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ABSTRACT

The accuracy of a real time tracking system for industrial AR
(IAR) applications often needs to comply with production toler-
ances. Such a system typically incorporates different off-/online
devices so that the overall precision and accuracy cannot be triv-
ially stated. Additionally, tracking needs to be flexible to not inter-
fere with existing working processes and it needs to be operated and
maintained free of error by on-site personnel who typically have a
quality management (QM) background. For the final validation of
such a complex tracking setup, empiric testing alone is either too
expensive or lacks generality.

This paper demonstrates a new approach to define and verify, de-
ploy and validate, as well as to operate and maintain an IAR track-
ing infrastructure. We develop our concepts on the basis of an IAR
application in the field of QM in the aircraft production process. It
integrates a qualitative visual comparison with accurate quantitative
measurements of 3D coordinates using a metrological probe. The
focus is on the verification, validation, and error free operation.

Monte Carlo simulation predicts the error for arbitrary system
states. Using a limited set of empiric measurements in the target
environment allows us to validate the simulation and thereby val-
idate the application. This combination assures compliance of the
IAR application with the required production tolerances.

We show that our simulation model yields realistic results, using
an in-depth analysis of an optical IR tracking system and a high-
precision coordinate measurement machine capable of densely
sampling the entire tracking volume. Additionally, it allows for
a straightforward derivation of run-time consistency checks for the
automatic identification of possible system failures. Also, estima-
tion of the system performance during the planning and definition
phases becomes possible, using the elementary accuracy specifica-
tions of the involved sensor systems.

1 MOTIVATION

A tracking infrastructure is required in all industrial AR (IAR) ap-
plications to perceive and interact simultaneously with real and vir-
tual objects. Especially in the naval and avionic industry, products
are very complex and highly customized. The high rate of manual
work is an opportunity to create new tools using AR technology that
have the potential to decrease production time and cost. Thereby,
the reliability, robustness, and accuracy of the tracking infrastruc-
ture is an important factor for the success of such applications. Be-
sides the tracking system, there are various other application con-
straints towards usability and work safety that have to be dealt with,
but which are out of the scope of this paper. A detailed description
of the challenge to bring AR out of the laboratory into an industrial
context is provided in [6].

An exemplary IAR application for the support of quality man-
agement (QM) processes in the avionic industry is depicted in Fig-
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Figure 1: Industrial Augmented Reality

Figure 2: Metrological Measurement & Tracking Device

ure 1, where a worker sees an x-ray view on the electric wiring. Be-
sides qualitative comparison by video overlay or display of purely
virtual content, there is a need for quantitative measurements in real
time, e.g. by using a probing device as depicted in Figure 2. There-
fore, a certain level of accuracy has to be guaranteed for all specified
modes of operation. The purpose is to use AR as a normal tool, fully
integrated into the working process. However, many factors might
complicate the design of a suitable tracking infrastructure. Tools
within the existing work procedures in the target environment need
to be robustly tracked using added markers. Also for registration of
the virtual and the real model, markers have to be attached to the
product itself. Besides typical issues like occlusion and reliability,
such modifications are strictly limited in order not to compromise
the existing process and product.

Especially in the avionics industry, another problem is the large
potential area the tracking system should be used in. This requires
solutions to increase the flexibility of the tracking system. Man-
ufacturing procedures might require removal and reinstall of the
tracking system, invalidating the registration and resulting in re-
calibration and maintenance effort. Ideally, such procedures can
be performed through on-site personnel without requiring detailed



technological insight by providing an appropriate user interface.
In most common IAR scenarios, these issues exist at least par-

tially. Often, they can only be addressed by strongly limiting the
use case scenario or by the integration of various sensor devices.
Especially for those complex IAR setups it is challenging to assure
compliance with requirements like production tolerance. This has
to cover the entire error chain, consisting of the individual sensor
errors accumulated and propagated throughout the entire system
setup. This therefore covers not only the real-time error but also
registration procedures of rigidly mounted sensors, objects, and
markers, based on error-prone measurements [10]. Typical generic
vendor specifications are often insufficient to provide a reliable as-
sessment of the overall tracking system performance in the explicit
use case scenario.

The goal of this paper is not to find solutions to all these IAR
problems1. Many solutions exist in the literature to provide prag-
matic solutions to special problems, e.g. [9][14]. Rather, general
guidelines shall be provided to handle the complexity of the track-
ing setup, with a focus on the need in IAR for a well-defined track-
ing accuracy.

Following classic approaches from the metrological domain in
production engineering, the validation of the tracking infrastructure
would have to be accomplished through exhaustive empiric mea-
surements, see e.g. [22][23]. This is affordable only for single
systems such as a mechanical measurement arm or a theodolite that
can easily be analyzed in a controlled setup. A complex tracking
infrastructure incorporates several sensor systems that potentially
have to be rigidly installed in the target environment, making the
acquisition of empiric measurements for comparison very difficult.

In this paper we propose to combine a small set of representative
empiric measurements with a comprehensive simulation to cover
all possible constellations and system configurations in the use case
scenario. We rely on a tracking framework to model the simula-
tion using standardized and integrated components for all neces-
sary computations. This approach requires identifying the degree
to which the simulation model is an accurate representation of the
real world [2].

After introducing the relevant literature in this field, Section 3
describes our approach for the various design and implementation
stages of an IAR application. Section 4 details our exemplary IAR
scenario depicted in Figure 1&2. Section 5 describes in detail the
application of our approach which is then evaluated in Section 6 on
the basis of our exemplary scenario. It will be shown that simulation
methods scale well to such complex setups and provide reasonable
and valid results.

2 RELATED WORK

Prior work to analyze the accuracy of tracking setups and sys-
tems can mainly be categorized in online and offline error estima-
tion/propagation techniques and the analysis of individual systems.

Online error propagation approaches such as [3][5][9] provide
an estimate of the error in real time. It is based on the current sys-
tem state, e.g. distances between camera and marker as well as
the visibility of fiducials. Due to performance reasons, the predic-
tion throughout the entire error propagation chain usually requires
the linearization of each computational step. This simplification is
fully sufficient to give the user an real-time insight into the current
system performance. In IAR however, the validation of a track-
ing system requires an assessment of the estimated overall tracking
accuracy before deployment.

Offline techniques are split into two domains, simulation and
system analysis using ground truth measurements. Simulation tech-
niques have been applied successfully to assess the accuracy of of-
fline photogrammetric methods or metrological measurement de-

1although we had to tackle some of the described issues in our exemplary
scenario, of course

vices such as theodolites or laser trackers as well as real time track-
ing systems. The goal is to validate a system or to detect the main
sources of error and to point out optimization potentials. Penten-
rieder et al. use a Monte Carlo simulation approach to predict the
accuracy of an optical square marker tracker by automatic gener-
ation of artificial camera images [17]. Hastedt also uses a Monte
Carlo approach to simulate the behavior of a photogrammetric sys-
tem [8]. Both validate the simulation approach using high-precision
measurement data. Simulation has also been used to assess algo-
rithm performance [4][7].

’Ground truth’ measurements have also been used many times to
benchmark various types of tracking systems. Schmidt et al. use a
high precision linear stage to evaluate various IR tracking systems
manufactured by NDI2 along the three spatial axes [21]. Satoh et
al. use an industrial robot to move an HMD through the tracking
volume to evaluate the VICON3 and LaserBird4 optical tracking
systems [20]. They provide a framework which is applicable to
various systems but requires dense ground truth data. However, the
practical use of such a framework is limited since it requires a robot
to provide dense empirical measurement data, which is not feasi-
ble in a typical IAR target environment, as described in Section 1.
Also, no general statement for design criteria such as the world reg-
istration procedure or the layout of a marker, which have a strong
impact on the overall accuracy, is possible. Although an elemen-
tary uncertainty specification is determined, it can hardly be reused
because typically too many factors will differ, even in similar sce-
narios. This is also covered by our own experience with optical IR
tracking [14]. Other works restrict themselves to the assessment of
an individual system. Lieberknecht et al. use a FARO measure-
ment arm to generate ground truth image data which is then used to
assess the quality of different markerless tracking algorithms [15].
Similar work has been done in the medical domain where Rohling
benchmarked the tracking of medical instruments using a FARO
measurement system as a ground truth [19]. Even vendors provide
insight into their systems to propose means to detect invalid cali-
bration [23].

Allen et al. presented a general method for the evaluation and
comparison of the expected performance of tracking systems [1].
Their approach even incorporates scene dynamics and provides ad-
vanced visualization concepts. However, their simulation considers
only a single tracking system using a moving target and a pose esti-
mation algorithm. The required registration and calibration proce-
dures within IAR scenarios are not covered.

3 APPROACH

It is important to provide means to setup and implement robust and
maintainable tracking infrastructures to allow AR applications to
spread in the industrial domain. We already proposed the graph-
ical tool trackman for this purpose [13]. It is based on the Ubi-
track5 library. The spatial relationship graph (SRG) and spatial re-
lationship pattern concept allows for the creation of efficient and
semantically correct runtime data flow descriptions for arbitrary
calibration/registration and runtime tracking problems [18]. This
generic approach shall now be strengthened, to obtain an integrated
approach for the management of tracking in industrial setups.

Three important development phases can be distinguished in an
industrial context. During the definition phase, the tracking system
is planned, algorithms are implemented or combined, and buying
decisions are taken. Then, the planned system is installed in the tar-
get environment. This deployment phase also incorporates the ini-
tial calibration of devices and registration of spatial transformations

2www.ndigital.com
3www.vicon.com
4www.ascension-tech.com
5campar.in.tum.de/UbiTrack/WebHome



between sensors, markers, and objects. Subsequently, the system is
used productively in the operation and maintenance phase.

As displayed in Figure 3, we extend the definition phase by simu-
lation based verification, the deployment with a validation step and
the final tracking system operation phase by run-time checks that
detect system malfunction and propose mitigation steps to the user.

Definition Verification
based on simulation of the tracking setup

Deployment
Validation

based on simulation and empiric
measurements in target environment

Operation and
Maintenance

Runtime Error Mitigation
using runtime error estimation and system

failure detection

Figure 3: Proposed development process for an industrial tracking
infrastructure

To verify the design we propose to not only rely on analyzing the
stand-alone tracking system in detail but to expand the evaluation
to the entire error chain of the IAR application. Using the elemen-
tary uncertainty specifications of the involved sensor systems in a
Monte Carlo based simulation, it is possible to derive the behav-
ior of the complete setup. Since the simulation approach requires
known uncertainties of the used tracking devices, the analytic eval-
uation as presented in Section 2 is of great importance. Using our
simulation it is possible to benchmark various hypothetical scenar-
ios without needing real hardware. Thereby, it can help to state the
general feasibility of a setup, to justify buying decisions, and to de-
cide on which particular algorithms to use. The final goal of the
simulation is to verify the overall concept and to decide on a certain
variant before deployment.

Generally, the correctness of a simulation system for a certain
purpose first needs to be proven [2]. This assures that the assump-
tions made are specific enough to obtain realistic results. Based on
our use case, we demonstrate that existing simulation approaches
used to evaluate individual tracking systems and algorithms (cf.
Section 2) can be extended to a more complex IAR tracking setup.

Following industrial standards, classical validation would re-
quire exhaustive empirical measurements to validate the entire sys-
tem operation [2][22]. As shown in Figure 3, we reduce the effort
using the simulation to validating that the simulation represents a
realistic system behavior. If the assumptions for the simulations are
incorrect for the productive environment, a redefinition of the sys-
tem might be required, resulting in an iteration with the definition
phase (red arrow).

As proposed in Figure 3, such detailed system knowledge allows
to implement runtime error mitigation using consistency checks for
the automatic identification of possible system malfunction. These
checks are based on the detection of violations of systematic and
random error limits that were developed during the definition and
deployment stages. Those can be interpreted and traced back to a
certain system component and propose mitigation steps to the user.

To allow for Monte Carlo simulation of a planned tracking setup,
an elementary uncertainty specification is needed for all involved
sensors:

Abstraction Level: As input, our simulation framework uses
sensor uncertainty specifications at different abstraction levels. De-
pending on the used system, it can be given for the individual 2D
measurements of a camera, for the 3D positions of fiducials, or for
the 6DoF pose of a marker. A simple isotropic error model or a
more general covariance matrix are supported. The decision on

simulation system granularity highly depends on the used system
setup. If the layout and the amount of fiducials allowed for marker
design are predefined, it could make sense to specify a 6DoF pose
error. Similarly, in an optical multi-camera tracking setup with ar-
bitrary camera arrangement, rather a 2D value is specified since the
uncertainty of a 3D position of a fiducial depends on the amount,
distances, and distribution of cameras. Sensor uncertainties can and
should be specified at a level that allows for maximum generality.
This concerns specifications provided by system vendors as well as
third-party accuracy assessments (cf. Section 2).

Error Distribution: According to the Guide to the Expression
of Uncertainty in Measurement (GUM) [12], sensor noise may fol-
low different error distributions. By default, one might assume a
Gaussian error distribution. However, there are tracking systems
where global systematic distortions of the tracking volume domi-
nate the overall error behavior [14]. In such cases, a uniform distri-
bution could be more realistic in order not to underestimate extreme
values. Also a combination of different error distribution might be
used since systems often suffer from sensor noise as well as sys-
tematic errors.

Error Magnitude: Finally the magnitude of the error has to be
provided. Again, this can be either taken from the detailed system
analysis or from the system vendor specification. Also the degree of
the noise depends on the setup and on environmental influences. If
the actual amount of error is not known a priori, simulation with dif-
ferent assumed error levels can still help to define the maximum al-
lowed sensor noise to stay in-line with the overall application spec-
ifications.

4 USE CASE SCENARIO

A typical QM user needs to qualitatively compare the digital and the
physical product using a visualization device (see Figure 1). Due to
the size and complexity of the aircraft, there is a strong benefit in
tracking this device to offer a real-time view on the digital model.
Additionally, it is of great importance to assess production qual-
ity by quantitatively validating the location of new parts through
length or coordinate measurements. This is usually done using a
metrological device (see Figure 2). Both are integrated into an IAR
application which is used integrated in the production processes.

Already experts use metrology systems to provide measurements
within the production environment. For these precise offline mea-
surements within a production environment as large as our aircraft,
photogrammetric or laser based metrology systems are used. Such
systems are less easily integrated in the standard production pro-
cesses and often require a fixed registration sensitive to vibrations
and therefore interrupt other production process running in parallel.

To cover the large area of the aircraft where the QM procedures
are performed, it is not feasible to deploy countless tracking sys-
tems. Not only would this result in high cost but also would the
permanent installation of tracking hardware collide with other pro-
duction processes. Rather a quick setup and dismantling procedure
is required. We therefore use a mobile tracking system that is able
to reference itself within the aircraft and to perform the real time
tracking of the visualization and probing devices. This is done by
adding reference targets to the aircraft. Their static transformation
within the aircraft’s coordinate frame is determined in a registration
routine using an offline metrological system. Therefore, this could
be called an indirect tracking setup, see also [14].

For application in the QM process, it is fundamental to assess
whether the accuracy of the tracking setup is in line with the produc-
tion tolerances. This requires assessing the accuracy of the tracking
system throughout the entire error chain from registration to real
time tracking. Evaluation using ground truth measurements in the
target environment is unfeasible due to the huge operating volume
paired with varying situations and conditions. Therefore, we apply
our approach using simulation throughout the development phases.
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Figure 4: Use case spatial relationship graph (SRG)

Figure 4 shows the spatial relations between the involved enti-
ties. Nodes represent coordinate frames, edges depict spatial trans-
formations. Initially, the reference targets are added to the aircraft.
They are precisely manufactured and can be detected by the offline
metrological system. Measuring multiple points on the CAD model
of the reference target allows computing its 6DoF rigid transforma-
tion in the aircraft (World→Cad-Reference-Target) using an abso-
lute orientation algorithm, e.g. [11]. This measurement is prone to
the error of the offline metrological system.

Second, we add a real time IR tracking system which can iden-
tify and estimate the 6DoF pose of LED targets such as shown
in Figure 2. The system computes the pose of the targets inter-
nally using an unknown absolute orientation algorithm (Real Time-
Tracker→Probe, Real Time-Tracker→Reference-Target). These
pose transformations are subject to error due to the positional error
of each LED. Additionally, to use the probing device, a tip calibra-
tion of the 3D offset between the LED target and the tip is required.
Using many samples leaves a negligibly small error on this calibra-
tion routine.

The final missing registration is between the CAD model and
the LED marker of the reference marker. This is done by measur-
ing 25 known reference points6 on the CAD model with the probe
and computing the transformation using an absolute orientation al-
gorithm (Reference-Target→Cad-Reference-Target, see Figure 5).

Completing the required registrations allows to compute the po-
sition of the probe tip in the world (dashed edge) - the basic for our
IAR application. This is derived by applying trivial inversions and
concatenations to the transformations in the depicted SRG [18][13].
The tablet PC for qualitative visualization has been omitted for sim-
plicity, it can be tracked analogously to the probe.

5 CONCEPT

This section explains the application of our simulation-based con-
cept for verification, validation, and runtime error mitigation de-
picted in Figure 3. The results, as well as the correctness of our
approach, will be addressed in Section 6.

5.1 Verification

During the definition phase, the proposed system setup shall be
checked for compliance with the application requirements, by
means of a suitable verification process. First of all, the applica-
tion data flow has to be modeled on the basis of the SRG depicted
in Figure 4. The application SRG serves as a basis for the data flow
descriptions to be instantiated using the tracking framework [13].

Since the simulation has to cover the entire error chain, also the
registration data flows are required. They are obtained by a refine-
ment of the application SRG (cf. Figure 4). In our case the level of
abstraction requires to explicitly formulate the algorithms that are

6A large number is used to mitigate the influence of probing errors.

actually performed inside the black-box tracking system to use the
sensor accuracy description that is given for a single LEDs only.
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Figure 5: Refined SRG

Figure 5 depicts this situation. There are two absolute orienta-
tions that are performed internally in the real time tracking device
locating the LED features in its coordinate frame (dashed edge).

The calibration routine to derive the transformation between the
reference target used by the real time tracking and its CAD model
uses the CAD features measured by the tip of the probe (Tactile-
Feature-Points=Probe-Tip). The cycle in the SRG allows comput-
ing the dotted transformation using an absolute orientation.

Simulation Preconditions For the simulation of the entire er-
ror chain, all registration procedures as well as the final application
data flow have to be simulated using the elementary uncertainty
specifications, i.e. the abstraction level as well as the distribution
and magnitude of the errors (cf. Section 3). In our case this is less
complex since the system is pre-calibrated and uses three rigidly
installed cameras (see Figure 2).

The system provides 6DoF poses of the probe and reference tar-
gets. Nevertheless it is not feasible to specify the error at that ab-
straction level since we use custom marker layouts. The error of
6DoF pose tracking highly depends on layout and dimension and
therefore cannot be stated in a general way by the vendor. Applying
the error to the 3D positions of the individual LEDs is appropriate
since this is the provided elementary uncertainty specification7 for
the position of a tracked LED. An uncertainty specification on the
sensor’s image plane using 2D noise would also be possible, how-
ever internal details about the intrinsic and extrinsic camera param-
eters would be required for this. It is apparent that the used system
and setup define the used granularity.

For our use case we decided to use a non-isotropic Gaussian error
distribution to approximate the real error distribution, following the
vendor’s elementary uncertainty specification with an overweight
error in the depth direction. This might not be a perfect assumption
for the complex systematic error we have found in our in-depth
analysis but it is a sufficient bound.

Simulation Setup The simulation was divided into two parts:
in the first step, static spatial transformations are estimated (regis-
tration), then the overall application accuracy is estimated (opera-
tion) in a second step. During operation, all pre-calibrated trans-
formations (colored in Figure 4) from prior registration are used,
together with their estimated covariances.

Ground Truth Data: The simulation system shall imitate the
expected constellations of the planned real system. For this, hypo-
thetical data has to be provided in terms of assumed spatial relation-
ships. This also incorporates static transformations that might be
known from preceding simulation steps. This synthetic data repre-
sents a ground truth; it does not contain any measurement errors. In

7www.ndigital.com/industrial/certushd.php, RMS error [mm] for hori-
zontal/vertical/depth directions (depending on depth): 0.1/0.1/0.15[mm] (at
2m), 0.15/0.15/0.25[mm] (at 4m), 0.25/0.25/0.45[mm] (at 6m)



our scenario this includes exemplary poses for the reference target
in the airplane, possible poses of the real time tracker with respect
to the reference target, as well as an exemplary grid of probe poses
in the volume of the real time tracker for which the uncertainties
will be simulated. Also the layouts of tracking targets are specified,
in our case defining the LED constellations. They can typically
be obtained directly from the proprietary target calibration routines
provided by the system vendor.

Synthetic Measurements: Based on the ground truth data, syn-
thetic measurements are generated. To apply the sensor noise, the
ground truth data needs to be transformed into the coordinate sys-
tem(s) in which the elementary sensor uncertainty specification is
provided. By sampling from the given probability density function
the data is perturbed accordingly. Using the estimated covariance,
noise is also applied to the static transformations from precedent
simulation steps. In our case, the LED positions in the coordinate
system of the real time tracker have to be derived from the assumed
6DoF poses of the targets and the relative 3D offsets of the LEDs
belonging to these targets. Another example would be to transform
3D points to the image plane of a camera and apply 2D pixel noise
there, if the elementary uncertainty specification were given at that
level.

Registration/Tracking Algorithm: Now, the perturbed spa-
tial transformations are propagated through the SRG to the coor-
dinate frame in which they are required for the intended calibra-
tion/registration or application. This represents the normal opera-
tion of a Ubitrack data flow. Various kinds of spatial relationship
patterns are at our disposal, besides the trivial inversion and multi-
plication, this comprises many common calibration and registration
methods. The absolute orientation pattern using 3D-3D point corre-
spondences is just one example, see also [18]. In the last simulation
step of our evaluation, the tip of the probing device is estimated in
world coordinates. Similarly, one could also estimate the 2D over-
lay error on an HMD by propagating the error to its image plane.

Covariance Estimation: Now, the previous two steps are re-
peated iteratively. Samples are produced by perturbation and then
propagated to the coordinate frame of interest by running the corre-
sponding algorithms. Accumulating those, using descriptive statis-
tics, the covariance associated with the registration or tracking re-
sult can be estimated [16][12].

To better understand this approach, we give an exemplary de-
scription of estimating the covariance of the registration of the ref-
erence target using 25 tactile points, based on our refined SRG
depicted in Figure 5. Our synthetic data describes that the tactile
points will be probed consecutively. Also, the real time tracking
system is positioned in the setup so that the reference target is at an
optimal distance with minimal error.

To apply the noise in our setup, we use the ground truth of the
probe keeping the tip fixed on the one of the tactile points. We de-
rive the location of the LEDs of the probe marker and the reference
target in the coordinate frame of the real time tracking. There, the
Gaussian noise is applied to each LED position. Using an absolute
orientation algorithm, an error-prone estimate for the probe and the
reference target and consequently for the tactile point and the probe
tip is computed. Iterating over the tactile points, we derive 25 cor-
responding 3D point pairs (inner loop). The erroneous registration
of the LEDs with the tactile points is obtained by another absolute
orientation. Sampling this transformation multiple times results in
the desired registration and the associated covariance (outer loop).

The computed registration and covariance is then used in the sub-
sequent simulation step for the entire system. It follows the same
principle. We specify several poses of the real time tracker with
respect to the reference target, as well as grid of assumed probe po-
sitions in the tracking volume. Again the simulation iterates over
these poses, perturbing the pre-calibrated transformations as well as
of each of the currently visible LED positions to sample the covari-

ances of the probe at the different positions in the tracking volume.

5.2 Validation
Following the ASME standard [2], validation is ’the process of de-
termining the degree to which a model is an accurate representation
of the real world. The intention is to validate the simulation and its
preconditions by performing some selected experiments in the tar-
get environment under varying conditions. This has the character
of a mandatory final inspection of the system after deployment, to
show that all relevant influences have actually been considered and
the defined system behaves as expected in the target environment.
This validation is not suited for the derivation of a suitable elemen-
tary sensor noise specification and corresponding simulation model
based on it. It might however help to estimate the error magnitude,
assuming that abstraction level and error distribution are known
(cf. Section 3). For now we assume that the chosen preconditions
and simulation model are basically correct; a proof will be given in
6.1, based on extensive empiric measurements in a controlled setup.

In our case the simulation predicts the position of the tip at a
certain position in the world. For comparison, a corresponding
set of real reference points in world coordinates is needed, known
with high accuracy. This explains why validation is expensive and
should be reduced to the necessary minimum. In our case, this
ground truth is obtained from the multiple reference targets whose
tactile points have already been registered with the world using a
metrological device. While one target is being used for indirect
tracking, points on this and also other targets can be probed.

Depending on the complexity of the setup, a step-by-step valida-
tion might be more efficient. First, the assumed elementary uncer-
tainty specification is validated in the real environment, based on
a few reference measurements. This might reveal potential system
malfunctions due to so far unconsidered environmental influences
or invalidated system calibration. Next, the individual simulation
steps for registration (cf. 5.1) are validated. The procedure is car-
ried out several times under varying conditions (distance, viewing
angle, ...) and a covariance is estimated from the individual results.
In our case, this applies to the registration procedure for the refer-
ence target described above (cf. Figure 5, dotted edge). Differences
between the simulated and empiric covariances could point to user
errors such as point mismatches or imprecise probing. Finally, the
complete error propagation chain is validated (see above). When
these steps are completed, one can assume the simulation repre-
sents the real world sufficiently. This allows using the simulation
as the basis for verification & validation of the entire system.

Statistical methods can be applied to formally reject the hypothe-
sis of contradictory measurements and covariances. It can be tested
whether all individual empiric measurements reside inside the pre-
dicted confidence intervals. A T-test decides whether the means of
two data sets are identical, e.g. when a series of measurements of
a certain point or pose shall be compared with the predicted mean
and covariance. It can reveal systematic errors. Furthermore, the
identity of a predicted with an empiric covariance matrix can be
shown using the Box’ M-test. In a static setup this indicates that the
elementary uncertainty specification used for simulation may be in-
correct. In a dynamic setup, as for example a probe rotating on its
tip, it indicates an error in the calibration of the probe or its tip.

Validation showed that the simulation describes the real tracking
infrastructure sufficiently. As described in Section 4, this is funda-
mental for the qualification of industrial processes. Furthermore,
the findings can also help to maintain the proper condition of the
infrastructure during runtime, as described next.

5.3 Runtime Error Mitigation
During operation & maintenance, means are needed to reliably de-
tect, trace back, and eliminate potential system failures. The ex-
pected accuracy and precision have been analyzed through the ver-



ification and validation procedures. This allows us to define con-
straints within the tracking setup’s SRG to compare current mea-
surements with the expected system behavior at run time.

The simplest way to perform a run time test is a ground truth
measurement. When probing a known point it is possible to com-
pare the measurement to the expected value. Using the same statis-
tical tests as during validation (cf. 5.2), it is possible to determine
whether a measured point set violates the expected confidence in-
terval. In case the user can reproduce the effect, it is not caused
through a user error like imprecise probing as for example slipping
or measuring the incorrect point. This indicates a malfunction. Due
to the complexity of current tracking setups such an error cause
could not be easily traced back.

Figure 6: Runtime checks,© represents the confidence interval.

To locate the error source, it is possible to run the validation tests
simply in reverse order. The first step validates the probe tracking
in the complete system. Measuring with the probe tip on a known
fixed point (ground truth) while rotating the probe results in a posi-
tion and a covariance ellipsoid of the tip in the world.

The resulting measurement can violate the specified error level
in two ways. In case the covariance is larger than the simulation
predicts, the source of error should be in the direct probe tracking
(Figure 6 accurate & imprecise). Recalibration of the probe target
and the tip calibration should solve that issue. Otherwise, the er-
ror has the correct magnitude of noise but the measured position is
incorrect (Figure 6: inaccurate & precise).

In the latter case a second test needs to be performed by probing
at least 3 known tactile points on the reference target and comparing
the measurement to the ground truth values from the CAD model in
the coordinate frame of the reference target. If these points are not
within the confidence interval, this indicates that the transformation
between the 25 tactile points and the marker of the reference plate
is invalid. Recalibration of the reference target solves this issue.

If the test is passed and the points are correctly mapped, the only
left registration is between the reference marker and the aircraft
(world). A recalibration of this reference using the offline metro-
logical system is necessary.

After this procedure, the final system test is repeated by mea-
suring a known point in the aircraft. In case the distance between
the measured point and the ground truth exceeds the confidence in-
terval, there are two severe error sources left. Either the offline
metrological system was not registered properly to the aircraft in
the calibration procedure or the real time tracking system is outside
its specification.

Performing this procedure at runtime asserts that the tracking
system and the work procedures relying on the new application are
in line with the specification. In a typical scenario such an invalid
state should not occur often or the tracking setup should be revised.

6 EVALUATION AND RESULTS

The evaluation of our approach is three-fold: First, we prove that
the simulation of the indirect tracking scenario yields reasonable
results. For this, the consistency of simulation and empiric data is
shown based on extensive measurements in a controlled setup. This
step will not be required for comparable setups in the future. Next,
we verify the expected performance of our application in the target

environment, based on exhaustive simulation. Finally, we validate
our application in the target environment, based on some selected
measurements.

6.1 Consistency of Simulation

Figure 7: Test-Target for Various Metrological Systems

To evaluate the consistency of the simulation, we rely on dis-
tance measurements as proposed by international metrological stan-
dards [22, 2], as well as point-based registration and adjustment
theory [16]. We designed a test target (small picture in Figure 7)
that consists of a tracking target for the online metrological sys-
tem8 (black LED target) and a laser reflection target (silver sphere)
for the offline metrological system, a high-precision laser tracker9.
Both tracking systems are located in front of the target to be able to
identify the reference target’s positions.

A high precision coordinate measurement machine10 (CMM) is
used as a reference. It allows us to move the test target to an
arbitrary specified location within a volume of 6x4x2.5[m], with
an accuracy of 10µm+ 14µm/m from its coordinate origin. We
programmed the CMM to scan the entire measurement volume as
shown by the small spheres in Figure 8, stopping at each position
for 3 seconds. The distance between the grid positions was 20cm
in each direction. We furthermore scanned three orthogonal lines
along the coordinate axes of the real time tracker, at a regular dis-
tance of 1cm. The frustum of pyramid in Figure 8 indicates the
tracking volume as specified by the vendor.

Pausing at every position for 3 seconds allowed us to synchro-
nize programmatically the three systems afterwards, as well as to
assess the precision (affected by noise) and accuracy (affected by

8NDI Optotrak, www.ndigital.com
9FARO Ion, www.faro.com

10DEA Lambda



Figure 8: Measurement Volume, point grid and lines along coordinate
axis (‘simulated’ reference target is located in marked areas)

systematic errors) of LED tracking. The real time system runs at 30
Hz and theoretically provides 90 samples for each measured posi-
tion. However, the window of 3 seconds was clipped at its begin-
ning to remove inertial effects coming from the sudden stop of the
movement of the CMM. For each measured position, there remain
60 valid samples.

Noise The first experiment estimates the influence of random
noise on LED tracking. The reason to estimate noise separately is
the hope of lowering measurement errors by averaging in our exem-
plary scenario. The result is shown in Figure 9. For each position
on the three densely samples lines (x-axis), an RMS residual error
εres is computed according to

εres =

√
1
n

n

∑
i=1
‖ H pi−qi ‖2 =

√
Tr(Σ3x3

pos) =
√

µ2 +σ2 (1)

over the 60 available samples (y-axis) [23]. Thereby, pi and qi
are corresponding 3D position measurements in different coordi-
nate frames P and Q, related by the 6DoF pose H. The root of the
mean of the squared Euclidean distances ‖ . ‖ of the mapped point
sets is equivalent to the root of the trace Tr of the 3D covariance
matrix Σ3x3

pos. Assuming an isotropic error model, εres can also be
expressed in terms of the expected deviation µ (systematic error)
and its standard deviation σ (random error).

The evaluation shows that noise is constantly low in the hori-
zontal and vertical directions. It increases however with the depth,
assumably due to a decreasing amount of affected pixels on the sen-
sors. Still, random noise is of secondary importance, with a maxi-
mum RMS of 0.06mm in the far end of the volume. More important
are the systematic effects described next.

Systematic Effects The accuracy of distance measurements
between LED positions on the lines is evaluated by a compari-
son against the corresponding distance measurements of the CMM.
Noise has been eliminated before by averaging over all 60 samples
per position. The result is shown in Figure 10. Three different dis-
tances are considered in the range of 10mm up to 100mm. Each of
these distances was moved incrementally along the three densely
sampled axes (x-axis). The deviation of two corresponding lengths
is plotted at that position (y-axis). There is no systematic effect for
smaller distances. The error is small and increases in magnitude for
larger depths. For larger distances, however, there is a tendency to
overestimate lengths in the near part and to underestimate them in

(a) horizontal axis (b) vertical axis

(c) depth axis

Figure 9: Noise: standard deviation [mm] of points (at 10mm distance,
60 samples per position) on coordinate axes split to ©: horizontal,
�: vertical, ♦: depth direction

the far part of the volume. This indicates that systematic errors take
effect rather globally than locally.

Next, systematic effects shall be analyzed in the grid covering
almost the entire tracking volume. By each of the three mea-
surement systems, a point cloud as shown in Figure 8 has been
recorded. Matching these point clouds by a 6DoF rigid transforma-
tion H pi = qi using adjustment calculation gives information about
the accuracy of the individual systems [16]. Noise again has been
eliminated before. The CMM actually measured its tip position,
not the position of the LEDs. However, the orientation of the tip re-
mained constant, so the desired positions of the LEDs are translated
by a constant offset from the actual measurements, it will be han-
dled implicitly by the transformation H. The same holds for the off-
set between the LEDs and the laser reflection target. Matching the
point clouds from CMM and laser tracker results in an RMS of only
36.9µm. This overall RMS covers the errors of both systems. Its
low value is in accordance with the specified accuracies. In conclu-
sion, both systems, CMM and laser tracker, provide a good ground
truth for testing the accuracy of the real time tracking system.

Ideally, a 6DoF rigid body transformation should suffice to
match the real time tracking system with the CMM. It yields a joint
RMS of 440µm, which is mostly caused by the real time tracker,
since the error of the CMM is by an order of magnitude lower, as
specified and shown above. Considering the vendor specification,
Equation (1) and the fact that most grid points are located in the far
part of the pyramid, this is a reasonable value. The resulting devi-
ation vectors are shown in Figure 11, scaled by a factor of 100 for
better visibility. The plot reveals that there are systematic effects,
especially in the boundary areas of the volume. The computed H
minimizes the RMS. Therefore, errors are lower in the center of the
volume and increase towards the boundaries. Furthermore, errors
on the boundaries are balanced through the minimization. Accord-
ing to Equation (1), the RMS value specified by the vendor and
confirmed by our measurements, consists of a dominating system-



(a) horizontal axis (b) vertical axis

(c) depth axis

Figure 10: Systematic LED deviation [mm] from reference distance
(©: 10, �: 50, ♦: 100) between two adjacent points (mean of 60
samples)

atic error µ and a minor noise component σ . Computing a more
general 7DoF similarity transform (0.439mm RMS) or a 9DoF non-
isotropic scaling transform (0.423mm RMS) does not decrease the
error significantly. However, the 12DoF affine transform reduces
the error to 0.253mm RMS, indicating that a better pre-calibration
of the system on behalf of the vendor would be possible. This is
similar to the system we evaluated in [14].

Noticeable, the RMS error for matching the point clouds of
two LEDs (e.g. LED1, 2) is only one fourth of the global RMS
(0.116mm). This indicates that there is are strong local dependency
of the deviation vectors, the systematic error.

To give an intuitive example for the consequences, one might
consider the probe target shown in Figure 2 which has an edge
length of 5cm. The span of this target is small compared to the
frequency of the systematic distortions and therefore all LEDs are
affected by a similar deviation vector. This results in a direct error
in the position estimate. Its orientation, however, is estimated better
than the specified error model predicts because the target is less de-
formed. This fact also becomes obvious in Figure 10 and will have
an impact in the experiment described next.

Indirect Tracking Experiment The consistency of our simula-
tion model shall be proven by a comparison with extensive empiric
measurements in the CMM setup. For this, we focus on the accu-
racy of indirect tracking since it has a major impact on the overall
accuracy of our sample scenario and will dominate the impact of
probe tracking, tip calibration, and world registration. Thus, we
estimate how accurate a given POI can be estimated in world coor-
dinates, under the influence of an error prone reference target track-
ing. Based on the grid of measured LED coordinates, we defined
a virtual reference target consisting of four adjacent grid positions
(20x20[cm]). As highlighted in Figure 8, the virtual reference target
is iterated through the two marked areas in the center (near) and at
the end of the pyramid (far).

Indirect tracking uses the reference target to self-localize the

Figure 11: Systematic directed deviation vectors for each position in
grid, scaled by 100

tracking system and thereby derive the estimate for the POI. This
means the given POI should remain constant in world coordinates
for any position of the reference target. Due to errors in LED track-
ing, this is not perfectly true. A 3x3 covariance can be estimated for
the POI, once for the empiric LED positions, and once for the simu-
lation, perturbing the ground truth grid positions using the vendor’s
uncertainty specification. In case the specification and our simula-
tion model are correct, the resulting covariances should match.

The result is shown in Figures 12(a) for the near and 12(b) for the
far location of the reference target. The plots show the confidence
ellipsoids corresponding to these covariance matrices (enlarged by
a factor of 100) for various POIs throughout the volume. First of all,
it can be seen quite clearly that errors increase with an increasing
distance of the probe with respect to the reference target, an impor-
tant fact for the definition of future work processes. Furthermore,
the simulated covariance matrices always enclose the empiric co-
variance matrices but otherwise have a similar shape. This means
the simulation yields a reasonable qualitative description of the er-
ror - but in this case is an upper bound.

There is simple explanation for this fact: the rather low fre-
quency of the systematic distortions mentioned above. It results in a
lower rotational error than the assumption of a pure Gaussian error
would predict which in turn increases the performance of indirect
tracking. The noise specified by the vendor is globally correct but
the has local dependencies as seen in the error analysis before. The
overestimated rotational error in the simulation is propagated over
a long axis and therefore leads to an over-estimation of the indirect
tracking error.

The experiment has been repeated using other, larger sizes of
the reference target, up to an edge length of 6 grid positions
(120x120[cm]). Figure 13 shows the empirical and simulated min-
imum and maximum errors. The larger the target, the better the
empiric results are approximated by the simulation.

Summary Altogether, the evaluation of the optical IR tracker
in the CMM setup coincides with both, the vendor specifications
and prior evaluations [23, 21]. We could verify the elementary sen-
sor noise specification in magnitude and its increases with depth.
Nevertheless, some important additional facts are revealed for the
subsequent accuracy analysis in the target environment. Systematic
errors dominate the overall error, especially for marginal positions.
Thus, for critical applications, some outer parts of the pyramid
might be clipped. Likewise, only small benefits can be expected



(a) near reference target

(b) far reference target

Figure 12: Comparison of simulation and empiric measurements

from computing mean values for positions measurements. Also the
strong local dependency of the systematic error leads to an overes-
timated positional error for small targets whereas the orientational
error is underestimated, compared to the assumption of a globally
random error.

6.2 Verification of Use Case Scenario
For the verification of our scenario, we extend the simulation from
Section 6.1 to incorporate all additional registration transforma-
tions. As explained in Section 5.1 every one of them is prone to
a specific error. Using the simulation we try to derive some design
decisions considering the amount of samples used for the registra-
tion procedure as well as the size of possible markers required.

The simulation results of our test case pointed out that a refer-
ence marker dimensioned to 300x300[mm] seems to be a good opti-
mum to get a high accuracy and still allow handling in the aircraft.

Next we analyzed the world registration procedure using the
FARO metrological system that had an RMS error of 18µm in our
test case. To understand the impact on the entire application, we
use the simulation to propagate this error to the tip in world co-
ordinates. For different numbers of samples used for the registra-
tion procedure, the resulting error in the tip is displayed in Table 1.
When comparing the resulting error for 4, 6 and 8 samples it seems
sufficient to rely on 4 since the over determination allows to iden-
tify user errors and the resulting error does not influence the entire
system error strongly.

For the registration between the reference marker and it’s CAD
model we depend on the less accurate real time tracking system

(a) near reference target (b) far reference target

Figure 13: Comparison of POI RMS errors [mm] (indirect tracking).
4: Simulation Max, �: Empiric Max, ♦: Simulation Min ©: Empiric
Min

Table 1: Propagated RMS errors [mm] for the world registration
number of points min. error max. error
3 0.0790 0.690
4 0.0590 0.488
6 0.0547 0.475
8 0.0474 0.405

with an RMS point error of 200µm, computed from the vendor
specification using (1) (

√
0.102 +0.102 +0.152). To understand

the impact on the entire application, we again use the simulation
to propagate this error to the tip in world coordinates. In contrary
to the prior analysis and due to the reduced accuracy we decided
to rely on more samples and to compare different designs of the
probing device. Table 2 indicates that for the registration of the
reference target the type of probe is less important.

Table 2: Propagated RMS errors [mm] for the reference target
used probing device min. error max. error
small probe (5x5[cm]) 0.208 2.23
large probe (10x10x5[cm]) 0.192 2.11

A typical setup we want to validate has the reference target in
the far field (Figure 8). Following the results from Figure 12, we
prohibit the use of the probe too far away from the reference target
and therefore clip the front part of the pyramid to avoid occlusion
and a too high error value.

As Table 3 illustrates, the error in the worst case estimation
of our scenario ranges between 0.79mm and 4.86mm. As already
stated, the error increases with the distance between probing device
and reference target, as in Figure 12(b). This becomes clear when
we use four small 3LED reference targets distributed in the work-
ing volume (multi target) - the maximum error drops to 1.57mm
whereas the minimum error is nearly unchanged. This coincides
with the basic rule in metrology to always measure inside the cloud
of reference points used for registration [16]. Also we simulated
the expected error for an alternative version of the hardware. This
was specified with less than a third of the 3D position error11.

6.3 Validation of Use Case Scenario
As proposed we validate our simulation results in the real environ-
ment. Starting with the noise of the direct and indirect probe tip
tracking. In the direct probe tracking the results matched the ex-
pected values and the standard deviation for various measurements
was 0.03−0.04[mm].

When measuring the tactile points of one of the reference targets,
the back projection error was too large. Recalibration with the 25

11NDI Optotrak Pro System, RMS error [mm] for horizontal / verti-
cal / depth directions (depending on depth): 0.02/0.02/0.06[mm] (at 2m),
0.06/0.06/0.15[mm] (at 6m)



Table 3: Simulated RMS errors [mm] for the tip position
simulation setup min. error max. error
far reference target 0.789 4.86
far reference target (pro) 0.154 1.43
far multi target 0.710 1.57
far multi target (pro) 0.137 0.377

tactile points solved that issue. Also for the just calibrated reference
targets, the accuracy was as expected, the error ranged from 1mm
to 3mm with a standard deviation of approximately 0.5mm over 100
samples - depending on the distance between reference target and
probe. If the application requires a precision below 1mm, the more
expensive “pro” system needs to be used. Also, the degradation in
the quality of the calibration of the reference targets over time will
have to be validated in a more detailed system analysis.

7 DISCUSSION AND FUTURE WORK

We demonstrated that using a simulation framework, design deci-
sions in the definition phase of an industrial tracking system be-
come more transparent. Since complex tracking scenarios cannot
be covered by elementary uncertainty specifications, it is a great
help to understand the propagation of errors throughout the com-
plete chain of errors. We developed an integrated approach to cover
the verification and validation of the system, based on the provi-
sion of an elementary uncertainty specification. Besides having a
detailed insight into the error behavior of the system, it is also pos-
sible to define run-time checks that allow to distinguish between
correct system behavior and various error cases. Since we proved
our simulation approach to yield realistic results in the exemplary
setup, similar applications can be verified and validated with less
testing effort in the future. Additionally, various different hardware
platforms and concepts can be easily benchmarked even without the
need to use real hardware.

In the future we are planning to apply our new concept to other
industrial tracking scenarios for which measurement data is already
available [14]. Doing so will substantiate the feasibility of our gen-
eralized approach. Additional complexity arises when looking at
heterogeneous systems. In our use case a single real time track-
ing system is used and therefore there is no need to consider time.
Combining measurements with different timestamps requires inter-
/extrapolation and therefore the error simulation would have to be
extended, too. Finally, a graphical tool to configure and examine the
test cases and the simulation results would be desirable. It should
be possible to define the poses for tracking devices, markers and
other entities of the SRG directly in a 3D environment.

ACKNOWLEDGEMENTS

This work was partially supported by the German Federal Min-
istry of Education and Research (AVILUS project, grant no.
01 IM 08 001 A) as well as the German Federal Ministry of Eco-
nomics and Technology (AiF-FV 14756).

REFERENCES

[1] B. D. Allen and G. Welch. A general method for comparing the ex-
pected performance of tracking and motion capture systems. In Pro-
ceedings of the ACM Symposium on Virtual Reality Software and Tech-
nology (VRST’05), pages 201–210, New York, USA, 2005.

[2] ASME. Guide for verification and validation in computational solid
mechanics. Technical report, The American Society of, October 2006.

[3] M. Bauer, M. Schlegel, D. Pustka, N. Navab, and G. Klinker. Predict-
ing and estimating the accuracy of vision-based optical tracking sys-
tems. In Proceedings of the IEEE International Symposium on Mixed
and Augmented Reality (ISMAR), Santa Barbara, USA, October 2006.

[4] K. Daniilidis. Hand-eye calibration using dual quaternions. The Inter-
national Journal of Robotics Research, 18(3):286, 1999.

[5] J. M. Fitzpatrick, J. B. West, and C. R. M. Jr. Predicting error in
rigid-body, point-based registration. IEEE Transactions on Medical
Imaging, 17(5):694–702, 1998.

[6] M. Haller, M. Billinghurst, and B. Thomas. Emerging technologies of
augmented reality: interfaces and design. Idea Group Pub., 2007.

[7] R. I. Hartley and A. Zisserman. Multiple View Geometry in Computer
Vision. Cambridge University Press, June 2000.

[8] H. Hastedt. Monte-carlo-simulation in close-range photogrammetry.
In ISPRS Symposium Commission V, Istanbul, Turkey, The Interna-
tional Archives of the Photogrammetry, Remote Sensing and Spatial
Information Science, volume 35, pages 18–23, 2004.

[9] W. Hoff and T. Vincent. Analysis of head pose accuracy in augmented
reality. In IEEE Transactions on Visualization and Computer Graph-
ics, volume 6(4), pages 319–334. IEEE Computer Society, 2000.

[10] R. Holloway. Registration Errors in Augmented Reality Systems. PhD
thesis, University of North Carolina, 1995.

[11] B. Horn, H. Hilden, and S. Negahdaripour. Closed-form solution of
absolute orientation using unit quaternions. Journal of the Optical
Society of America A, 4(4):629–642, 1987.

[12] ISO/IEC. Guide 98-3:2008: Uncertainty of measurement – Part 3:
Guide to the expression of uncertainty in measurement (GUM). Pub-
lished, International Organization for Standardization (ISO), Geneva,
Switzerland, September 2008.

[13] P. Keitler, D. Pustka, M. Huber, F. Echtler, and G. Klinker. Engineer-
ing of Mixed Reality Systems, chapter Management of Tracking for
Mixed and Augmented Reality Systems. Dubois, E. and Gray, P. and
Nigay, L., 2009.

[14] P. Keitler, M. Schlegel, and G. Klinker. Indirect tracking to reduce
occlusion problems. In Advances in Visual Computing, Fourth Inter-
national Symposium, ISVC 2008 Las Vegas, USA, December 1-3, vol-
ume 5359(2) of Lecture Notes in Computer Science, pages 224–235,
Berlin, 2008. Springer.

[15] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab. A dataset
and evaluation methodology for template-based tracking algorithms.
In ISMAR, 2009.

[16] W. Niemeier. Ausgleichsrechnung - Statistische Auswertungsmetho-
den. Walter de Gruyter Verlag, Berlin, Germany, second edition, 2008.

[17] K. Pentenrieder, P. Meier, G. Klinker, and M. Gmbh. Analysis of
tracking accuracy for single-camera square-marker-based tracking.
In Proc. Dritter Workshop Virtuelle und Erweiterte Realitt der GI-
Fachgruppe VR/AR, Koblenz, Germany, 2006.

[18] D. Pustka, M. Huber, M. Bauer, and G. Klinker. Spatial relation-
ship patterns: Elements of reusable tracking and calibration systems.
In Proceedings of the IEEE International Symposium on Mixed and
Augmented Reality (ISMAR’06), October 2006.

[19] R. Rohling, P. Munger, J. M. Hollerbach, and T. Peters. Comparison of
relative accuracy between a mechanical and an optical position tracker
for image-guided neurosurgery. In Journal of Image Guided Surgery,
pages 277–282. Wiley and Sons Inc, 1994.

[20] K. Satoh, K. Takemoto, S. Uchiyama, and H. Yamamoto. A registra-
tion evaluation system using an industrial robot. In IEEE/ACM Inter-
national Symposium on Mixed and Augmented Reality,2006. ISMAR
2006, pages 79–87, 2006.

[21] J. Schmidt, D. Berg, H. Ploeg, and L. Ploeg. Precision, repeatabil-
ity and accuracy of Optotrak optical motion tracking systems. Inter-
national Journal of Experimental and Computational Biomechanics,
1(1):114–127, 2009.

[22] Optical 3d measuring system - imaging systems with point-by-point
probing. VDI/VDE guideline 2634/1, 2002.

[23] A. Wiles, D. Frantz, D. Swart, et al. Ndi accuracy assessment kit
guidelines. Technical report, Northern Digital Inc., 2005.


