
MoBat: Sound-Based Localization of
Multiple Mobile Devices on Everyday
Surfaces

Adrian Kreskowski
Jakob Wagner
Jannis Bossert
Florian Echtler

Bauhaus-Universität Weimar
Weimar, Germany
firstname.lastname
@uni-weimar.de

Figure 1: An overview of the used hardware. Shown is the USB
sound device in the back, two mobile phones on the table and two
microphones in front.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
ITS ’15, November 15-18, 2015, Funchal, Portugal.
ACM 978-1-4503-3899-8/15/11.
http://dx.doi.org/10.1145/2817721.2823488

Abstract
We present MoBat, a combined hard- and software system
designed to locate and track multiple unmodified mobile de-
vices on any regular table using passive acoustic sensing.
Barely audible sound pulses are emitted from mobile de-
vices, picked up by four microphones located in the corners
of the surface and processed in a low-latency pipeline to ex-
tract position data. We demonstrate an average positional
accuracy and precision of about 3 cm on a table of 1 m x
2 m size, and discuss possible usage scenarios regarding
proxemics and tangible interaction.

Author Keywords
Sound-based Localization; Tangible Interfaces; Multitouch
Surfaces; Mobile Devices; Time Difference of Arrival

ACM Classification Keywords
H.5.2 [User Interfaces]: Input devices and strategies

Introduction and Related Work
Personal mobile devices are quickly turning into a central
element of users’ information behaviour. Various types of
data are collected and shared using these devices, and
novel interaction metaphors like proxemics need to take this
aspect of personal information management into account.
Multiple approaches exist to locate mobile devices with re-
spect to each other and to the environment. However, such

http://dx.doi.org/10.1145/2817721.2823488


methods usually require prior setup in the form of attaching
fiducial markers or other tracking aids.

Figure 2: A sketch of the
tabletop hardware setup: The
rectangle indicates a tabletop
area of arbitrary 2D dimensions.
The black circles near the corner
indicate the four microphones,
which are used to record the
audio sources. We furthermore
sketched two audio sources
emitting sound on different
frequencies as illustrated by the
color coding and different stroke
style of the concentric circles.
The center of each circle
represents the position of the
audio sources.

In this paper, we present MoBat, a hard- and software sys-
tem designed to locate mobile devices on a surface using
passive acoustic sensing of barely audible sound pulses.
We distinguish between two core parts, the emitter and the
tracking side. On the emitter side, only the capability to play
an audio stream is required. For the tracking, the surface
merely needs to be augmented using four cardioid micro-
phones in the corners.

The usage of passive acoustic sensing to turn a flat sur-
face into an input device was first realized by Ishii et al. [2],
detecting the impact points of a ball on a Ping Pong table.
This system was extended by Paradiso et al. [3] to detect
and discern both taps with knuckles and a metal object on
a glass surface. Urashima et al. [4] developed another sys-
tem to identify letters from pen movements. However, all of
these systems focus on detecting discrete sound events like
taps rather than continuous signals.

There are two approaches for locating sound sources. The
first one is the "Location Pattern Matching", which utilizes
a collection of recorded signals and was used in [1] [2].
By comparing the recorded signal with the signals in the
database, a position is determined. This pattern match-
ing approach allows application on arbitrary surfaces with
few microphones but requires a learning phase for each
new setup. The second approach, "Time Difference of Ar-
rival" (hereafter TDOA) was used in [3] [4] [5]. It is based
on measuring the time difference of the sound’s arrival at
the different microphones. Knowing the position of the mi-
crophones and the speed of sound, the sound source can
be located. This approach requires no learning phase but
a homogeneous transfer medium and at least three micro-
phones. For reasons of portability, we decided to base our

system on TDOA.

Hardware Architecture
Due to the TDOA technique we apply for our sound local-
ization, we rely on synchronously transmitted audio buffers.
Therefore, the core part of our hardware setup is an exter-
nal sound card with four connected microphones at known
positions. It streams an audio buffer containing four chan-
nels via USB to our localization pipeline. Initially, we exper-
imented with piezoelectric elements to sense the vibration
within a chipboard table. However, the signal-to-noise ratio
was insufficient for our transformation pipeline. By utiliz-
ing low-budget directional microphones, it was possible to
clearly identify the signal. In addition to the soundcard and
the microphones a standard PC was used for the signal
processing. Figure 2 sketches a possible setup with four
mounted microphones, and two audio sources; Figure 1
shows a photo of the used hardware.

Software Architecture
The first part of our software architecture is a sound emit-
ting application. Running on a mobile device, it emits peri-
ods of a sine wave alternating with a pause. The sine sig-
nals can have a frequency of up to 20 kHz, depending on
the individual devices’ audio properties. The sine signal and
the pause each have a fixed length. This alternation allows
for continuous tracking of the devices by identifying peaks
in the frequency domain after a pause (see Figure 4). Our
system is able to parallel track multiple emitters with each of
them producing different sine frequencies.

The pipeline is built to record an audio signal and locate
the individually configured sound sources. The three main
stages of the pipeline can be classified as the Recorder,
Analyzer and the Locator Stage and are shown in Figure
3. In the following paragraphs, we will describe these in



4x audio stream 4x frequency-
sample map

1x frequency-
location map

analog audio signals

Recorder Analyzer Locator

x

y

WAV 32-bit PCM

α kHz Sums

α kHz Locationair pressure

β kHz Sums

β kHz Location

Application

Figure 3: A simplified version of the MoBat Pipeline: Several emitters produce signals of different trackable frequencies, which are fed into the
pipeline. They are then processed in three stages indicated by the boxes. These perform the recording of the audio signal, determination of
frequency peaks per channel and the localization based on determined TDOAs per frequency. The output of the pipeline is a position for each
located emitter.

detail.Figure 4: The image above
visualizes three different types of
accumulated amplitudes of a 19
kHz signal, for 2 channels each.
The top third shows the results for
2 audio channels when the emitter
is configured to use a longer sine
than pause signal. A lot of
consecutively executed STFTs will
contain a similar frequency sum
amplitude and therefore finding a
peak is error prone. The center
third shows the characteristic for a
pause that is five times longer
than the sine. The peaks,
indicated by the black vertical
bars, are detected within a valid
range. The last third shows a
post-processed signal.

RECORDER STAGE In this stage the analogue signal
of the ambient sound is recorded and converted to digital
32-bit PCM by the sound card. The communication with
the audio device is done using the ALSA sound library. For
each of the four microphones, the audio signal is recorded
within a time interval of 130 ms (contingent on the sound
card) to natively ensure a high update rate for the entire
localization.

ANALYZER STAGE The analyzer is responsible for de-
termining a time-delta of the recorded channels for each
of the frequencies registered in the pipeline. Similarly to
the implementation in the Toffee pipeline of Xiao et al. [5],
this is done by considering amplitudes per sample of each
audio channel. However, since we aim to detect not only a
single audio signal but multiple frequencies over time, it is
not sufficient to sample the amplitude of the buffer of the

recorded signal. In order to retrieve information about the
different frequencies over time, we apply a series of short-
time Fourier transformations (STFT) for each of the chunks
per channel. For our pipeline, we consider a Fourier win-
dow size of 256 samples. Furthermore, a sliding window
offset of one sample is used to work efficiently and with a
sufficient temporal resolution for our purpose. Since the
signal-to-noise ratio of the Fourier transformation of just
one window per time-step is too low for a reasonable peak
detection, we sum up the results of several consecutive
Fourier windows. The latter can be applied with negligible
costs by caching all but one result for the next frequency-
amplitude sum. In order to reduce the memory footprint of
our application, only the amplitudes of the registered fre-
quencies are stored and further analyzed.

The frequency sums tend to take the shape of banks and
therefore contain several local maxima as shown in Figure
4. The first step to distinguish the peaks from noise is a



normalization of the frequency sums per chunk. The low-
est and highest sums act as normalization limits. Hereby,
the peaks below a certain threshold are filtered out. Yet,
it is still not possible to accurately distinguish frequency
peaks from intermediately high values by simple threshold-
ing. This is due to different amounts of noise in recorded
chunks, which can result in peaks of different height or dif-
ferent sharpness. In order to obtain a small number of dis-
tinct peaks, we exponentiate the sums at each sample. This
operation results in a set of easily distinguishable peak can-
didates per chunk and channel.

When all channels contain a peak and the time distance be-
tween them is not larger than an adjustable threshold, clos-
est peaks are matched. This is done under the assumption
that the corresponding frequency peaks in different chan-
nels have a relatively small sample distance in a real en-
vironment. Based on this method, we achieve satisfactory
results for our application as seen in the following section.
Naturally, further filtering steps can be applied to the raw
position data depending on the application context.

As a final remark on the analyzer stage, it should be noted
that the STFT will create a power spectrum containing all
frequencies. This transformation is by far more time con-
suming than the peak detection for a transformed signal.
Therefore, the peak detection for additional frequencies
does not severely affect the overall runtime.

Figure 5: The error distribution
of the TDOA method: The color
coding of this heatmap
visualizes the TDOA error for
each of the uniform grid cells.
The emitter (white circle) is
assumed to be on the cell with
the lowest error. LOCATOR STAGE The final stage of the MoBat pipeline

receives the four determined signal starting times for each
registered frequency. The area between the microphones is
then uniformly divided into a 2D grid and the error is com-
puted for each of the vertex positions in a TDOA manner
using the same error formula as Xiao et al. Figure 5 shows
the error distribution of the grid cells. Note that we concen-

trated on the analyzer stage for recognizing multiple sound
sources; therefore, the locator stage does not employ a
gradient-based optimization step. The processing over-
head introduced by this naïve error-sampling approach can
be considered as negligible for our system since the most
expensive part of the pipeline remain the Fourier transfor-
mations.

Performance and Accuracy
SYSTEM SPECIFICATION The test set-up consisted of
4 t.bone EM700 microphones, one Behringer U-PHORIA
UMC404 sound-card and a notebook with an Intel Core
i7-2630QM 2Ghz CPU. As sound emitters, several Nexus
4 devices were used. In each test we measured the posi-
tion error and calculated the distance to the actual position,
standard deviation and the 90-percentile.

The following list shows the most important parameters
used in the tests described below:

• sine length: 5 ms
• pause length: 25 ms
• recording duration per smartphone position: 1 min
• table size: 2m x 1m
• sampling grid cell size: 1cm
• Fourier window size: 256 samples

The parameters above were established empirically and led
to the best test results.

TEST SERIES

Test 1 One smartphone playing a 19 kHz frequency was
placed at 12 different test positions on the table. Figure 6
visualizes the results. The test results show a standard de-
viation of 1.55 cm, while the mean distance to the actual



smartphone position was 3.16 cm. The average 90 per-
centile was 2.72 cm.

Test 2 In this test, the influence between two emitters
with frequencies of 18 and 19 kHz was evaluated. We as-
certained a similar standard deviation of 1.44 cm and a 90
percentile of 2.94 cm. The average distance to the actual
position was 1.77 cm.

Test 3 In this test, the influence between three emitters
with frequencies of 16, 18 and 20 kHz was evaluated. The
results can be seen in Figure 7. The average standard de-
viation of the three emitters amounted to 2.18 cm. The av-
erage 90 percentile was 3.7 cm. The distance to the actual
position was 4.56 cm.

As indicated by the test results, the usage of multiple smart-
phones leads to a decreased accuracy and precision. This
behaviour is likely caused by the limited frequency reso-
lution for the chosen pipeline parameters. Throughout all
tests, the system had an average position update-rate of
20.26 positions per second. Even after using the system
for several months, we could not observe an impairment
of the speaker caused by the permanently emitted signals.
Furthermore, the devices’ batteries lasted for more than 12
hours of continuous use.

It is worth mentioning that the performance of the system
is dependent on the speaker quality and placement of the
smartphone. On some devices (e.g. Nexus 4) the speakers
are located on the back, which causes noticeable damping
of the signal when the device is lying flat on the surface. We
also observed a slight directional component for phones
with side-mounted speakers (e.g. Nexus 5).

Figure 6: Position distribution
for Test 1: One 19 kHz
smartphone was placed
sequentially on different
positions on the table. The
located points are shown in blue.
The darker the blue, the higher
the amount of positions that fell
on this very location. The red
arrow indicates the shift of the
mean position to the original
position of the smartphone. The
red circle indicates the 90
percentile.

Discussion and Outlook
In this paper, we showed that continuous sound-based
tracking of multiple devices is possible using a normal desk,
four microphones and a semi-professional sound card. In
the following paragraphs, we discuss the performance and
applicability of our system.

In contrast to the reference systems, which focus on im-
pulse detection of one sound source, MoBat is designed to
continuously locate multiple sources simultaneously. De-
spite these differences, the applied localisation techniques
are similar enough to allow a performance comparison.

Compared to existing systems such as Toffee [5], our hard-
ware setup is similarly simple. Furthermore, our system
does not require specialized devices except a four-channel
sound card.

The accuracy of our system is on par with other sound
based tracking systems. PingPongPlus [2] has an accuracy
of a few inches, just as Toffee [5]. Our system determines
the position of the emitters several times per second and
has a maximum standard deviation of 2.2 cm. With the con-
tinuous tracking approach the position variance becomes
noticeable. The variance decreases as the table size in-
creases. This is due to the audio signal’s increased time
of flight, which allows for greater TDOA differences. Con-
sequently, the peak detection becomes more resistant to
inaccuracies on larger tables.

The latency of our system is not only caused by the pro-
cessing time but also the inclusion of recently determined
positions to stabilize the results. As with all post-processing
methods, there is a trade-off between latency and precision.

MoBat is especially well suited for applications in which the
emitters are not moved frequently. In more dynamic use



cases where movement is a crucial part, our system may
not be preferable over conventional input methods because
the stabilization of the position causes a higher latency. As
a test application, we developed an air-hockey game, using
mobile phones as paddles. To get first impressions of the
system, we let several persons play the game and observed
them. We gained the impression that after a small amount
of time, people could adapt to the paddles movements. A
side effect of rapidly alternating between sine and silence is
a clicking noise produced by the emitters. This may be dis-
tracting if a user focuses on it. However, the clicking noise
can be easily concealed by other sounds such as music
or talking. The accuracy will not be affected as long as the
background sounds do not contain frequencies that are pro-
duced by the emitters.

In contrast with visual tracking approaches, we do not need
to modify the appearance of the tracked devices using
markers. As another notable advantage, sound-based
tracking is not affected by visual occlusions. As a result the
tracking is not interrupted when the emitters are held and
moved. However, a disadvantage is the influence of acous-
tic occlusion caused by obstacles located between emitter
and microphones.Figure 7: Position distribution

for Test 3: Each of the circles
indicates one smartphone with
one of the frequencies 16, 18 or
20 kHz. The smartphones were
simultaneously positioned on
one line on the table with a
distance of 50 cm from one to
the next. The interpretation of
the color and shape coding is
the same as in Figure 6

For further research, we would like to remove the need for
specialized software on the smartphones. For instance,
it should be possible to establish a data-link between the
emitters and a server that assigns a unique frequency to
each smartphone. The server could then stream the corre-
sponding signal to each mobile device via a website. It is
also possible to implement proxemics techniques based on
the relative distance of the emitters. This implies again an
interaction between the mobile devices and a server. For
integrating further degrees of freedom into our system, it
would be possible to use information provided by the smart-

phones’ sensors (gyroscope, accelerometer, magnetome-
ter) to also incorporate the orientation in the result of the
pipeline. This allows for more complex input metaphors.
Another interesting approach would be to integrate speak-
ers and a simple circuit into small objects to create low-cost
sound-based tangibles. These could provide similar inter-
action possibilities for users not willing to use their smart-
phones as input device for this system. At the moment, the
tracking capabilities of our system are restricted to two di-
mensions. To allow for three-dimensional tracking, the sys-
tem could be extended to work with more microphones. Our
system is open-source and is available for download from
https://github.com/mmbuw/mobat.

REFERENCES
1. C. Harrison and S. E. Hudson. 2008. Scratch Input:

Creating Large, Inexpensive, Unpowered and Mobile
Finger Input Surfaces, In Proc. UIST ’08. 205–208.

2. H. Ishii, C. Wisneski, J. Orbanes, B. Chun, and J. A.
Paradiso. PingPongPlus: Design of an Athletic-Tangible
Interface for Computer-Supported Cooperative Play.
Marian G. Williams and Mark W. Altom (Eds.). ACM,
394–401.

3. J. A. Paradiso, C. K. Leo, N. Checka, and K. Hsiao.
2002. Passive Acoustic Sensing for Tracking Knocks
Atop Large Interactive Displays. 11–14.

4. A. Urashima and T. Toriyama. 2010. Ubiquitous
Character Input Device Using Multiple Acoustic
Sensors on a Flat Surface.

5. R. Xiao, G. Lew, J. Marsanico, D. Hariharan, S. E.
Hudson, and C. Harrison. 2014. Toffee: enabling ad
hoc, around-device interaction with acoustic
time-of-arrival correlation, In Proc. MobileHCI ’14.
67–76.

https://github.com/mmbuw/mobat

	Introduction and Related Work
	Hardware Architecture
	Software Architecture
	Performance and Accuracy
	Discussion and Outlook
	REFERENCES 

