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Abstract

The efficacy of radiation therapy treatment depends on the patient setup accuracy at each daily fraction. A significant problem is
reproducing the patient position during treatment planning for every fraction of the treatment process. We propose and evaluate an
intensity based automatic registration method using multiple portal images and the pre-treatment CT volume. We perform both
geometric and radiometric calibrations to generate high quality digitally reconstructed radiographs (DRRs) that can be compared
against portal images acquired right before treatment dose delivery. We use a graphics processing unit (GPU) to generate the DRRs
in order to gain computational efficiency. We also perform a comparative study on various similarity measures and optimization
procedures. Simple similarity measure such as local normalized correlation (LNC) performs best as long as the radiometric calibra-
tion is carefully done. Using the proposed method, we achieved better than 1 mm average error in repositioning accuracy for a series
of phantom studies using two open field (i.e., 41 cm2) portal images with 90� vergence angle.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

External beam radiation therapy is an effective
method of treating cancer, in which the lesion is irradi-
ated with high-energy beams produced by a linear accel-
erator (LINAC). Treatment techniques such as 3D
conformal radiation therapy and intensity modulated
radiation therapy (IMRT) provide very accurate radia-
tion to the lesion, while sparing healthy tissues. Radia-
tion treatment always starts with the acquisition of
planning computerized tomographic (CT) images. CT
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data play a central role in radiotherapy treatment
planning (RTP) (Herman et al., 2001).

Efficacy of the RTP depends on the patient setup at
each daily fraction. The problem is to reproduce the pa-
tient position at the time of acquiring the planning CT
scans (i.e., used for RTP) for each fraction of the treat-
ment process. Discrepancies between the planned and
delivered treatment positions significantly degrade the
therapeutic ratio (White et al., 1982). One of the conven-
tional methods to reduce patient setup error includes
matching the skin tatoo marks generated at the planning
phase with the treatment room laser lights. Immobiliza-
tion devices such as polyurethane foam casts or thermo-
plastic masks are also used to assist in reproducing the
daily treatment position (Bentel, 1999). These ap-
proaches can fail to adequately ensure the location
reproducibility, since the positioning is done based on
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the outer surface of the patient�s body (Nutting, 2000).
Adjustment of the patient setup can also be achieved
using internal anatomical landmarks identified on portal
images acquired with the patient in the treatment posi-
tion. Portal images can be acquired using an electronic
portal imaging device. The process of patient position
verification using the EPID is explained in detail in Her-
man et al. (2001) and is summarized as follows:

� At the planning stage a set of DRRs is generated
from the CT scan of the patient. This set of images
is used as the Reference, representing the ideal patient
position at the time of treatment.

� At the treatment stage a set of Localization portal
images is taken at the same gantry angles as the Ref-
erence images.

� Localization and Reference images are visually com-
pared and corresponding anatomical landmarks are
identified in both sets.

� The setup error is estimated and the patient position
is corrected to reduce the discrepancies between the
Localization and Reference images.

The whole process of manual position verification
using portal images is rather subjective and error prone.
Furthermore, it is difficult to correct for all degrees of
freedom (i.e., translations and rotations) based on such
a procedure (Gilhuijs et al., 1996a; Hanley et al., 1995;
Lujan et al., 1998).

In this paper, we propose an automatic method for
estimating the patient pose (i.e., position and orientation
– fully six-dimensional) with respect to the pre-treatment
CT volume. This method is based on registration of the
intra-treatment (i.e., portal images) and pre-treatment
(i.e., planning CT) data. The couch position offsets can
be computed based on the sought after registration
parameters, and the iso-center location in the pre-treat-
ment CT data. In order to perform this registration
accurately, the geometry of the treatment machine and
portal imaging device and the process of portal image
formation have to be known. In other words, both
radiometric and geometric properties of the process
have to be calibrated. We show that although the portal
images are of low contrast, they contain enough infor-
mation to yield accurate registration. Furthermore, we
perform a comparative study for various options (e.g.,
choice of similarity measure, optimizer, setup parame-
ters) that arise throughout the registration process.
2. Background

The first step in setup verification involves determin-
ing the position of the patient on the treatment couch.
From an algorithmic perspective, this means extracting
a rigid transformation between the pre-treatment plan-
ning CT coordinate frame and that of the LINAC,
which is represented by one or several portal images.
Thus, in order to perform patient positioning using por-
tal images, we need to solve a medical image registration
problem (Maintz and Viergever, 1998). Image registra-
tion algorithms fall into two categories: feature-based
and intensity-based. Feature-based methods usually
have a segmentation step, during which a number of fea-
tures, either artificial (e.g., implanted radiopaque mark-
ers) or natural (i.e., usually bony anatomy) landmarks,
have to be extracted both from the planning CT and
the portal images. Intensity-based methods, on the other
hand, involve the computation of DRRs. DRRs are
two-dimensional projection images, which are computed
from the planning CT volume, by knowing the geometry
of the LINAC/EPID system. Matching of the DRRs
and portal images may either be 2D (i.e., three degrees
of freedom; two in-plane translations and one in-plane
rotation), or 3D (i.e., six degrees of freedom; three trans-
lations and three rotations). Once the rigid transforma-
tion is found, we can compute the couch position offsets
and move the couch (depending on the degrees of free-
dom that is provided) in order to line up the planned
iso-center in the pre-treatment CT with the actual LI-
NAC iso-center. If the treatment couch provides addi-
tional degrees of freedom for rotation, it can be used
to also adjust the orientation of one or two planes pass-
ing through the iso-center (Hurkmans et al., 2001).

There are a few feature-based methods described in
the literature (e.g., Bijhold et al., 1991; Bijhold, 1993;
Gilhuijs et al., 1996a; Michalaski et al., 1993; Remeijer
et al., 2000). These methods are based on matching of
the delineated/segmented bony (visible) structures or
some feature points from the portal images and the ref-
erence DRR images. In (Bansal et al., 1999), authors
proposed an iterative automatic segmentation and regis-
tration framework, where pose estimation and labeling
of the portal images are done simultaneously. Implanted
radio-opaque markers have also been used to recover
patient setup error in 3D, which includes out-of-plane
rotations (Lam et al., 1993). In Lavallee and Szeliski
(1995), the authors describe a method for recovering
the pose based on matching projected contours of some
3D shapes. Feature-based methods are in general
appealing mostly because the computational complexity
is low relative to their intensity-based counterparts. The
main reason is that the number of features and in turn
the problem dimensions are smaller. However, the solu-
tion critically depends on the robustness of the extracted
features. In other words, the burden has been shifted to
the segmentation part, which is a challenging problem
by itself, especially in the case of portal images contain-
ing little tissue contrast.

On the other hand, intensity-based methods gener-
ally use portal images and DRRs to recover the patient
setup error directly. These methods do not require
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pre-processing steps, which include extracting features
and/or segmentation. There are some 2D methods re-
ported that work based on registering portal images
and DRRs using correlation coefficients (Dong and
Boyer, 1995; Hristov and Fallone, 1996). There are also
a variety of techniques for the general 2D/3D registra-
tion application (LaRose, 2001; Penney et al., 1998,
2001; Tomazevic et al., 2003; Weese et al., 1997). Most
of these methods have targeted a pre-operative CT and
intra-operative X-ray fluoroscopy image registration
application, which is quite similar to patient positioning
and setup verification in radiation therapy. In most of
these methods, it is required to generate DRRs in an iter-
ative optimization loop. Computation of DRRs is expen-
sive by nature. In order to tackle this problem, a variety
of approaches have been investigated. Some researchers
have proposed using only partial DRRs (Zöllei et al.,
2001). In LaRose (2001), the author used a graphics
accelerated method for fast DRR computation. In LaR-
ose et al. (2000), Rohlfing et al. (2002), the authors pro-
posed a pre-computation step during which a large set of
line integrals with various starting positions and orienta-
tions are computed. In the on-line mode, the DRRs are
generated based on pre-computed line integrals. If the
desired DRR contains line integrals that have not been
pre-computed, interpolated ones among close ones in
the database is used instead. There are drawbacks to this
Fig. 1. Linear accelerator with overla
approach. First, in order to get high quality DRRs, one
has to pre-compute the line integrals with very fine sam-
pling, which will make the size of the pre-computed data-
base prohibitively large. This requirement will be more
evident if the field of view of the DRR, or in other words
the divergence of the rays, is rather large. Second, the
spatial interpolation between pre-computed line inte-
grals results in severe artifacts in the estimated DRRs.
Again, the degree of artifacts is more noticeable for
DRRs with a large field of view. These effects collectively
reduce the robustness of the registration process, which
heavily relies on the quality of the generated DRR to
estimate/refine the pose. In Gilhuijs et al. (1996b),
authors proposed an interactive method that is based
on fast generation of DRRs. This method requires good
operator training especially for non-orthogonal fields.

For intensity-based algorithms, the choice of similar-
ity measures and the optimization methods also play a
role in the practicality of the approach (Penney et al.,
1998; Rohlfing et al., 2002; Sarrut and Clippe, 2000).
Several papers have been published proposing and/or
investigating various registration methods using portal
images for patient positioning applications. However,
there are some issues, which need to be further
investigated.

For example, geometric calibration of LINAC source
(see Fig. 1) and EPID is often not thoroughly addressed.
id iso-centric coordinate system.



A. Khamene et al. / Medical Image Analysis 10 (2006) 96–112 99
Geometric calibration parameters consist of two sets of
variables defining first the iso-centric beam geometry
and second the iso-centric FPD (Flat Panel Detector)
position. The field edge matching technique, which is of-
ten used as a means to estimate the parameters of pro-
jection geometry of the system (for example Dong and
Boyer, 1995; Kim et al., 2001), can only deal accurately
with planar motion of the FPD, usually referred to as
detector sag. Precise calibration of the beam geometry
is required more importantly for the scenarios, where
multiple portal images are used for registration. A fully
three-dimensional calibration procedure similar to the
one used for cone-beam reconstruction has to be em-
ployed (Cho et al., 2004). Another issue is that the portal
images are acquired with quantum radiation energy in
Mega electron-Volt (MeV) range orders of magnitude
higher than the kilo electron-Volt (keV) range used for
CT projections. This energy discrepancy alters the type
of anatomy that is visible in the portal images (Bansal
et al., 1999). In the intensity-based registration ap-
proach, it is crucial to take these energy variations into
account within the DRR generation algorithm. This
consequently affects the utilization and robustness of
the similarity measure. Finally, there has not been a sys-
tematic and comprehensive evaluation of various setup
parameters such as number of portal images, the angles
between the images, and the image field size, on the
overall registration procedure. In this paper, we outline
a registration procedure in which these relevant practical
factors are considered. Furthermore, we design and car-
ry out experiments to investigate the issues, which are
mentioned earlier.
3. 2D/3D Registration of portal images and CT volume

Using intensity-based methods for registration of
DRRs and portal images, we determine the rigid trans-
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formation relating the iso-centric coordinate system of
the treatment machine to that of pre-treatment CT.
We use one to several portal images taken at various
gantry angles to achieve more robustness. Let us divide
the whole process into three major phases, Calibration,
Planning, and Treatment positioning (see Fig. 2). In the
calibration step, the focus is to estimate the beam geom-
etry at each gantry angle, while isolating any detector
sag during rotation. Discarding the detector sag is done
through a rectification process, which will be explained
later. In the planning stage, CT scan data are used to de-
fine the planned target volume (PTV) and to devise the
treatment plan. In the treatment positioning phase, the
portal images are taken and rectified in order to discard
the gantry sag. This is because the internal camera cali-
bration parameters estimated in the calibration phase
are only valid for rectified images. Furthermore, an iter-
ative optimization loop maximizes the similarity be-
tween the computed DRRs and portal images by
operating on the pose parameters. Once the transforma-
tion between CT and LINAC is established, the treat-
ment couch offsets (both translational and rotational)
are computed and applied to realize the treatment plan.
The procedure to obtain the transformation is outlined
in this section.

3.1. Problem formulation

Let us denote the CT volume by V, and let Ph rep-
resent the portal image taken at the gantry angle h.
The transformation operator Tð�Þ maps the CT vol-
ume to the LINAC coordinate system. This mapping
is done based on the homogeneous matrix TLINAC

CT (we
use T from now on). Furthermore, the projection oper-
ator Phð�Þ, generates a DRR from the transformed CT
data set. Finally, the similarity measure computation
for two images is done by the operator Sð�; �Þ. The
combination of the two operators Tð�Þ and Phð�Þ, once
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Fig. 3. LINAC calibration procedure.
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applied on the CT volume V, provides the floating
DRR ~P

h
(defined up to T), which should be compared

against the reference portal image Ph. Therefore, we
have:

~P
h ¼ PhðTðV ÞÞ. ð1Þ

The goal of the registration is to compute the CT to LI-
NAC transformation T, maximizing the similarity mea-
sure, as follows:

~T ¼ argmax
T

Sð~P h
; P hÞ. ð2Þ

In the case of multiple reference portal images and mul-
tiple floating DRRs, an additional issue is how to com-
bine the similarity measures. Our approach is to
concatenate the images (either row-wise or column-wise)
and compute one similarity measure on the larger
images. Some similarity measure algorithms, which use
neighborhood information, e.g., 2D gradients, have to
be adapted to omit the borderline between the images
in order not to produce incorrect results.

3.2. Geometry

In this section, we describe how to characterize the
operator Ph. As depicted in Fig. 1, we establish a coor-
dinate frame at the iso-center of the LINAC. Assuming
the beam geometry does not change for different gantry
angles, the following equation can used to derive the
3 · 4 projection matrix at given angle h:

Ph ¼ PHh; ð3Þ
where P is a 3 · 4 matrix containing the internal camera
parameters of the LINAC, and Hh is the 4 · 4 homoge-
neous transformation matrix converting point coordi-
nates from an iso-centric system to the one established
at the LINAC source. The transformation matrix Hh

can simply be specified as follows:

Hh ¼ Rxð90�ÞTyðdÞRzð�hÞ; ð4Þ
Fig. 4. (a) Depicts a portal image before rectification. The accessory tray ma
accessory markers, labeled as p0 to p3, are mapped to the center of the imag
where d is the distance between source and iso-center, Rx

and Rz are homogeneous matrices containing rotations
about the x and z axes, and Ty only contains the trans-
lation along the y axis.

3.3. Calibration

In the calibration step, we estimate the internal param-
eters of the LINAC source, packed in the matrix P,
and the parameters needed for acquiring the transfor-
mation matrix Hh in Eq. (4). In order to do so, we use
portal images of a cylindrical phantom with radio-opa-
que tungsten markers (see Figs. 3 and 4). The positions
of the markers are known within a pre-defined coordi-
nate system located on the phantom axis. We place the
phantom on the treatment couch and take six images
at multiples of 60� gantry angle. Let us assume Qi is
the coordinate of the ith radio-opaque marker in the
phantom coordinate frame, and qhi is its projection on
the portal image, taken at gantry angle h. The calibra-
tion involves recovering eight parameters (i.e., six for
the transformation from the phantom to iso-centric
coordinate frame, field of view f, and source to iso-cen-
ter distance d) by minimizing the re-projection error of
all the points, as follows:
rkers are labeled as q0 to q3. (b) Shows the rectified image, in which the
e sides.
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eT; ef ; edn o
¼ argmin

T;f ;d

X
n

�
X
i

P60nðf ; dÞTQi �Mq60ni

�� ��2; ð5Þ

where n is an integer in [0,5], and M represents a planar
motion (i.e., homography) matrix accounting for detec-
tor movement, which is also referred to as the rectifying
homography (see Appendix B for details). Finally,
Ph(f,d) depicts the projection matrix dependency to the
focal length and source to iso-center distance. We use
the Levenberg–Marquardt optimization method to min-
imize the nonlinear cost function in Eq. (5). To ensure
success of the optimization procedure, we use a rough
closed form solution for T, f, and d, as the starting val-
ues (see Appendix C for details).

3.4. DRR generation

A radiograph can be reconstructed digitally from vol-
umetric CT data, by computing the integral of the atten-
tion function along a ray passing through the volume at
a given energy spectrum. The knowledge of the ray
geometry (i.e., the field of view and flat panel detector
size) is required in order to generate the DRRs. In our
case, this geometrical information is encoded in the pro-
jection matrix P.

We assume that the scattered radiation component at
the level of the EPID is small and can be neglected. For
example, it has been shown in McDonough et al. (2002)
that for 6 and 15 MV photon treatment beams, the scat-
tered to primary ratio with a 60 cm gap between the
beam iso-center and the EPID was less than 0.06 and
0.02, respectively (for an irradiated volume of size
20 · 20 · 18 cm3 at the iso-center). Beam hardening is
also relatively small for high energy photons. For exam-
ple, for a 6 MV photon beam, we determined from mea-
sured attenuation data (in 30 cm of water) typically less
than 6% difference in beam attenuation associated with
beam hardening. The difference is even smaller for short-
er path lengths and higher photon energies. By over-
looking the scattering and beam hardening effects, the
intensity values of the radiograph image pixels can be
acquired from the following equation:

~P ij ¼
Z

SðEÞ exp �
Z
Q2lij

lðQ;EÞ dlij

 ! !
dE; ð6Þ

where S(E) is the source spectrum, and l(Q,E) is the
attenuation function at point Q for various energies E.
Furthermore, dlij constitutes the line integral element
corresponding to the point (i, j) on the radiograph ~P .
The direction of the line lij is determined by connecting
(i, j) on the radiograph to the center of projection (i.e.,
source focal point) that is specified by the matrix P.

There are some obstacles for reconstructing near per-
fect portal images like radiographs. The first is that CT
reconstructs l(Q) at an effective energy, and does not
provide energy dependent attenuation. Second, the
S(E) for LINAC is in MeV range, but l(Q) has been
reconstructed from CT using the source in keV range.
We have to make some assumptions to be able to ad-
dress these problems. First, we assume that CT attenua-
tion l(Q) is reconstructed using CT projections with an
effective beam energy E0

CT. Second, the treatment beam
effective energy is E0

LINAC. Moreover, there exists a func-
tional dependency Cð�Þ between lðE0

CTÞ and lðE0
LINACÞ.

Therefore, Eq. (6) can be simplified as follows:

~P ij ¼ exp �
Z
Q2lij

C lðQ;E0
CTÞ

� �
dlij

 !
. ð7Þ

We characterize the conversion operator Cð�Þ as a linear
function within a limited support of [ll,lh], as shown in
Fig. 5 (see Hubbell, 1982; Milickovic et al., 2000 for de-
tails). Three parameters characterizing Cð�Þ are the
width of the support w, the center of the support c
and the saturation value o. We estimate the parameters
of the conversion function Cð�Þ by minimizing the differ-
ence metric between a sample portal image and the cor-
responding DRR. This so-called radiometric calibration
has to be done only once for each pair of LINAC and
EPID. The difference metric can also be defined in a
way that represents only global brightness and contrast
differences. This relaxes the requirement of having one
pair of registered DRR and portal image. The radiomet-
ric calibration procedure can simply be formulated as
follows:

f~w;~c; ~og ¼ argmin
w;c;o

k~P ðw; c; oÞ � Pk2. ð8Þ

We take advantage of 3D texture-based volume render-
ing techniques to generate DRRs (Cabral et al., 1994).
The method, which utilizes the graphics processing unit
(GPU), yields better computational efficiency. In this
approach, a 12 or 16 bit CT volume is loaded into
graphics memory and two dimensional cross-sectional
slices are computed perpendicular to the dynamic view-
ing direction and integrated from back to front with a
certain transparency value, implementing Eq. (7). The
attenuation conversion operator is implemented using
dependent texture mapping capabilities, now available
in most graphics cards. A dependent texture constitutes
the mapping that converts 12 or 16 bit attenuation



Fig. 6. (a) Portal image taken from the Rando� body phantom, (b) DRR generated with 3D texture mapping/dependent texture, corrected for
energy discrepancies.

102 A. Khamene et al. / Medical Image Analysis 10 (2006) 96–112
values of a 3D volume to new values. The rendering then
happens using the mapped attenuation coefficients. The
dependent texture mapping procedure is performed
without performance penalty in the graphics cards,
which support such an operation (e.g., a GeForce FX
5600 from NVidia Corporation,2 Santa Clara, CA).

Using this technique, we reconstruct high quality
DRRs very efficiently. It takes about 60 ms to generate
256 · 256 DRRs from a 256 · 256 · 216 volume with a
NVidia FX 5600 card with 256 megabytes of texture
memory. The computation time reduces to 35 ms once
the volume size is reduced to 128 · 128 · 108. Fig. 6 de-
picts the quality of the DRRs generated using this meth-
od. Radiometric calibration plays the central role in
making the DRRs look very similar to the correspond-
ing portal image.

3.5. Similarity measures

Various similarity measures have been proposed and
tested for medical image registration algorithms. There
is a large body of literature on this issue, and readers
may refer to them for detailed descriptions of each sim-
ilarity measure and its formulation (Hipwell et al., 2003;
Penney et al., 1998; Roche et al., 1998; Sarrut and
Clippe, 2000; Wells et al., 1996).

As shown in Eq. (2), a similarity measure can be
modeled by an operator, which takes two images and
returns a scalar value representing the level of resem-
blance between them. An ideal similarity measure peaks
once the two images are geometrically registered,
regardless of the radiometric discrepancies between
them. Furthermore, it smoothly decreases as one of
the images is geometrically changed. In other words, a
perfect similarity measure should be able to discriminate
between geometric and radiometric changes in the
2 www.nvidia.com
images. Various similarity measures can tolerate and
disregard radiometric variations.

The simplest image dissimilarity measure is in fact the
sum of square differences (SSD) of the pixels of the two
images. In order for this measure to perform, the images
have to be radiometrically identical. In the correlation
coefficient (CC) computation, the assumption is that
there exists a linear dependency between the intensity
profile of the two images. In other words, only global
contrast and brightness variations in the images can be
disregarded. Local normalized correlation (LNC) allevi-
ates the latter assumption by subdividing the images
into blocks and computing the correlation coefficient
for each block separately, averaging the results to get
a scalar value. Variance weighted correlation (VWC) is
similar to LNC, the only difference is that corresponding
blocks correlation coefficients are weighted by the
block�s energy before averaging. Gradient difference
(GD) computes the sum of square differences (or some
other error function) over the gradient images, assuming
the intensity gradients are more robust than the original
pixel intensities. On the other hand, gradient correlation
(GC) measures the correlation coefficients of the gradi-
ent images, enforcing a less restrictive assumption of
having the gradient images linearly correlated. Pattern
intensity (PI) directly assesses the patterns in the differ-
ence image. The measure reaches its maximum once
there is no ‘‘pattern’’ present in the difference image
(Penney et al., 1998).

Besides the deterministic (dis)similarity measures, we
have implemented a family of stochastic similarity mea-
sures. The correlation ratio (CR) assumption is that the
intensity probability distributions of the two images are
functionally dependent (Roche et al., 1998). The mea-
sure estimates the strength of the functional dependency.
Entropy estimators gauge the information content of
random variables. Overlapping information content of
two variables can be computed once one knows how
to estimate the entropy of a random variable. Mutual

http://www.nvidia.com
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information (MI) is the overlapping information content
computed based on Shanon�s entropy (Wells et al.,
1996). MI as a similarity measure is appealing since it
does not have a restrictive assumption over the image
intensities.

The similarity measure between a pair of floating and
static images can be thought of as the cost function de-
fined over the transformation parameters of the floating
image. The general properties of cost functions (i.e.,
convexity, smoothness) dictate the robustness of the
optimization algorithm in finding the extremum. Cost
function properties have a direct link to the type of
the similarity measure and the nature of the data. One
of our goals in this paper is to investigate the robustness
of the various similarity measures for the portal image
to CT registration problem.

3.6. Optimization

Optimization procedures involve finding a set of inde-
pendent variables, in the domain of a cost function,
which take the function to a maximum or minimum.
In our application, the cost function is the similarity
measure between the portal image and the floating
DRR as shown in Eq. (2). The floating DRR is depen-
dent on the transformation between pre-treatment CT
and the LINAC coordinate systems. Consequently, the
similarity measure is the function of the same six inde-
pendent variables mentioned earlier. The optimization
constitutes a search algorithm through the parameter
space with a specific iterative strategy. Optimization
methods can be divided into two major categories based
on using the derivatives of the cost function. We imple-
mented and used a gradient based (e.g., Gradient Des-

cent; Griewank, 1981) and various non-gradient based
(e.g., Best Neighbor Search; Törn and Žilinskas, 1989),
and Powell–Brent (Brent, 1973; Powell, 1964) methods
for the application at hand. One problem in global opti-
mization techniques is the possibility of being trapped in
a local optimum. This could be alleviated in our applica-
tion by designing/choosing a similarity measure, which
yields a smoother cost function. There are also some
techniques to address this problem by taking advantage
of redundant optimization passes with randomized
starting points or some randomized steps, which has
the trade-off of increasing the overall computation time
(Gorse et al., 1994). Furthermore, having a large dis-
crepancy between the reference and floating images also
increases the chance of being trapped in local optima
and may eventually lead to failure of the optimization
process as a whole. In order to tackle this problem, we
consider two approaches. In the first approach, the user
has the option to maneuver the pre-treatment CT vol-
ume in six-dimensional space, and observe the generated
DRR interactively in order to find a reasonably good
starting point for the automatic registration procedure
[a similar approach has been reported in Gilhuijs et al.
(1996b)]. The second approach is to perform multi-opti-
mization passes on a pyramid of images with dyadic res-
olution starting from the lowest. Lower resolution
images produce smoother cost functions, decreasing
the chance of having local optima problems. Once the
optimization is converged on one level, the result will
be used as the starting point of the next higher resolu-
tion level. We choose to have three levels of dyadic res-
olution starting from the highest level at 256 · 256
resolution.

Another important consideration is the way the steps
for searching/probing the parameter space are defined.
The search steps at each dimension of the parameter
space have to be ideally arranged in a way that the cost
function changes are homogeneously sensible. The latter
directly translates to the appearance change (conse-
quently, changes in the similarity measure value) in the
generated DRRs as we change each parameter of the
search space. It is widely known that once the focal
point of the source is far from the object, lateral transla-
tions are virtually in-distinguishable from out-of-plane
rotations (Young and Chellappa, 1992). This causes
the cost function not to have required observability to
arrive at a robust solution. To overcome this, we always
compute the search steps within the coordinate system
placed at the center of the object. The scaling factor
for rotational steps is also set in a way that the total
movements of the bounding box vertices of the object
are identical to the translational steps. In this way, we
make sure that the cost function changes with regard
to each parameter variation are at least in the same or-
der of magnitude. Moreover, we avoid overoptimization
of a subset of parameters (Törn and Žilinskas, 1989).

3.7. Couch position adjustments

As it is explained in Section 1, the treatment begins
with specifying the targeted volume in the planning
CT data set. The position of the beam iso-center is also
specified in the planned target volume. The transforma-
tion T specified through the optimization process in Sec-
tion 3.6, along with the specified iso-center in the PTV
(let us call it �C) can be used to compute the treatment
couch adjustments. The nature of the adjustment also
depends on the number of movements (i.e., degrees of
freedom), which is provided by the couch top mechan-
ics. Most of the modern couches support at least three
translations (i.e., Dtx,Dty,Dtz), and one rotation (D/y).
In addition, couch tops are becoming available that per-
mit roll and tilt (D/z and D/x, respectively) (Litzenberg
et al., 1999).

First, let us assume that the axial plane in the CT
planning coincides with the plane passing through the
LINAC iso-center and trajectory of the LINAC for
various gantry angles (i.e., the LINAC axial plane). In
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this case no rotational adjustment is necessary. The
couch translation that maps the CT planned iso-center
to the LINAC iso-center can be calculated as follows:

Dt ¼ �TC; ð9Þ
where C is the homogeneous coordinates of �C, and D
t = [Dtx,Dty,Dtz, 1]. Let us also consider a case, where
two perpendicular planes with the normals of nx and
nz are specified in the PTV, and have to be coincided
with the LINAC�s sagittal and axial planes, respectively.
In order to realize this setup, we need to have additional
angular corrections. The angular corrections can be de-
rived as follows:

D/ ¼ A ðRT½nxjnx � nzjnz�Þ�1
� �

; ð10Þ

where D/ = [D/x,D/y,D/z], RT is 3 · 3 rotation part of
the homogeneous matrix T, and A is the operator that
decomposes rotation matrices into three consecutive
rotation angles about x, y, and z, based on the Euler–
Cardan formula. In cases, where couch tops do not sup-
port all three angles, the ability to map any two planes
from PTV to the corresponding LINAC ones will also
be restricted.
4. Experimental results

A series of experiments was performed to test and
validate (1) the implementation, (2) merit of various
similarity measures and (3) the efficiency of the preferred
algorithm for various setup parameters. The perfor-
mance measure in all cases was calculated based on
the mean and standard deviation of distance in millime-
ters between the computed couch position adjustment
vector from the intensity based algorithm (i.e., �TC)
and that from the ‘‘gold standard’’ pose (i.e., �T0C,
where T0 is the gold standard transformation). In other
words, the error measure is defined to be the target reg-
istration error (TRE) of the planned iso-center C:

e ¼ TREðCÞ ¼ kT0C � TCk. ð11Þ
We use the error measure in Eq. (11) throughout the pa-
per. The planned iso-center for these calculations was
considered to be the point at the center of the CT vol-
ume. For all tests, the initial poses consisted of 100 ran-
domly selected poses with uniform independently
distributed translations in millimeters within [�10 10]
and rotations in degrees within [�10 10] around the
gold standard pose.

In the first set of experiments, synthetic data were
used. Tests were performed on the CT volume of a Ran-
do� head phantom (The Phantom Laboratory, Inc.,3

Salem, NY) with voxel size 256 · 256 · 216. We gener-
3 http://www.phantomlab.com
ated one or multiple DRRs from the CT volume. We
used the DRR(s) as reference portal image(s). Ground
truth pose in this case was the pose, at which the DRRs
were generated. We also set the initial pose for the reg-
istration process by random variation of the ground
truth pose. Multiple runs of the registration process
using the simulated portal images from various gantry
angles yield normal-like distribution of the TRE with
a mean of 0.1 mm. These results were more or less
regardless of the choice of similarity measure and opti-
mization procedure. They validated the implementation
of the algorithms, permitting further tests on real portal
images of a phantom and patients.

4.1. Experiments with phantom data

We used portal images of a Rando� body phantom
to validate the registration procedure. For this set of
experiments, the beam was generated by a Siemens Pri-
mus LINAC (Siemens Medical Solutions Inc., Concord
CA, USA). The portal imaging device was an amor-
phous silicon detector from BioScan (Bio Scan Inc.,
Washington, DC, USA). A CT Volume of the Rando�

body phantom was acquired using a Siemens Somatom
CT scanner (Siemens Medical Solutions Inc., Forch-
heim, Germany).

We attached four radio-opaque markers on a plate,
which was then placed into the accessory tray of the LI-
NAC to be able to account for flat panel detector move-
ments (see Section 3.3). The LINAC system was then
calibrated by taking six portal images of the calibration
phantom as it was explained in Section 3.3.

In order to establish a ground truth (i.e., gold stan-
dard pose), 16 radio-opaque tungsten markers were
positioned on the Rando� body phantom. The phantom
was then CT scanned. The CT volume original size was
512 · 512 · 216 with 0.9 mm slice resolution and 3.0 mm
slice thickness. For the registration procedure, we down-
sampled the images to reduce the total volume size to
256 · 256 · 216. The phantom was then placed on the
treatment couch and 60 portal images were acquired
from various gantry angles. After the image rectification
procedure, we segmented out the radio-opaque markers
from both the CT volume and portal images. We then
computed the gold standard pose by matching up the
2D location of the radio-opaque markers and their cor-
responding 3D locations in the CT volume through the
minimization shown in Eq. (5). The only difference here
was that the two parameters f and d had already been
specified through the calibration procedure. The LI-
NAC plus EPID pair was also radiometrically calibrated
using the method outlined in Section 3.4.

We performed a series of registrations using one or
two portal images with 6�, 12�, and 90� vergence angles.
The initial pose for all these tests was generated by
randomly changing the ‘‘ground truth’’ pose using the

http://www.phantomlab.com


Fig. 8. TRE mean and standard deviation for registration using 0–90�
portal images for various similarity measures.
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procedure previously discussed. The registration results
with random initial poses provide the basis for the error
analysis (see Fig. 7).

The error analysis (mean and standard deviation of
TRE, as explained in Eq. (11)) for various similarity mea-
sures is depicted in Fig. 8. The registrations were per-
formed using a pair of portal images with 90� vergence
angle. The non-stochastic similarity measures LNC,
GC, and PI performed better than the information theo-
retic ones such as MI and CR. The simple explanation is
that the high quality and the degree of resemblance of
DRRs to the portal images causes themeasures withmore
restrictive assumptions to perform more robust. We also
examined the effect of using various optimization tech-
niques, namely the Best Neighbor Search, Gradient Des-
cent, and the Powell–Brent method. The mean and
standard deviation of the TRE for various registration
experiments using different optimization techniques re-
vealed no significant difference. In other words, the type
of optimization technique did not seem to be relevant.

Fig. 9 shows the error analysis results for the two
measures LNC and MI for pairs with various vergence
angles. It is also intuitive to observe that as we use
two portal images instead of one and increase the
vergence angle, both mean and standard deviation of
the TRE decrease. The mean TRE doubles once the ver-
gence angle is decreased from 90� to 12�, however, it still
remains less than 3 mm. The 68.3% ellipsoids represent-
Fig. 7. (a) Rando� phantom on treatment couch, (b) CT volume of the Rand
portal images taken at gantry angle 0� and 90�, in which the radio-opaque m
ing the spatial distribution of the TRE is also depicted in
Fig. 11. This figure shows that the error magnitude is
higher in the viewing direction compared to the other
directions and the error distribution tends to become
more isotropic as the vergence angle increases. The
lateral in-plane error distribution is limited to �1.5 to
1.5 mm, which might be sufficient for some applications.

Fig. 10 (a) shows the error analysis results based on the
registration using two portal images taken at 0� and 90�
with various field sizes. It is always desired to reduce the
o� phantom, radio-opaque markers appear as bright spots, (c) and (d)
arkers also show up as bright spots.
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Fig. 9. TRE mean and standard deviation for portal image registration using (a) LNC and (b) MI similarity measures for various gantry angles.

Fig. 11. Spatial distribution of the iso-center TRE for registration
using single or stereo portal pairs with various vergence angles.
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amount of unnecessary radiation to the patient by
decreasing the field size. These results show that by reduc-
ing the field size from 41 to 17 cm2 the average error in-
creases from less that 1 to about 3 mm. Having a field
size of 25 cm2 seems to be a good compromise for this spe-
cific data set as it yields a mean TRE better than 1.5 mm.

Processing times for the total registration procedure
have been graphed in Fig. 12. The average number of iter-
ations was 88 for the stereo case with 90� vergence angle,
and 101 for the single portal image case. The smaller
number of iterations in the stereo case shows that the cost
function was more well-defined and stable compared to
the single portal image case. Finally, Figs. 13–15 depict
the sample DRR images at start and end of the optimiza-
tion process overlaid by outlines of the portal images for
comparison. These figures depict that using this algo-
rithm, we can recover translational and rotational dis-
crepancy in range of �10 to 10 mm and �10� to 10�,
respectively, within a reasonable amount of time.

4.2. Experiments with patient data

In absence of radio-opaque markers, which can pro-
vide a gold standard registration pose, our patient
Fig. 10. (a) TRE mean and standard deviation for portal image registration u
images of various field sizes.
experimental results can only be verified qualitatively.
Figs. 16 and 17 show the registration results for two
different patients. Fig. 16 (a) shows the left lateral
(LL) portal image of a patient�s brain, (b) depicts
the DRR generated at the estimated pose, and (c)
shows the estimated position of the patient planning
CT volume in the LINAC coordinate system. Fig. 17
shows the same sequence for another patient�s abdo-
men, which was imaged in anterior–posterior (AP)
direction.
sing LNC similarity measures for various field sizes. (b) Sample portal
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5. Summary and conclusion

In this paper, we presented and evaluated a method
for automatic patient positioning in radiation therapy.
The centerpiece of the approach is geometric and radio-
Fig. 13. Sample DRR pair taken at 0� and 90� gantry angles, overlaid w
registration.
metric calibration of the LINAC. The detector sag prob-
lem has been addressed in the geometric calibration
process. The radiometric calibration parameters are
then exploited in the DRR generation procedure, which
yields high quality images. We also performed the DRR
generation through the graphics pipeline, which in-
creases the computational efficiency while preserving
the quality. We have done a comparative analysis of var-
ious similarity measures and optimization methods. The
conclusion was that simple similarity measures such as
LNC yield more accurate results as long as the radio-
metric calibration is carefully performed. Furthermore,
various optimization schemes did not change the final
error measures. Error analysis in a phantom study
showed that the patient positioning can be achieved with
less than 1.0 mm mean TRE for large field (i.e., 41 cm2)
portal images with 90� vergence angle. The mean error
increased to about 1.5 mm as the field size was reduced
to 25 cm2. Further error analysis on patient data has to
be performed in the future. More importantly, the effi-
cacy of the automatic registration algorithm on the
overall treatment procedure has to be evaluated.
ith outlines of corresponding portal images (a) before, and (b) after



Fig. 14. Sample DRR pair taken at 0� and 12� gantry angles, overlaid with outlines of corresponding portal images (a) before, and (b) after
registration.

Fig. 15. Sample DRR image taken at 0� gantry angle, overlaid with outlines of corresponding portal image (a) before, and (b) after registration.
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Appendix A. Projection matrix computation

Let us assume that a 3D point �Qi is projected under a
3 · 4 projection matrix P onto a 2D image point �qi.
Therefore, we will have qi @ PQi, where qi and Qi are
homogeneous coordinates of points �qi and �Qi and @ de-
picts an up-to-scale equality. The previous equation can
be re-written as follows:



Fig. 17. (a) Shows portal image of the abdomen, (b) depicts the matching DRR image, and (c) shows the estimated patient�s position on treatment
couch.

Fig. 16. (a) Shows portal image of the brain, (b) depicts the matching DRR image, and (c) shows the estimated patient�s position on treatment couch.
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Qix Qiy Qiz 1 0 0 0 0 0 0 0 0

0 0 0 0 Qix Qiy Qiz 1 0 0 0 0

0 0 0 0 0 0 0 0 Qix Qiy Qiz 1

264
375

�

P11

P12

..

.

P3;4

266664
377775 ¼ 1

k

qix
qiy
1

264
375; ðA:1Þ

where k is an unknown scaling factor. In Eq. (A.1), if we
call the 3 · 12 matrixQi, the 3 · 1 vector qi, and assign P

to be the row-wise unwrapped version of P, we will have
QiP ¼ 1

kqi. If the number of corresponding pairs is n, we
can arrange a combined matrix equation like QP ¼ 1

kq,
where Q and q can be acquired by stacking Qi and qi
for i 2 [0,n � 1] on top of one another. If n P 12, we
can compute an up-to-scale ambiguous solution for
the projection matrix elements as follows:

P ¼ 1

k
ðQTQÞð�1ÞðQTqÞ; ðA:2Þ

where superscript T depicts the transpose operation. Fi-
nally, the projection matrix P can be constructed by re-
arranging the elements of vector P.
Appendix B. Image rectification

A homography matrix models planar motion of
points projected onto a pair of images. If we have two
images with n pairs of corresponding points, such as �pi
and �qi for i 2 [0,n � 1], and these points are lying on a
plane, then we will have pi @ Mqi, where pi and qi are
the homogeneous 2D coordinates of �pi and �qi, respec-
tively, M is the 3 · 3 homography matrix, and @ depicts
up-to-scale equality. Similar to Eq. (A.1), the planar
motion equation can be written as follows:

qix qiy 1 0 0 0 0 0 0

0 0 0 qix qiy 1 0 0 0

0 0 0 0 0 0 qix qiy 1

264
375

M11

M12

..

.

M33

266664
377775 ¼ 1

k

pix
piy
1

264
375;

ðB:1Þ

where k is an ambiguous scale factor. Eq. (B.1) can be
re-written as QiM ¼ 1

kpi. By stacking Eq. (B.1) for differ-
ent corresponding points (i.e., i 2 [0,n � 1]) on top
of one another, we will have QM ¼ 1

kp, where Q =
[Q0|Q1|� � �|Qn � 1]

T, and p = [p0|p1|� � �|pn � 1]
T. Finally,

by having more than four corresponding points, one is
able to compute the elements of the homography matrix
up to a scaling factor, as follows:

M ¼ 1

k
ðQTQÞð�1ÞðQTpÞ. ðB:2Þ

The homography matrix M can be computed by re-
arranging the elements ofM into a 3 · 3 matrix. In order
to account for flat panel detector sag, which can be mod-
eled as planar motion, we use a plate (placed in the acces-
sory tray close to the LINAC source) with four markers
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that appear at the periphery of the portal image (see
Fig. 4(a)). The locations of these points pi for i 2 [0, 3]
change as the gantry rotates. This is the result of the flat
panel detector movement with respect to the LINAC
source. We assume a pre-defined ideal location for these
points qi, i 2 [0,3], that have been located at the center of
the image sides (i.e., [0.0,511.5], [511.5,1023.0],
[1023.0,511.5], and [511.5,0.0] for q0, q1, q2, and q3,
respectively, assuming the portal image size is
1024 · 1024). The process of rectification includes: (1)
locating the pi for i 2 [0, 3] in the portal image, (2) calcu-
lating the homography matrix from Eq. (B.2) using the
ideal position of the points (i.e. qi for i 2 [0, 3]), (3) apply-
ing the homography matrix M to all points within the
portal image. Sample images are shown in Fig. 4. The
rectified images can be thought to have been acquired
from a static position of the flat panel detector (i.e., a
so-called virtual detector) with respect to the LINAC
source. All further processing, including the geometric
calibration and registration is done on the rectified
images.
Appendix C. LINAC closed form calibration

We first have to assume that the flat panel detector
and the LINAC source are rigidly attached or as it is ex-
plained in Appendix B, the portal images are corrected
for any movement of the flat panel detector. The process
of calibration then involves characterization of the pro-
jection matrices, which can be used to project any point
from the iso-centric coordinate frame of the LINAC to
the image point on the flat panel detector for various
gantry angles. The projection matrix for the gantry an-
gle h can be derived from Eq. (3), and its elements are
as follows:

Ph ¼
f cosðhÞ þ ox sinðhÞ �f sinðhÞ þ oy cosðhÞ 0 oxd

ox sinðhÞ oy cosðhÞ �f oyd

sinðhÞ cosðhÞ 0 d

264
375;

ðC:1Þ

where ox and oy are the x and y coordinates of the im-
age center. In our case, where we use the rectified
images with size 1024 · 1024, we have ox = oy =
o = 511.5. Furthermore, f is the focal length in pixel
units, which can also be expressed in terms of the
FOV and image size (i.e., f ¼ 511:5= tanðFOV Þ) in the
case of rectified images. In order to have an estimate
of the parameters of this matrix (i.e., f and d), we
use a calibration phantom as shown in Fig. 3. We take
several portal images of the calibration phantom (six
at multiples of 60� angle starting from 0�), and after
rectification and finding the radio-opaque markers in
the portal images (depicted in Fig. 7), we estab-
lish 2D–3D correspondences and find the projection
matrices bP i for i 2 [0,5] (note that h = 60i) using the
procedure outlined in Appendix A. It should be noted
that bPi are the projection matrices, which map a point
from the calibration phantom coordinate frame onto
the portal images and not from the iso-centric coordi-
nate frame of the LINAC. Therefore, we first have to
find the iso-center and establish the iso-centric coordi-
nate frame as shown in Fig. 1.

It can easily be shown that the LINAC source loca-
tion Sh (at the gantry angle h) in the calibration phan-
tom coordinate frame can be computed using �C�1

i Ci,
where Ci is a 3 · 3 matrix consisting of the first three col-
umns of bPi, and C is the last column of bPi. All the six
source points (i.e., Sh for various h) should ideally lie
on a plane. The LINAC iso-center in the phantom coor-
dinate frame Oph can approximately be computed using
the average of Sh for h = 60i, where integer i 2 [0,5].
More accurate estimation of the iso-center involves fit-
ting a circle to the six points and computing the center
of that circle. The normal of the plane, which is fitted
to these points, Vz indicates the z direction of the iso-
centric coordinate frame within that of the calibration
phantom. The unit vector in y direction can be com-
puted by normalizing the vector connecting S0 to Oph

as follows, Vy = (S0 � Oph)/(jS0 � Ophj). Finally, the
unit vector in x direction is computed using the follow-
ing equation: Vx = Vy · Vz. We then have to arrange Vx,
Vy, Vz and Oph into a homogeneous matrix H

ph
iso, which

transforms the points from the LINAC iso-centric coor-
dinate frame to that of the calibration phantom, as
shown below:

Hph
iso ¼

V x V y V z Oph

0 0 0 1

" #
. ðC:2Þ

It can easily be shown that the estimates of Ph can be
computed as follows:

~P
h ¼ bPh

Hph
iso. ðC:3Þ

As it is shown in Eq. (C.1), the elements of ~P
h
depend on

the parameters f and d. Following equations can be used
to recover d and f given the elements of the matrix ~P

h
:

~f ¼ 1

12

X5
i¼0

�~P
60ið2; 3Þ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P
60ið1; 1Þ2 þ ~P

60ið1; 2Þ2 � o2
q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P
60ið3; 1Þ2 þ ~P

60ið3; 2Þ2
q ;

ðC:4Þ

~d ¼ 1

18

X5
i¼0

~P
60ið3; 4Þ þ ð~P60ið1; 4Þ þ ~P

60ið2; 4ÞÞ=offiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~P
60ið3; 1Þ2 þ ~P

60ið3; 2Þ2
q ; ðC:5Þ

where the denominators are used only to recover scale
factor ambiguity, which exists in estimation of the pro-
jection matrices. These estimates provide the initial val-
ues needed for non-linear optimization with the cost
function shown in Eq. (5).
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