensor measurements both in terms of
distribution and sum of the ratio of correctly tracked images, i.e.
images with less 10 pixels reprojection error at the template cor-
ners.

In the following evaluation we will use both ground truth gravity
vectors and those vectors synthesized as explained above and study
the impact of the artificial degradation on the localization of planar
templates.

4.3 Gravity-Aligned Feature Descriptors

Gravity-Aligned Feature Descriptors (GAFD) are designed for
static and (close to) vertical surfaces, such as building façades, TV
screens or billboards.

Therefore, we define the synthetic gravity vector gGAFD as if the
template was located on a vertical surface in an upright orienta-
tion. This means that the gravity vector corresponds to the negative
y-axis (−yw) of the world coordinate system associated to the print-
out of the template, cf. figure 4. Given the ground truth pose, this
vector is transformed to the camera coordinate system by multiply-
ing it with the rotational part of the pose cRw and is then used as
gravity vector. As explained above, we use a degradation model
adding noise and a delay to the ground truth gravity vector in or-
der to create synthesized gravity vectors with similar properties as
real gravity measurements. The feature description algorithm fi-
nally projects the 3D gravity vector onto the image plane for every
feature to compute its orientation.

The features and their orientation using GAFD are illustrated in
the second row of figure 5 for some exemplary frames of the dataset.

g
GAFD

xw xc
zw zc

yw

yc

g
GREFD

cRw

Figure 4: Visualization of the involved coordinate systems and the
synthesized gravity vectors for the evaluation of GAFD and GREFD.

4.4 Gravity-Rectified Feature Descriptors
The purpose of Gravity-Rectified Feature Descriptors (GREFD) is
to improve the description of features corresponding to physical
points located on horizontal surfaces.

Therefore, we consider the template to be oriented horizontally
for this evaluation and consequently compute the gravity vector
gGREFD as the negative z-axis (−zw) of the world coordinate sys-
tem, as illustrated in the bottom right of figure 4. This vector is
then again transformed into the camera coordinate system using the
known ground truth pose and artificial degradation is applied result-
ing in a plausible synthesized gravity vector. Finally, this vector is
used to rectify the camera image before detecting and describing
features in it. The support regions of individual GREFD are dis-
played in figure 5 in the bottom row. Note, that the white quads
correspond to squares in the gravity-rectified images.

4.5 Results and Discussion
The template localization system we use first detects, describes and
matches local image features from the reference image and every
query camera image using a custom 48-dimensional feature de-
scriptor. Based on these matches, it then tries to estimate a ho-
mography between the reference image and the corresponding area
in the current image using PROSAC [8]. If successful, this ho-
mography is eventually refined using the Inverse Compositional [2]
image registration method before computing the camera pose. All
algorithms we use were optimized to run in real-time on handheld
devices such as consumer mobile phones.

For the evaluation results presented in this paper, we chose two
templates from [18] which we believe correspond to those kinds of
templates that are frequently used in handheld AR applications and
therefore are particularly relevant. The “Stop” template represents
objects with a low texturedness while the “Isetta” has a normal den-
sity of texture comparable with many real-life objects. The results
for all five sequences per template using regular rotation-invariant
feature descriptors, GAFD and GREFD are displayed in figure 6.
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Figure 5: Visualization of the feature descriptor support regions (white) and their orientations (red) for regular descriptors (top row), GAFD
(central row) and GREFD (bottom row) in different images of the used benchmark dataset. Note, that some of the images have been cropped
for illustration purposes only.

The latter two methods were tested both with the ground
truth gravity vectors (ggtruth) and the artificially degraded vectors
(gsynth) which simulate the inertial sensors in a mobile phone. We
plot the ratio of images in which the localization was successful
for each sequence and each method used. Similarly to [18], we
consider the template as being correctly localized if the average re-
projection error of the four template corners using the estimated
camera pose is below 10 pixels.

Over all image sequences, the number of correct frames in-
creases when using the inertial sensor-aided feature descriptors
compared to regular ones. We observe, that artificial degradation
of the ground truth vectors only has a marginal effect on the perfor-
mance of both GAFD and GREFD. Therefore, the following analy-
sis will only consider the results of the two methods using (gsynth).

The relative increase in images where the template could be lo-
calized correctly when using Gravity-Aligned Feature Descriptors
is on average 35.91% which is comparable to the results in [16]
where real sensor measurements of the gravity vector have been
used on a significantly smaller dataset. The most significant im-
provements using GAFD can be observed for the “Stop” template,
which has a good deal of similar looking features at different ori-
entations at the borders of the sign. As GAFD outperforms regular
feature descriptors for all sequences in the test, it is clearly useful
and universally applicable whenever dealing with (close to) vertical
surfaces.

The use of GREFD increased the overall ratio of correctly lo-
calized images less significantly. As also discovered in the original
work, these descriptors only make sense for steep camera angles
while they sometimes even perform worse than regular feature de-
scriptors for camera poses close to perpendicular to the template.
On average over all image sequences used, the angle between the
principal axis of the camera and the template normal is only 33.00◦.
In fact, GREFD only provides satisfying results in the first sequence
of both templates, which is the “Angle” sequence. Here, the aver-
age angles between the template normal and the camera are 52.80◦
and 46.89◦ making them by far those sequences with the steepest
angles. Again, the results confirm those gained earlier using real
gravity measurements and benchmarking methods explained in 3.

An interesting characteristic of the proposed method is, that it al-
lows to directly compare GAFD with GREFD. Note, that this would
not be possible using real sensor measurements as GAFD works for
(close to) vertical surfaces only while GREFD is designed for (close
to) horizontal surfaces. Using the proposed scheme to synthesize
gravity vectors allows for an arbitrary definition of the gravity vec-
tor in the world coordinate system. Therefore we are able to treat
the same image sequence as if it was capturing a horizontal template
for GREFD or a template which is located at a vertical surface in
an upright orientation for GAFD.

5 SUGGESTIONS FOR THE DESIGN OF FUTURE BENCH-
MARKING DATASETS

Looking at real applications and state-of-the-art computer vision
technology for (handheld) Augmented Reality, it is clearly not suffi-
cient to provide a model of the scene and images or video sequences
with corresponding ground truth camera poses to benchmark local-
ization and tracking methods.

While the preceding section explains a functional way to eval-
uate inertial sensor-aided feature descriptors and possibly other
methods relying on the gravity without having access to real sensor
data, this does not mean that future benchmarking datasets should
ignore the existence of inertial sensors equipped to virtually any
handheld device nowadays.

We believe that methods that make use of auxiliary data to aid
computer vision algorithms will become increasingly more impor-
tant and complex. Particularly in large-scale outdoor environments
it is indispensable to combine different sources of information to
achieve the ultimate goal of a precise camera pose estimation at any
place on earth. This not only is interesting from a scientific point
of view but most importantly it is critical for the long-term success
of Augmented Reality browsers such as junaio1. In order to make
a benchmarking dataset useful and applicable in the long run, we
therefore propose to capture and save all available information with
every image. This includes not only the data that state-of-the-art
algorithms make use of but also data that we currently cannot even
think of how to use it but which may be useful in the future.

1http://www.junaio.com
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descriptors for virtually all sequences, the performance of GREFD is strongly depending on the steepness of the camera angles used.

Useful data that should be included with future benchmarking
datasets includes but is not limited to

• Device used (manufacturer, model, firmware version)

• Inertial sensor data (gravity, user acceleration, rotation rate)

• Digital compass data (heading, accuracy)

• GPS data (coordinate, altitude, accuracy)

• Camera properties (shutter time, gain, focus, etc.)

• Flash (on/off/auto, did fire/did not fire)

• Image regions for auto exposure and auto focus

• Accurate and consistent time-stamps for all the above

• Available networks (WiFi, GSM, etc.)

• Time and date

• Corresponding weather situation

Besides providing auxiliary data, it is important to use plausi-
ble hardware for the targeted field of application to ensure realistic
results. As we are mainly focusing on handheld AR applications,
we propose to use the latest consumer handheld devices, such as
mobile phones or tablet PCs.

To qualify for outdoor scenarios, it is also critical for a tracking
method to be robust against significant changes in illumination and
shadows. An ideal benchmark dataset for such methods would con-
tain camera images taken at different times of the day and different
weather and light situations, as it is the case in [12].

6 CONCLUSIONS AND FUTURE WORK

We presented a methodology to benchmark inertial sensor-aided lo-
calization and tracking methods using benchmarking datasets that
do not provide inertial sensor data. If the ground truth poses are
given, we have shown how these can be used in combination with
a degradation model to synthesize gravity vectors that behave com-
parable to real inertial sensor measurements. We validated the ap-
proach by capturing a new image sequence with ground truth poses
using a phone with built-in inertial sensors. The tested template lo-
calization method performed similarly when using synthesized and
real gravity measurements. The evaluation results do not only con-
firm the findings about the two examined feature descriptors GAFD
and GREFD gained earlier on smaller datasets, but also can be seen
as a field test of the proposed approach.

To enable the research community to evaluate their own iner-
tial sensor-aided localization and tracking methods on the metaio
dataset, we publicly provide the synthetic gravity vectors gGAFD
and gGREFD of selected sequences on our research website2 in ad-
dition to the image sequences, reference templates and intrinsic pa-
rameters of the camera.

Obviously the proposed method can be extended to synthesize
further degrees of freedom, e.g. compass, in future work. In addi-
tion to absolute sensor measurements, also relative measures such
as the rotation rate as measured with a gyroscope could be syn-
thesized using the proposed technique by incorporating the ground
truth poses of multiple consecutive frames. Finally, the preceding
section acts as an inspiration for future work on creating new bench-
marking datasets for camera pose localization and tracking algo-
rithms. It is clearly important to have standardized and publicly
available datasets to enable the comparison of tracking systems de-
veloped by research institutions and researching companies around
the world. In order to cover the largest range of tracking methods
possible, future datasets clearly need to be as universal as possi-
ble providing as many auxiliary information as available, including
inertial sensors and beyond.
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