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Abstract. While human skin is relatively easy to detect in controlled environ-
ments, detection in uncontrolled settings such as in consumer digital photographs
is generally hard. Algorithms need to robustly deal with variations in lighting,
color resolution, and imaging noise. This paper proposes a simple generative
skin patch model combining shape and color information. The model is para-
metric and represents the spatial arrangement of skin pixels as compact elliptical
regions. Its parameters are estimated by maximizing the mutual information be-
tween the model-generated skin pixel distribution and the distribution of skin
color as observed in the image. The core of this work is an empirical evaluation
on a database of 653 consumer digital photographs. In addition, we investigate the
potential of combining our skin detector with state-of-the-art appearance-based
face detectors.

1 Introduction and Related Work

Skin detection plays an important role for example in tracking people, in filtering out
adult web images, or in facilitating human-computer interaction. We are especially in-
terested in skin detection as a cue for detecting people in real-world photographs. The
main challenge is to make skin detection robust to the large variations in appearance
that can occur. Skin appearance changes in color and shape and is often affected by
occlusion (clothing, hair, eye glasses etc.). Moreover, changes in intensity, color and lo-
cation of light sources affect skin appearance. Other objects within the scene may cast
shadows or reflect additional light and so forth. Imaging noise can appear as speckles
of skin-like color. Finally, there are many other objects in the world which are easily
confused with skin: certain types of wood, copper, sand as well as clothes often have
skin-like colors.

Physics-based approaches to skin color modeling [12] use spectrographic analysis
to derive a physical reflectance model of skin. Skin reflectance is usually described
by its thin surface layer, the epidermis, and a thicker layer underneath, the dermis.
The light absorption in the dermis is mainly due to the ingredients in the blood such
as haemoglobin, bilirubin and beta-carotene which are basically the same for all skin
types. However, skin color is mainly determined by the epidermis transmittance which
depends on thedopa-melaninconcentration and hence varies among human races [12].
Skin color appearance can then be represented by using this model and by incorporating
camera and light source parameters. In uncontrolled scenes, however, these parameters
are not known.



Its rotation and scale invariance make skin color especially useful for real-time
tracking systems. However, gesture trackers for human-computer interaction rely on
controlled lighting conditions [11]. In other scenarios like outdoor surveillance, poten-
tial illumination changes have to be addressed. Recently, approaches have been pro-
posed which automatically adapt skin color model parameters by analyzing color dif-
ferences of consecutive images [10]. Assuming motion continuity these approaches can
deal with gradual changes in ambient light. They do not apply to still images though.

One of the most comprehensive accounts on skin color models for uncontrolled still
images is due to Jones and Rehg [6]. In their case, a skin color model is learned from a
huge collection of web images. A Bayesian classifier for skin color is then constructed
which also incorporates a model of the non-skin class. The approach relies on color
alone. Fleck and Forsyth [4] and Wang et al [13] propose systems for filtering adult
images by finding naked people. In the approach by Fleck and Forsyth a combination
of low-level image filters is used combining skin color and texture features.

In this paper, we introduce a generative skin patch model combining color and shape
information (section 2) and present results of a large empirical evaluation (section 3).
As today’s state-of-the-art face detectors do not make use of skin concepts, we also
investigate the potential of combining skin and face detection in section 4. Finally,
section 5 draws conclusions and outlines possible directions for future research.

2 Approach: A Generative Skin Patch Model

Rather than relying on skin color alone the proposed approach combines color infor-
mation with shape constraints to locate skin patches. Allowable shapes of skin are em-
bodied by a generative skin patch model. The shape parameters are estimated by max-
imizing the mutual information between the model-generated skin pixel distribution
and the distribution of skin color as observed in the image. In the current implemen-
tation the skin patch model is represented as an unrotated ellipse with state variables
γ = (xc, yc, w, h) where(xc, yc) denotes the center and(w, h) the dimensions. Ellipses
as shape primitives are frequently used for modeling the human body, in particular the
head, arms and limbs [15]. The shape model is denoted byS and is employed by the
algorithm for generating a distributionp(x = skin|γ), which for each image location
x = (x, y) represents the probability that the corresponding pixel belongs to a skin
patch. The modelp(x = skin|γ) is represented by a piecewise constant function

S(γ) = S(xc, yc, w, h) =

{
1

1+exp−a : (x−xc)2

w2 ± (y−yc)2

h2 ≤ 1
0 : else

where the parametera in the logistic function (c.f. [1]) is increased towards the bound-
ary to smooth out probabilities. Thus the proposed generative model embodies two in-
tuitive properties about the spatial distribution of skin color: First, skin is distinguished
as a contiguous region and second, skin often appears in oval shapes. Restricting the
model to an unrotated oval introduces a bias for facial skin.

The core idea of the algorithm is to derive the parameters ofS from a comple-
mentary cue, a skin color modelC, thus combining shape and color information. We



employ a Gaussian chrominance model with parametersθ which is trained from data
using Maximum Likelihood Estimation. This color model has been shown to work for
different skin complexions of the different human races [5]. At this stage one can also
consider the use of color constancy techniques such as [3]. This implies the standard
trade-off between discrimination and invariance. Even though not reported here our ex-
perience suggests that simple color models are well suited to the task especially when
enough training data is available. Similar observations have been reported in [6]. For
aligning shape and color information we now maximize the mutual information be-
tweenp(x = skin|γ) andp(x = skin|θ) searching the parameter space ofγ:

arg max
γ

I(S(γ), C(θ)) (1)

Maximizing mutual information is an alignment technique which maximizes statistical
dependence. The concept has been used successfully in several vision and machine
learning tasks e.g. for feature selection [2], for audio-visual data association [8] as well
as for robust registration [14] which probably comes closest to the way it is used in
this paper. In the following two section we will present qualitative and quantitative
evidence that this alignment technique is robust to noise and discontinuities typical
of real-world imaging. There is a direct relationship between mutual information and
the Kullback-Leibler (KL) divergence. The KL-divergence between a probability mass
functionp(u, v) and a distinct probability mass functionq(u, v) is defined as:

D(p(u, v)||q(u, v)) =
∑
ui,yv

p(ui, vj) · log
p(ui, vj)
q(ui, vj)

(2)

This relative entropy or information divergence measure is commonly used as a pseudo
distance between two distributions. By definingq(u, v) = p(u) · p(v) the mutual infor-
mation can be written as the KL-divergence betweenp(u, v) andp(u) · p(v):

I(U ;V ) = D(p(u, v)||p(u) · p(v)) (3)

Mutual information therefore measures the “distance” between the joint distribution
p(u, v) and the product distributionq(u, v) = p(u) · p(v), which are identical if and
only if they are independent.

Instead of resorting to stochastic parameter sampling as in [14] we derive a deter-
ministic form of gradient ascent in mutual information space for efficiently estimating
γ: The parameter space is traversed using an adaptive local grid which is succinctly cen-
tered over maxima ofp(x = skin|θ) starting at the global maximum of this distribution
and continuing at other maxima in descending order. At each iteration the algorithm fol-
lows the steepest gradient adapting the center point(xc, yc) or the dimensions(w, h).
Typically, convergence is reached in about 5 to 10 iterations. Once the algorithm has
convergedγ represents a single computed skin region hypothesis.

For generating multiple skin patch hypotheses the skin distributionp(x = skin|θ)
is then reshaped. More specifically, after a hypothesis has been formed the associated
region is first excluded from the original distribution and after, the scheme is repeated.
The value of mutual information is used to decide if a hypothesis is valid and if the
search is to be continued. After a predefined number of examined hypotheses with a
low mutual information value, the algorithm stops.



3 Experiments: Skin Detection

To evaluate the performance of the proposed skin detector we first examine retrieval
and precision rateson the pixel levelsimilar to [6]. In particular, the performance is
compared to the naive approach using only color.

The whole test database contains 653 colorJPEGimages. For skin detection these
have been downsampled from a 3.3 megapixel resolution to 150 by 100 pixels. From a
randomly chosen subset of 30 images, 53978 skin pixels where labeled manually. The
fotos cover a wide range of real-world situations both indoor and outdoor (meetings,
parties, ski-trips, beach scenes etc.). Figure 1 shows several representative example im-
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Fig. 1.The first two columns show input images and corresponding skin color distributions. Col-
umn three shows the hypotheses generated by the proposed skin detector combining color and
shape information. The right column shows precision-recall curves, comparing the purely color
based approach to the proposed scheme. See text for a detailed discussion of these examples.

ages. Input images are shown in the first column while the second column shows the
distribution of skin colorp(x = skin|θ). Column three shows the output of the pro-
posed skin detector. Here only those color probabilities are shown which have been
classified by the proposed detector as being part of a skin region. The last column in
these figures shows precision-recall curves of skin pixel detection as a function over a
detection threshold. Two curves are shown for each image: one is based on evaluating
color alone (dotted line) the other (solid line) plots the results of the proposed detector.



Figure 1a) shows many false positives in color (car interior) as well asJPEG-artefacts
which appear as block structures in the upper part of the image. As can be seen here,
lossy compression used in image formats likeJPEG cause discontinuities inp(x =
skin|θ). Note that a connected-component approach would have difficulties to separate
the full head from the car interior. With the proposed approach the equal error rate is
improved from 85% to 95% in this example.

Figure 1b) shows a 15% increase in equal error rate. In this image the shape model
separates out the skin portions from the red-colored hose which is wrapped around
the person’s shoulder. Note again that a connected-component approach would have
difficulties to separate the hose from the person’s face. The equal error rate is improved
here from 70% to 85%. The advantages of the proposed detector become most evident
as the amount of skin-like color in the image increases. In example 1c) the detector
improves the equal error rate by 25%. In this image a wooden fence causes numerous
false positive detections. Wood is a well-known distractor [6] which frequently occurs in
both indoor and outdoor situations. The wooden fence and all remaining false positives
are removed by the detector. Altogether, an equal error rate of 60% is reached while
the color-based approach attains only 35%. A few false negatives occur from people’s
hands in the image because they hold directly on the wooden bars which makes hands
and wood indiscernible for the algorithm.

While figure 1 shows only a small selection for lack of space, these images are rep-
resentative for the obtained results on all images1. These results clearly demonstrate the
advantage of integrating color and shape information. The shape constraints embodied
by the skin patch model successfully eliminate a substantial amount of false positives
which leads to improved detection performance. In particular, the detector proves to
work robustly in unconstrained real-world photographs.

4 Experiments: Skin Detection vs. Face Detection

Unlike face recognition (i.e. subject identification),face detectionis a classification
problem concerned with locating all faces within arbitrary backgrounds. An extensive
survey on face detection with more than 150 references appeared only recently [16].
Two state-of-the-art face detectors are due to Rowley et al [7] and Schneiderman et al
[9]. Both approaches are appearance-based and only use intensity information. Row-
ley’s neural network approach can handle in-plane rotations of faces but not out-of-
plane rotations (profiles). However, profiles can be expected to occur much more often
in photographs. To our knowledge Schneiderman’s Bayesian face classifier is still one
of the best systems in terms of detection performance. Since it is still the only system
to support profile views it may even bethe best face detector available today. Since
both systems model only specific portions of the appearance space they are vulnerable
to the many variations that occur in the real-world. Attempts to model the complete
appearance space can be expected to fail because of degrading discriminance.

Although a face can be regarded as a special case of a skin patch, neither of the
two face detectors makes use of skin concepts. Yet, from an algorithmic viewpoint,

1 Results on the full data are available on the web (URL blinded to preserve anonimity of the
authors)



the proposed skin detector has at least three substantial advantages over face detectors:
it is faster, it works at smaller resolutions and, most importantly, it is more robust to
variation in appearance. In addition, this section also presents empirical evidence that
the skin detector is robust to lighting changes.

Appearance based face detectors need to search all image locations at multiple
scales. In contrast, the skin detector examines only skin colored regions at one scale
which results in significantly faster execution. It also requires less image support al-
lowing to detect very small skin patches. Figure 2 shows a few examples showing the
outputs of the two face detectors and the proposed skin detector. Row 2(a) illustrates
the effect of occlusion and rotational variation. Both face detectors fail on the right face
since they model the appearance of a complete face only. Rowley’s approach misses the
other face, too, because the particular facial appearance is not part of the model. Both
faces are detected by the skin-based approach. Since the proposed scheme allows for
discontinuities, it also works when people wear beards, piercings or glasses. Face-like

Rowley Schneiderman Skin Detector

(a)

(b)

(c)

Fig. 2. Characterization of appearance-based face detection vs. skin detection. The first two
columns show the face detection results of Rowley and Schneiderman, row three shows the skin
finder’s output. These examples illustrate characteristic effects of (a) occlusion and facial expres-
sion, (b) face-like distractors, (c) crowds

distractors pose additional challenges. For instance, checkered surfaces are likely to be



true positive false negative false positiveprecision recall
Schneiderman 387 305 165 70.1% 55.9%

skin detector OR Schneiderman 639 53 1458 30.5% 92.3%
skin detector AND Schneiderman 263 429 12 95.6% 38.0%

Rowley 150 542 94 60.5% 27.7%
skin detector OR Rowley 562 130 1397 40.2% 81.2%

skin detector AND Rowley 103 589 2 98.1% 14.9%

Table 1.A quantitative account of appearance-based face detection (Schneiderman, Rowley) and
its combination with the proposed skin detector. Results are from a test set of 653 real-world
consumer photographs containing 2243 faces. Here, Schneiderman’s scheme compares favorably
to Rowley’s. When combining Schneiderman’s face detector with the proposed skin finder, recall
(OR-combination) or precision (AND-combination) is leveraged to above 90% in both cases.

confused with facial features like mouth, nose and eyes. This often occurs with shirts
and other clothes, in figure 2(b) it occurs with a chess board. Note that in this example,
the skin detector misses the chess player’s hand. This is because the current imple-
mentation only allows for unrotated elliptical shapes. Row 2(c) shows a more complex
scene with a crowd of people. Faces are in profile view, some of them are only partially
visible. Rowley has no detections, Schneiderman returns three faces. The skin detector
retrieves all six faces and some additional skin regions.

Next we quantitatively compared the performance of the combined scheme to the in-
dividual face detectors on all 653 images containing 2243 faces. For evaluating Schnei-
derman’s approach we uploaded our database to the on-line demo2. Rowley provided a
copy of his system. The results are very promising. The skin finder returned 74.4% of
all faces, whereas Schneiderman’s face detector has a recall rate of 55.9% and Rowley’s
scheme 27.7%. That is, the skin detector’s recall rate in detecting faces is almost 20%
higher than Schneiderman’s algorithm and 47% higher than Rowley’s approach. As can
be expected we found complementary results for precision. Since the proposed skin de-
tector is designed to return skin region in general, not just faces, its precision is only
28.3%. Rowley’s scheme reaches 60.5% and Schneiderman 70.1% on this data set. As
performance of skin and face detectors turned out to becomplementarywe examined
their combinations. When counting all faces found by either Rowley’s scheme OR the
skin detector the recall rate is boosted to 81.2% (versus an initial rate of 27.7%). Preci-
sion is raised to 98.1% (versus 60.5%) when counting only those faces found by both
detectors. Results from combining the skin detector with Schneiderman’s approach are
equally encouraging: Precision is as high as 95.6% (versus 70.1%) which is comparable
to the combined performance using Rowley’s approach. Recall is raised to 92.3% us-
ing a logical OR combination. This is even higher than the combination with Rowley’s
scheme. These results indicate that the combination of skin and face concepts can lead
to a substantially better face detection performance. Depending on the type of combina-
tion Schneiderman’s face detector in combination with the proposed skin finder reaches
precision or recall rates above 90%.

2 http://vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi



5 Conclusion and Future Work

This paper proposes a skin patch detector integrating color and shape information. An
empirical evaluation of the detector on real-world photographs yields two main results:
First, there is a clear benefit in modeling skin as approximately contiguous regions
of certain colorsand shapes rather than relying on color alone. In particular, the pro-
posed detector proves to work robustly in unconstrained real-world photographs. Sec-
ond, appearance-based face detectors should be combined with skin detection for their
complementarystrengths and weaknesses. In future work we aim to analyze skin spe-
cific specularities and to encode this information within the generative model.
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