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Abstract

We propose an approach for 3D reconstruction and
tracking of dynamic surfaces using a single depth sen-
sor, without any prior knowledge of the scene. It is ro-
bust to rapid inter-frame motions due to the probabilis-
tic expectation-maximization non-rigid registration frame-
work. Our pipeline subdivides each input depth image into
non-rigidly connected surface patches, and deforms it to-
wards the canonical pose by estimating a rigid transfor-
mation for each patch. The combination of a data term
imposing similarity between model and data, and a regu-
larizer enforcing as-rigid-as-possible motion of neighbor-
ing patches ensures that we can handle large deforma-
tions, while coping with sensor noise. We employ a surfel-
based fusion technique, which lets us circumvent the re-
peated conversion between mesh and signed distance field
representations which are used by related techniques. Fur-
thermore, a robust keyframe-based scheme allows us to
keep track of correspondences throughout the entire se-
quence. Through a variety of qualitative and quantitative
experiments, we demonstrate resistance to larger motion
and achieving lower reconstruction errors than related ap-
proaches.

1. Introduction
Recently, techniques for non-rigid scene reconstruction

have seen increased attention due to advancements in the
virtual and augmented reality domains [38]. Considerable
efforts have been devoted in both academia and industry
to develop robust dynamic reconstruction and tracking al-
gorithms using specialized mutli-view systems [8, 34, 5,
19, 10]. However, the rise of commodity RGB-D sensors
has inspired a new wave of development, as their porta-
bility allows capture outside of the studio setting, which is
more easily accessible to the general user. Despite signif-
icant progress [23, 11, 16, 27, 15], most methods are lim-
ited to very contrived motions, leaving accurate dynamic
scene capture a challenging open problem. As objects de-
form freely and the acquisition process is unreliable, includ-

Figure 1. Given a single depth stream, we divide each frame into
surface patches and deform it towards a canonical pose using a
non-rigid deformation framework. Despite noisy data and occlu-
sions we are able to obtain a 3D model of the deforming object,
shown on the right hand side. The RGB images here are used for
visualization purposes only.

ing noisy data and occlusions, this problem involves a large
number of parameters and is highly underconstrained.

The first method to achieve single-stream dynamic re-
construction was DynamicFusion [23], which devised a way
to simultaneously track and reconstruct a deforming surface
in real time. However, this method failed to reconstruct tan-
gential motion and suffered from drift. More recently, Vol-
umeDeform [16] incorporated the use of color SIFT fea-
tures to enhance the handling of tangential motion. How-
ever, this method was still limited to slow inter-frame mo-
tions. Recent works such as the approach of Dou et al. [11]
showed impressive results, yet they were computationally
intensive, rendering them impractical to the average user.

In this paper, we aim for a balanced solution that is
computationally reasonable, handles drift and fast inter-
frame motions, and does not require prior knowledge of the
scene. Our key idea is using rigidity constraints between
surface patches to enable non-rigid deformation under fast
inter-frame motion. In particular, we split the depth data
into patches and back-project to a 3D point cloud, as il-
lustrated in Figure 1. These patches impose rigidity con-
straints on their neighbors, such that they deform within a
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locally rigid neighborhood. Each depth frame is deformed
towards a canonical pose under a probabilistic expectation-
maximization variant of non-rigid iterative closest point
(ICP) [1]. Patch based representations have been explored
for multi-view reconstruction [4, 3], but partial views, high
occlusions and noisy data make their use challenging for the
single-view setting. To enable the use of patch-based repre-
sentation and to handle lengthy sequences we leverage the
idea of keyframes [10, 6]. To obtain the final 3D reconstruc-
tion, we fuse all the models obtained from our keyframes,
using the correspondence information tracked through the
entire sequence.

To summarize, the contributions of our paper are:

• We incorporate patch-rigidity constraints for single
stream depth-based 3D reconstruction, which allows
our method to work for arbitrary shapes and to be ro-
bust to fast motions.

• Our method uses a surfel-based representation for both
the deformation estimation as well as the fusion frame-
work in a single-stream depth setting.

• We demonstrate that our method has the ability to cope
with larger movements compared to previous works,
while achieving lower reconstruction errors.

2. Related Work
While reconstructing a static scene entails only estimat-

ing the 6 degrees-of-freedom camera pose, dynamic scenes
pose a significantly more challenging task as each point may
have a different motion [13]. In this section we first discuss
approaches that address the dynamic reconstruction prob-
lem but require a multi-view setting or are conditioned on
prior knowledge of the scene. Next, we review state-of-the-
art work on single-stream dynamic reconstruction, the exact
setting we are tackling. Finally, we discuss approaches em-
ploying a patch-based representation, from which we draw
inspiration for our proposed methodology.

Multi-view Reconstruction: Mutli-view setups de-
crease the underconstrained nature of this problem, as mul-
tiple cameras provide more data, and reduce noise and oc-
clusions significantly. Early methods in this domain [8, 34,
4] required many hours of processing, as well as the instal-
lation and calibration of many high-quality cameras mak-
ing them non-practical for everyday use. While more re-
cent methods [19, 10] performed significantly better, they
still required a great amount of processing time and the
studio setting severely limited their application. Recently,
Fusion4D [10] and Motion2Fusion [9] have demonstrated
compelling results, but both required multiple depth cam-
eras, each with a dedicated GPU. Such specialized setups
are not available to the general public. In contrast to these
approaches, our method focuses on the single-stream case

which vastly reduces computational time. Additionally, the
use of portable commodity hardware allows anyone to use
our approach and enables reconstructions outside the studio
setting.

Reconstruction using Prior Knowledge: Some
methodologies employ the use of prior knowledge to con-
strain the problem. Zollhöfer et al. [37] deformed a rigidly
acquired template to each new depth frame. Both the work
of Yu et al. [35] and Liu et al. [21] showed promising re-
sults using a single RGB-D stream, but first required gen-
erating a template of the object in a static pose. Tem-
plates allow subject-specific reconstruction only, and may
not be straightforward to acquire, especially for some sub-
jects such as animals and children. Alternative frameworks
employed different prior knowledge on the class of re-
constructed objects, such as parametric human shape [2],
hand [30] and face models [31] or skeletons [14], which
prevented the capture of arbitrary surfaces. Other systems
that are less technically demanding combine prior knowl-
edge and a multi-view system. This can be achieved by ob-
taining an input mesh from a multi-vew system and then
deforming a template to it [33, 4]. In contrast, our ap-
proach can work on arbitrary shapes and does not require
prior knowledge of the scene.

Single-stream Dynamic Reconstruction: The rise of
single-stream non-rigid capture started with the seminal
DynamicFusion method [23], which was able to incremen-
tally track and reconstruct a non-rigid scene in real-time
using dense depth-based correspondences. However, their
method was prone to drift, unable to handle tangential mo-
tions, and limited to highly contrived and slow motions.
DynamicFusion inspired a line of follow-up work [16, 15],
but all techniques have only demonstrated results on rela-
tively slow and controlled movements. VolumeDeform [16]
added color SIFT features to better handle tangential move-
ment, yet it was still unable to handle fast inter-frame mo-
tions. In comparison, our method offers a unique way to
handle fast movements through a patch-based deformation
framework. KillingFusion [27] proposed a solution han-
dling larger motion and topological changes, using a de-
formation field operating purely over a signed distance field
(SDF). While it performed favorably, it lacked data asso-
ciation, severely limiting the range of possible applications
such as character animation. In contrast, our method stays
in one data representation which allows for correspondence
tracking throughout the entire sequence used for reconstruc-
tion.

Recently, Guo et al. [15] incorporated surface albedo
constraints in order to capture surfaces of uniform geome-
try. BodyFusion [36] focused on reconstructing humans by
adding motion priors and solved for the skeleton and graph-
node deformations simultaneously. However, these two
methods suffered from drift and performed poorly under



Figure 2. Our proposed pipeline. The reconstruction process is incremental; each frame is patched and back-projected. We divide the
sequence into keyframes, in each we build a local incremental model. We obtain the final reconstruction using a correspondence-based
global fusion approach.

fast inter-frame motions. To combat drift, Dou et al. [11]
employed non-rigid bundle adjustment to automatically de-
tect loop closures. They demonstrated high quality results,
but required hours of processing and they were still unable
to fully handle rapid movements. We aim to handle drift by
the use of a keyframe-based approach which eliminates the
use of bundle-adjustment based techniques and speeds up
the reconstruction pipeline.

Patch-based Representations: Patch-based represen-
tations have been proposed for the problem of non-rigid
structure from motion [25, 7] . The work of Varol et
al. [32] calculated homographies between corresponding
planar patches from a short image sequence. This enabled
reconstruction of textured deformable surfaces. Similarly,
Agapito et al. [12] reconstructed strongly deforming ob-
jects, such as a waving flag, by dividing the surface into
overlapping patches and reconstructing each of these inid-
vidually to obtain a final 3D model. Recent works in non-
rigid structure from motion (NRSfM) such as the work of
Ji et al. [18] have shown more accurate results than previous
state-of-the-art methods for non-rigid shape reconstruction.
The patch-based method of Cagniart et al. [3] has been par-
ticularly successful in the multi-view tracking setting, as it
splits the surface into non-rigidly connected rigid patches,
which can withstand noise and occlusions. We also adopt a
patch-based representation for our approach, but we couple
it with a keyframe-based framework to address problems of
the single-view sensor setting, i.e., partial views, noisy data
and occlusions.

3. Proposed Method

Our framework reconstructs a 3D model of a dynamic
object, as illustrated in Figure 2. The method keeps track
of correspondences throughout the sequence allowing for
fast inter-frame motions. The most crucial aspect of our
pipeline is the use of a patch-based surface representation,
enabling us to deform incoming frames non-rigidly onto a

growing model. The reconstruction process is incremental;
each frame is patched (§3.1) and deformed onto a grow-
ing model using a deformation framework (§3.2). We use
a surfel-based representation for the data, which enables us
to fuse new geometry onto the model easily (§3.3).

The idea of patch-based representation has been used be-
fore in multi-view reconstruction and tracking [4]. The key
to enabling this for single-stream 3D reconstruction is the
incorporation of keyframes into our approach (§3.4). This
is accomplished by dividing the sequence of depth images
into keyframes, which hold F consecutive frames, in each
we build a local incremental model. Finally, we fuse all the
models to obtain a global model of the deforming object
(§3.5). As we use a surfel-based representation, we provide
a quick overview of our visualization approach (§3.6).

3.1. Surface Patching

Our patching approach constructs roughly equally sized
patches distributed uniformly on the object surface. The
patching is computed directly on each incoming depth
frame, as depicted in Figure 3, allowing us to propagate
the patch information for each point when projected to 3D.
We employ a superpixel approach for the patch genera-
tion, based on the mask Simple Linear Iterative Cluster-
ing (maskSLIC) [17] algorithm. In certain situations the
mask of the object is complex, containing holes or disparate
features, which makes it possible to generate disconnected
patches. These detached patches may contain regions on
the surface object, which deform non-rigidly to different lo-
cations. We show an example of detached patches in Fig-
ure 3. Finally, we ensure that detached patches are split,
such that the deformation framework is not adversely af-
fected by such patches.

3.2. Patch-based Deformation Framework

We employ a patch-based surface rigidity deformation
framework, inspired from [4], to compute the non-rigid de-
formations of each frame with respect to the canonical pose.



Patching Splitting Detached Patches

Figure 3. The patching, depicted on the left, is accomplished by placing seeds and clustering all pixels to a nearest seed location. Patches
which are detached due to disparate features, as illustrated on the right hand side, are split to ensure they can deform non-rigid to their
respective locations. On the top row we show the output from the patching framework before applying the last step of splitting the detached
patches. On the bottom row we show the additional patches that are created to split the detached patches.

The surface of an object X = (X) is represented in 3D co-
ordinates, where X = {xv}Vv=1 ⊂ R3 are the positions of
all its points. The task of the deformation framework is to
register the points of the incoming frame X to the canon-
ical pose Y . With each incoming depth frame, we deform
the frame onto the reference model and integrate the new
geometry.

Patch Parameterization. Once the surface patching is
completed on a frame, the depth data is back-projected into
a point cloud. A rigid transformation with respect to the
world coordinates is associated with each patch Pk, param-
eterized by the position of the patch center ck and a rotation
matrix Rk. The rigid transformation for each point xk can
be computed as follows:

xk = Rk(x− ck) + ck, (1)

The parameters representing each patch Θ = {θk}k=1:K

are combined into a vector Θ = {Rk, ck}k=1:Np
, describ-

ing the entire surface. Np describes the number of patches
on the surface. The framework computes one rigid transfor-
mation per patch, while the motion of each vertex is com-
puted using linear blending from the patch center. A gaus-
sian weighting function, αk is employed in the blending,
and the position for a point xk is computed using the patch
and its direct neighbors k ∪Nk:

x =
∑

s∈k∪Nk

αsxs. (2)

Deformation Framework. Given an observed point
cloud X = (X) where Y = (Y) is the canonical pose,
we register X to Y, estimating Θ̂ such that X(Θ̂) resem-
bles Y as closely as possible. This is accomplished in a
two-part process. First, each point in Y is associated with a
point in X to build a correspondence set C. Next, Θ̂ is esti-
mated by minimizing an energy E which describes the dis-
crepancy between each pair association from the first step
C : Θ̂ = arg minΘE(Θ; C).

Assuming that Y and X(Θ) lie near to each other,
the correspondence set C is built with a nearest-neighbor
search. A deformation parameter Θ is initialized and X(Θ)
is transformed accordingly. We then evaluate a new cor-
respondence set C for X(Θ), and the process repeats until
convergence. This iterative approach is accomplished with
a variant of non-rigid ICP [1].

Energy Definition. We utilize an energy formulation
combining a data term Edata, which enforces the deformed
cloud to be aligned with the reference model, and a regu-
larization term Er, which imposes as-rigid-as-possible con-
strains between neighboring patches. Given a correspon-
dence set C, where each patch i in the input cloud is associ-
ated with a point p on the target, we formulate the data term
as:

Edata(Θ; C) =
∑

(i,p∈C)

wi,p‖yi − xp(Θ)‖22, (3)

where each correspondence pair is associated with a weight
wi,p. Given two neighboring patches k and l ∈ Nk, the
rigidity energy enforces the predictions xk(v) and xl(v) of
a vertex point v to be consistent:

Er(Θ) =

K∑
k=1

∑
l∈Nk

∑
v∈Pk∪Pl

wkl(v)‖xk(v)− xl(v)‖2, (4)

where the weights wkl(v) encode a property of uniform
stiffness. These are computed and normalized proportion-
ally to the sum of the blending weights from Equation 2 for
each patch and its neighbors. Our final energy is defined as:

arg min
Θ

E(Θ) = arg min
Θ

Edata(X(Θ)) + λrEr(Θ). (5)

EM-ICP. To minimize the above energy we model the
problem in a Bayesian context and employ Expectation-
Maximization (EM) for MAP estimation [4]. This formu-
lation is robust to outliers in the canonical model, reducing



the overall error accumulation as well as reducing drift. Ad-
ditionally, it is robust to noise and missing data in incoming
depth frames.

3.3. Surfel-based Fusion

Our surfel representation is based on [20], and the surfels
of a point cloud are represented as a set of points P̄k, each
associated with a position vk ∈ R3, a normal nk ∈ R3, a
confidence ck ∈ R, and a timestamp tk ∈ R. The deforma-
tion framework produces a deformed point cloud with as-
sociated normals of an incoming depth frame with respect
to its keyframe model. The deformed point cloud must be
integrated into this model. As we use a surfel-based repre-
sentation, we do not need to switch to a different data repre-
sentation (e.g., DynamicFusion [23] requires constant con-
versions between a point cloud representation and an SDF).
When averaging points, we use correspondences within a
pre-defined radius δnear. If the correspondence of the point
from the deformed point cloud and the model are within this
radius, we average them together with the same averaging
scheme as in [20]. Any point from the deformed point cloud
which does not have a correspondence and is not outside
of a radius δfar, is added to the model as new geometry.
Points which are outside of the bounding radius δfar are
discarded, as they are most likely outliers or artifacts from
sensor noise. To further eliminate noise, we remove points
with a low confidence (ck < cstable) after a time interval
tmax. We choose cstable = 10 and compute the confidence
in the same manner as in [20].

3.4. Keyframes

We propose a Keyframes-based scheme similar to [10],
outlined in Figure 2, which enables us to handle lengthy
sequences such as a human turning. This approach con-
sists of dividing the entire sequence into keyframes, hold-
ing F frames each, and using correspondences-based fusion
to obtain the final reconstruction. Following the initializa-
tion of the first keyframe, we process all the frames incre-
mentally. We use the initial frame in the first keyframe to
initialize the model. We perform surface-patching on each
subsequent frame and deform it non-rigidly using the EM-
ICP deformation framework onto the local keyframe model.
New geometry is fused into the model using surfel-based
fusion (§3.3). At the end of each keyframe, the last out-
put from the deformation framework initializes the model
for the next keyframe, which helps to combat drift and al-
lows us to establish correspondences throughout the entire
sequence. This is accomplished due to our surfel-based
representation. The pipeline generates a model for each
keyframe, all of which are fused at the end of the sequence
to form a final global model.

Each depth frame is surface patched (§3.1) and back-
projected into a 3D point cloud, stored using a surfel-based

representation. Consistent with prior work [27], we esti-
mate the rigid motion of the camera employing a fully vol-
umetric approach [28], enabling our method to work on se-
quences with free camera motion. We obtain the deformed
point cloud after warping the incoming frame through the
EM-ICP framework with respect to the current keyframe
model. We fuse this output (§3.3) into the current keyframe
model. If a frame is the last one in a keyframe, the deformed
point cloud from the deformation framework for that frame
is fused into the keyframe model and is additionally used
to initialize the next keyframe model. To obtain the final
global model, all keyframes are fused together (§3.5) us-
ing a global correspondence-based approach. This fusion
approach is particularly advantageous for our deformation
framework and allows us to track correspondences through-
out the entire sequence.

3.5. Global Correspondence-based Fusion

To obtain the final reconstruction all keyframe models
must be fused together. Contrary to [10], we can accom-
plish this without switching data representations by fusing
the keyframes together using keyframe-correspondences.
We track correspondences between frames and propagate
these between each keyframe; when the last deformation
of a keyframe is obtained, it is used to initialize the next
keyframe model and the correspondences are propagated as
well. Other keyframe-based methods, such as [36, 9], can-
not track correspondences and must instantiate a new vol-
ume for each new keyframe without any associations be-
tween them.

The global correspondence-based fusion is done as the
last step of the proposed method. Starting at the last
model generated, the corresponding surfels between the last
keyframe model and its predecessor are fused, while non-
corresponding surfels are added as new geometry of the
global model. This process is repeated, fusing all preced-
ing models onto the growing global model. Furthermore,
the global correspondence-based fusion enables us to ob-
tain accurate results for lengthy sequences while reducing
drift and eliminating the need for complicated constraints
such as bundle-adjustment. The correspondences found be-
tween each keyframe are averaged with the same surfel-
based scheme as outlined in §3.3. For all new points without
correspondences we add them to the global model as new
geometry.

3.6. Visualization

The surfel-based representation consists of point primi-
tives containing no connectivity [24]. As such, we employ
a surface splatting approach similar to [39] for visualiza-
tion. This is an advantage compared to other approaches
in non-rigid monocular reconstruction, which switch data
representations to an SDF, where visualization is extracted



Figure 4. Patch-based non-rigid reconstruction results on several non-rigid sequences. Each sequence contains natural dynamic movements
of a human such as swaying from side to side, leg movements, and head tilting. Our proposed method achieves full loop reconstructions
without using any explicit loop closure detection methods.

through ray tracing or marching cubes [22]. In contrast, our
approach allows us to stay in one representation and is less
prone to data loss through data representation switching.

4. Evaluation

In this section we present extensive qualitative and quan-
titative evaluation of our proposed framework, using both
publicly available datasets as well as our own acquisitions.
As we employ a surfel-based representation, the render-
ing is completed using surface splatting, as described in
§ 3.6. Our entire pipeline is implemented on commodity
hardware. Running on a 2.70GHz i7 CPU, the EM-ICP de-
formation framework takes 3 seconds per frame on average.
Additionally, the final step (§3.5) takes on average 2 sec-
onds for the entire sequence. This is significantly faster
than the non-rigid bundle adjustment scheme of Dou et
al. [11], which is the only other related single-stream tech-
nique executed on a CPU, taking 30 seconds per frame for
pre-processing, together with another 6 hours for joint op-

timization. It may be possible to accelerate the EM-ICP
framework using a GPU implementation, but due to the spe-
cific nature of our formulation, this is beyond the scope of
this paper.

4.1. Qualitative Evaluation

Our Sequences: The experiments on the new se-
quences captured by us highlight our ability to recover
reconstructions of full loops around deformable objects;
something not typically demonstrated in comparable ap-
proaches. Our method is capable of capturing their geom-
etry with high fidelity by only employing the patch-based
rigidity constraints, without explicitly accounting for drift
or non-rigid loop closure. Figure 4 depicts three of our own
sequences, where a man deforms dynamically while turn-
ing. Our framework is able to successfully complete the
reconstruction despite motions such as head tilts, back-and-
forth swaying, and leg and arm movements.

Large Inter-frame Motions: Next we demonstrate the
ability of our framework to recover rapid motions in chal-



Target Frame (First) Input Frame (Second) Patched Input Frame Input Deformed to Target

Figure 5. Ability of our proposed patch-based deformation framework to handle large motions. We manage to successfully warp the input
frame towards the target frame despite the large pose difference between them.

Figure 6. Comparison to the non-rigid reconstruction method of
VolumeDeform [16]: our approach, illustrated in the top row,
achieves similar quality, without switching between data represen-
tations.

lenging two frame examples, where the deforming object
has undergone a large movement. In these two frame se-
quences, we use the first frame as a target frame and we
deform the second frame to match the target frame. This
is illustrated in Figure 5, where we show the target frame
in the first column, and the input frame in the second. We
also provide the patched input frame in the third column. Fi-
nally, we render the output of the deformed input frame onto
the target frame, illustrated in column four. In all cases our

approach manages to suitably warp the input towards the
canonical model despite their large pose difference, demon-
strating our method’s ability to deform well despite the large
movements.

Public Sequences: To further demonstrate the gener-
ality of our framework, we evaluate on data from the Vol-
umeDeform paper [16]. Figure 6 depicts the final canonical
reconstruction for several sequences. Our method achieves
results of similar quality. Moreover, we do not need to
switch between data representations, unlike VolumeDeform
which stores the scene geometry in an SDF, while esti-
mating correspondences via mesh rendering. As the SDF
resolution may significantly reduce the spatial extents that
can be reconstructed, while a marching cubes rendering
to extract a mesh can be very computationally expensive,
we identify the use of a single data representation as one
of our main contributions. Furthermore, we test on full
loop sequences from other authors, namely the Andrew-
Chair sequence from Dou et al. [11]. Our result is shown
in Figure 7, which once again demonstrates the ability of
our framework to reconstruct subjects after long loopy se-
quences without explicit loop closure detection.



Figure 7. Comparison to the non-rigid bundle adjustment method
of Dou et al. [11]. Our method, illustrated in the top row, is able
to reconstruct the dynamic sequence without employing any loop
closure methodologies, preserving features such as garment folds.
We manage to accurately reconstruct small features (which may
appear noisy due to the surfel-based visualization, e.g the nose.)

Ground Truth Error Render

Average error: 3.627mm

Average error: 3.423mm
Figure 8. Non-rigid reconstruction of the Duck and Snoopy se-
quences from the KillingFusion dataset [27]. Our method recon-
structs the sequences with a smaller error margin.

4.2. Quantitative Evaluation

Quantitative evaluation for dynamic 3D reconstruction
is difficult, as ground truth data is typically not avail-
able. Nevertheless, to assess the geometric accuracy of
our framework we test it on publicly available datasets for
which quantitative evaluation is possible. First, we eval-
uate on the Deformable 3D Reconstruction Dataset from
KillingFusion [27], as their approach also targets fast mo-
tions. We selected the Duck and Snoopy sequences, as they
are the only two that have the ground truth models avail-
able. Our final reconstructions are displayed in Figure 8.
We achieve smaller geometric error than the KillingFusion
method for both sequences. Our average error for the Duck
was 3.657mm compared to 3.896mm of KillingFusion, and
the average error for Snoopy was 3.423mm compared to
3.543mm of KillingFusion.

Lastly, we ran our framework against the BodyFu-

sion [36] Vicon markers. For the YT sequence we report
an average global error of 2.3cm, using 20 frames in each
keyframe and 70 patches. This compares favourably to the
average error of 4.4cm of DynamicFusion [23] and 3.7cm
of VolumeDeform [16]. BodyFusion [36] reports a lower
error of 2.2cm, but they require skeleton-based priors to re-
duce the ambiguities of the deformation parameters, while
our method does not involve the use of priors. Therefore,
our patch-based method manages to track correspondences
with high accuracy under fast motions. This is an advantage
of our approach compared to other keyframe-based tech-
niques [10, 9] which instantiate a new volume for every
keyframe and lose data association between keyframes, and
compared to purely SDF-based approaches like KillingFu-
sion [27] which completely lacks correspondence informa-
tion.

5. Conclusions and Future Work

We have presented a novel non-rigid 3D reconstruction
scheme that robustly captures rapid inter-frame motions
from a single depth stream relying on patch-based rigid-
ity constraints in a probabilistic deformation framework. A
variety of qualitative experiments has demonstrated these
capabilities of our method, while quantitative comparisons
have shown that we achieve lower reconstruction and track-
ing errors than state-of-the-art techniques [27]. Further-
more, our surfel-based fusion allows us to stay within
one representation, while other approaches require constant
conversion between meshes and SDFs, which both impedes
their speed and limits the volume of space that they can re-
construct. As the current trend in related methods is the use
of specialized hardware systems, we believe that the pro-
posed lighter-weight solution, together with the use of a sin-
gle representation, will offer a different avenue for further
research that will make the capture of dynamic 3D scenes
more accessible to the general public.

In future work, we plan to make use of the available RGB
images as well, and incorporate additional constraints, such
as SIFT features [16] or surface albedo terms [15], so that
drift can be further reduced. Additionally, explicit loop clo-
sure detection can aid in capturing longer sequences, but it
is a very challenging problem in a non subject-specific set-
ting [26]. Finally, as the computational bottleneck of our ap-
proach is the EM-ICP computation, we will investigate how
to adapt existing ways of parallelizing it on the GPU [29]
for our particular variation.
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[37] M. Zollhöfer, M. Nießner, S. Izadi, C. Rhemann, C. Zach,
M. Fisher, C. Wu, A. Fitzgibbon, C. Loop, C. Theobalt, and
M. Stamminger. Real-time Non-rigid Reconstruction using
an RGB-D Camera. ACM Transactions on Graphics (TOG),
33(4), 2014.
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