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Abstract. This paper addresses the problem of accurately tracking the 3D motion
of a monocular camera in a known 3D environment and dynamically estimating
the 3D camera location. For that purpose we propose a fully automated landmark-
based camera calibration method and initialize a motion estimator, which employes
extended Kalman filter techniques to track landmarks and to estimate the camera lo-
cation at any given time. The implementation of our approach has been proven to be
efficient and robust and our system successfully tracks in real-time at approximately
10 Hz. We show tracking results of various augmented reality scenarios.

1 Introduction

Augmented reality (AR) is a technology in which a user’s view of the real world is en-
hanced or augmented with additional information generated by a computer. The enhance-
ment may consist of rendered virtual geometric objects placed into the environment, or a
display of non-geometric information about existing real objects. Using AR technology,
users can interact with a mixed virtual and real world in a natural way.

This paradigm for user interaction and information visualization provides a promising
new technology for many applications. AR is being explored within a variety of scenarios.
The most active application area is medicine, where AR is used to assist surgical proce-
dures by aligning and merging medical images into video [1; 2; 3; 4]. For manufacturing
AR is being used to direct workers wiring an airplane [5]. In telerobotics AR provides ad-
ditional spatial information to the robot operator [6]. AR may also be used to enhance the
lighting of an architectural scene [7], as well as, provide part information to a mechanic
repairing an engine [8]. For interior design AR may be used to arrange virtual furniture in
a real room [9].

1.1 Technical Contribution

A video-based AR system can be regarded as having two cameras: a real one generat-
ing live video of the real environment, and a virtual one producing 3D graphics to be
merged with the live video stream. Both cameras must have the same internal and ex-
ternal parameters in order for the real and virtual objects to be properly aligned. This is
accomplished by an an initial calibration of the real camera and a dynamic update of its
external parameters. From the vision point of view, this is one of the most challenging
technical problems that needs to be addressed in order to produce a useful and convincing
video-based augmented reality system ([10]).

More traditional augmented reality approaches employ magnetic tracking devices for
sensing position and orientation of a moving camera (e.g. [8; 11]). They suffer, however,
from (a) limited range (3-5m), (b) interference with ferromagnetic objects of the environ-
ment, and (c) lack of portability.



We therefore focused primarily on vision-based algorithms and decided on using
landmark-based calibration and tracking to make it more tractable. \We are using corners
of rectangular patterns attached to a wall as landmarks and track them using extended
Kalman filter techniques based on an acceleration-free constant angular velocity and con-
stant linear acceleration motion model. We demonstrate the robustness and accuracy of
our tracker within various augmented reality application.

1.2 Related Work

A number of groups have explored the topic of camera tracking for augmented reality.

Some researcher [12; 13] have argued that a simple view based, calibration free approach

for real-time visual object overlay is sufficient. This is definitely true for certain applica-
tions, where no direct metric informations is necessary. Interactive AR, however, requires

the more complex pose calculation based approach, which allows the decomposition of

the image transformation into camera/object pose and the full perspective projection in

order[to (]:alculate 3D colllision detection and interaction between real and virtual objects,

as in [14].

A similar argument is being used in [15] in the context of enhanced reality in medicine
[4], where near real-time calibration is performed for each frame based on a few fiducial
marks. In [11; 16] a hybrid vision and magnetic system is used to improve the accuracy
of tracking a camera over a wide range of motions and conditions.

Tracking known objects in 3D space and ego-motion estimation (camera tracking)
have a long history in computer vision (e.g. [17; 18; 19; 20]). Constrained 3D motion
estimation is being applied in various robotics and navigation tasks. Much research has
been devoted to estimating 3D motion from optical flow fields (e.g. [21]) as well as from
discrete moving image features like corners or line segments (e.g. [22; 23; 24]), often cou-
pled with structure-from-motion estimation, or using more than two frames (e.g. [25]).
The theoretical problems seem to be well understood, but robust implementation is diffi-
cult. The development of our tracking approach and the motion model has mainly been
influenced by the one described in [20].

1.3 Outline of the Paper

We start by describing our automated camera calibration procedure in Section 2. In Sec-
tion 3 we explain the motion model employed by our Kalman filter. The Kalman filter
based tracking procedure is then outlined in Section 4. We finally present some results in
Section 5 and close with a conclusion in Section 6.

2 Automated Camera Calibration

We propose an automated calibration procedure which determines internal parameters (fo-
cal length and focal center according to the standard pinhole camera model) and external
camera parameters (camera pose). In the current implementation the internal parameters
are fixed during a session and only the external parameters are estimated.

A highly precise camera calibration is required for a good initialization of the tracker.
For that purpose we propose a two step calibration procedure, in which we attempt to find
the image locations of landmarks placed in the 3D environment at known 3D locations
(cf. Figure 3). This addresses the trade-off between high precision calibration and mini-
mal or no user interaction. We use dark rectangular card board as landmarks. In the first
step we perform an initial camera calibration based on the image location of the centroids
of dark blobs (landmarks) which we extract in the image. This bootstraps the second step
consisting of a constraint search for additional image features (corners); thus improving
the calibration. We are using the camera calibration algorithm described in [26] and im-
plemented in [27].

The next subsection describes our algorithm for finding dark image blobs. The con-
strained search for projected model squares is addressed in the context of acquiring mea-
surements for the Kalman filter in Subsection 4.2.

2.1 Finding Dark Image Blobs

The algorithm for finding dark blobs in the image is based on a watershed transformation,
a morphological operation which decomposes the whole image into connected regions
(puddles) divided by watersheds (cf. [28]).
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Fig. 1: (a) Subimage with dark squares, (b) watershed
transformation with greycoded regions (watershed are
drawn in black), (c) greyscale inside operation, measur-
ing the depth of puddles, (d) and (e) show 3D plots of
images (a) and (c), respectively.

Using this transformation a dark
blob surrounded by a bright area pro-
vides a strong filter response related
to the depth of the puddle (cf. Fig. 1).
The deepest and most compact blobs
(ﬁuddles) are then matched against
the known 3D squares. For this pur-
pose, the squares contain one or
more small red squares at known po-
sitions, representing binary encod-
ings of the identification numbers of
the model squares. The red squares
are barely visible in the green and
blue channels of the video camera.
Thus we can apply a simple vari-
ant of a region growing algorithm to
the green color channel to determine
the borders of each black square. Af-
ter fitting straight lines to the bor-
der, we sample each black square in
the red color channel at the supposed
locations of the internal red squares
to obtain the bit pattern represent-
ing the model id. Blobs with invalid

identification numbers or with multiple assignments of the same number are discarded.
Using this scheme, the tracker can calibrate itself even when some of the model squares
are occluded or outside the current field of view (see Figure 6 a)).

3 Motion Mode For Rigid Body Motion

Tracking can be stated as estimating the motion parameters according to a known mo-
tion model. Our application scenario suggests a fairly irregular camera and object motion

within all 6 degrees of freedom?®. We assume an acceleration free motion of the cam-
era due to the lack of a priori knowledge about the forces changing the motion. It is
well known that in this case a general motion can be decomposed into a constant trans-
lational velocity ». of the objects centroid ¢, and a rotation with constant angular ve-
locity w around an axis through the centroid (of the camera). (cf. Figure 2 and [29]).

The motion equation of a camera point p wrt. world coor-
dinates is then given by: p = v, + w x (p — ¢). In this
equation the constant rotation is wrt. the moving controid
and hence no motion invariant wrt. to the world coordinate
frame. Instead, the center of rotation itself is moving with
c(t) = e(to) + v (t — to). Substituting this into the motion

equation produces:

pt)=v+wxp+at

withwv(tg) = v.—wxe(tg) and a = —w x v, = const. The
rotation is now with respect to world coordinates. However,
an additional acceleration term a is added. The integration

yields (cf. [20; 30]):

@)
Fig.2: The world (X, Y,
Z.) and camera (X, Ye, Z)
coordinate frames, and trans-
lational (v.) and rotational
(w) velocities.

p(t+ At) = R(8) p+ S(0) v At + T(8) a (32,

LIn an AR application the camera can be hand held or even head mounted so the user is free to

move the camera in any direction.



with

sin 6 1—cosf 1—cosf 6 —sinf
R(B) =15+ @+T@2:e@, S(O)=ls+ —p— 0+ — e’
6 —siné 8% — 2(1 — cos b
TO)=ls+2—7F— 0+ (94 ) o2

and 8 = w At = (6;,6,,0.), 0 = ||8]]. O is the skew-symmetric matrix to vector 6:

4 Tracking and Egomotion Estimation

With tracking our system is able to cope with dynamic scene changes and camera motions.
Our tracking approach currently uses the corners of squares attached to moving objects or
walls (cf. Figure 3), which have already been used for camera calibration.

Once a complete camera calibration has
been performed as described in Section 2,
Wedcan rs]Witch to té]e tracking phase, i.e.f

I update the pose and motion parameters o
the camera by keeping the internal camera
parameter constant. We employ extended
Kalman filter (EKF) techniques for optimal
pose and motion estimation using the mo-

Fig. 3: Our vision-based tracking approach cur-  tion described in Eqn. 1.

rently tracks the corners of squares. Left: image 4.1 Extended Kalman Filter

with eight squares. Right: detected squaresonly.  or state vector s of the Kalman filter com-
prises the following 15 components: the po-

sition vector ¢, the rotation vector ¢, the translational and angular velocity » and w,

respectively, and the translational acceleration a: s = {¢, ¢, v,w, a}.

The extended Kalman filter (EKF) equations can be found in most related textbooks,
e.g., [31]. We just want to add an implementation note: the standard Kalman filter calcu-
lates the gain in conjunction with a recursive computation of the state covariance. This
requires a matrix inversion of the dimension of the measurement vector, which can be
large as in our application. However, the matrix inversion can be reduced to one of the
state dimensions using the information matrix formalism. The information filter recur-
sively calculates the inverse of the covariance matrix ( = information matrix) (cf. [32]):

Pt = P77 + HI R Hy, @

where P;F denotes the updated covariance matrix, P, the prediction, Hy, the jacobian
of the measurement function, and R, the measurement noise matrix, each at time k. The
update equation for the state s: then becomes:

—1
5Y = 87 4 Ko(ze — ha(87)) with Ky = (P,;‘l + HZR;lHk) HIRD', (3)

which requires the inverse of the updated covariance matrix P} of Eqn 2. Inverting
Ry, is straightforward since we assume independent measurements producing a diagonal
measurement noise matrix Rj. The transition equation (prediction) can be found in [30].

4.2 Kalman Filter Measurements

Currently we use the image positions of corners of squares as measurements, i.e., our 8 - n
dimensional measurement vector = comprises the = and y image positions of all of the
vertices (corners) of the n squares we find in the image. A measurement =z is mapped to
the state s by means of the measurement function h: z = h(s).

The image corners are extracted in a multi-step procedure outlined below and in Fig-
ure 4. Assume that we are looking for the projection p; = {; NI, of the model vertex
v; = m; N my, which is given by the intersection of the model lines m;, and my, ({; and
l;; are the image projections of the model lines m; and my,).



— Predict image locations for model lines m; and my.

— Subsample these predicted lines (e.g., into 5 to 10 sample points).

— Find the maximum gradient normal to the line at each of those sample points us-
ing a search distance given by the state covariance estimate. We use only 8 possible
directions and extract the maximum gradient with sub-pixel accuracy.

— Fita new line /; to the extracted maximum gradient points corresponding to the pre-
dicted model line m;.

— Find the final vertex p = {; N I, by intersecting the correspondent lines {; and /.

This procedure allows us to ob-

predictedcorner '\ ' 1 g h search direction ¢ tain precise image locations with-
postionv,—__, | , , -~ predofmoddlinem,| oyt going through lengthy two-
ggggtgg comer ¥ | ggj?g'tfgum gradient  dimensional convolutions. Further-
Py vov v e more we use a measurement noise
- \ calculated from the covariance of
prediction of extracted . L
model linem ; image line the line segment fitting process.
T The failure to find certain vertices

T~ imageof asquare | s detected and indicates either an

occlusion not covered by the occlu-

~— extractedimageline!; sion reasoning step (described in

1(8) ® Ge (€) the next subsection), or a motion
! not covered by our motion model.

4.3 Occlusion Reasoning and
Re-Initialization

¢ fmax € Tracking is performed on certain
artificial landmarks in the scene.
Fig.4: We use corners as intersections of matched line  Their visibility can only be cor-
segments as measurements These line segments are fit- rupted if their image projection
ted from maximum gradient points which are produced falls outside the field of view of

from a one dimensional convolution with a derivative of the camera or if they are occluded
a gaussian kernel ¢ normal to the projection of the im-  phy other real objects. Full 3D oc-

age line (¢ is a parameterization normal to the line and I ¢fysion reasoning requires monitor-
is the image intensity). ing all moving objects and knowl-
edge about the entire 3D geome-
try, a feature not yet implemented
in our system. Figure 6 (a) illustrates an occlusion example. We are currently investigat-
ing the use of additional features, such as arbitrary corners or edges which will be added
once the tracker has been initialized from the known landmarks.
Failure to find certain landmarks is indicated by a very large measurement noise. Such
unreliable landmark points are discounted by the Kalman filter. If too many landmark
points are labelled as unreliable, the tracker re-initializes itsself by re-calibration.

5 Reaults

The system is currently implemented on Silicon Graphics workstations using SGI’s Im-
ageVision and VideoLibrary as well as Performer and OpenGL. It successfully tracks
landmarks and estimates camera parameters at approximately 10 Hz with a live PAL-size
video stream on a Silicon Graphics Indy.

Our landmarks are black cardboard squares placed on a wall, as seen in Figures 5-6.
In a first set of experiments with an initial version of our tracker we recorded an image
sequence from a moving camera pointing at the wall. Virtual furniture is then overlayed
according to the estimated camera parameter (cf. Figure 5). Since we have a 3D represen-
tation of the room and the camera, we are able to perform collision detection between the
furniture and the room [14]. The user places the virtual furniture in the augmented scene
by interactively pushing it to the wall until a collision is detected. The AR system then
automatically lowers the furniture until it rests on the floor.




Fig. 5: Images of a sequence with overlayed virtual furniture. The estimated position of the world
coordinate axes is also overlayed on the room corner.

Figure 6 shows various screen-shots from the video screen of the system running in
real-time. The figures also exhibit some possible AR applications: 6 b) shows an addi-
tional virtual room divider and a reference floor grid; 6 c) visualizes the usual invisible
electrical wires inside the wall; 6 d) shows the fire escape routes; 6 €) a (red) arrow (right)
shows where to find the fire alarm button, and 6 f) explicitly shows the fire hose as a
texture mapped photo of the inside of a cabinet.

b) d) f)

Fig. 6: (a) We successfully track with partial occlusion as long as at least two landmarks (squares)
are visible. Models of the occluded landmark as well as a virtual divider have been overlayed to the
video. The next images exhibit various AR applications: (b) a virtual room divider and floor grid,
(c) electric wires inside the wall, (d) a fire escape route is being shown, (e) a (red) arrow (right)
shows where to find the fire alarm button, (f) like (e), but a texture mapped photo of the inside of a
cabinet has been superimposed on the cabinet door.

6 Conclusion

In this paper we addressed two major problems of AR applications: (a) the precise align-
ment of real and virtual coordinate frames for overlay, and (t? capturing the 3D motion of
a camera including camera position estimates for each video frame. The latter is especially
important for interactive AR applications, where users can manipulate virtual objects in an
augmented real 3D environment. This problem has not been tackled successfully before
using only video-input measurements.



Intrinsic and extrinsic camera parameters of a real camera are estimated using an
automated camera calibration procedure based on landmark detection. These parameter
sets are used to align and overlay computer generated graphics of virtual objects onto
live video. Since extrinsic camera parameters are estimated separately the virtual objects
can be manipulated and placed in the real 3D environment including collision detection
with the room boundary or other objects in the scene. We furthermore apply extended
Kalman filter techniques for estimating the motion of the camera and the extrinsic camera
parameters. Due to the lack of knowledge about the camera movements produced by the
user, we simply impose an acceleration-free constant angular velocity and constant linear
acceleration-motion to the camera. Angular accelerations and linear jerk caused by the
user moving the camera are successfully modeled as process noise.

Robustness has been achieved by using model-driven landmark detection and land-
mark tracking instead of pure data-driven motion estimation. Real-time performance on
an entry level Silicon Graphics workstation (SGI Indy) has been achieved by carefully
evaluating each processing step and using lightweight landmark models as tracking fea-
tures, as well as, well designed image measurement methods in the Kalman filter. The
system successfully tracks landmarks and estimates camera parameters at approximately
10 Hz with a live PAL-size video stream on a Silicon Graphics Indy.

Future work will include a fusion of model- and data-driven feature tracking in order
to improve performance along occlusions and to expand the allowed camera motion.
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