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Abstract—Tomographic reconstruction from cone-beam X-ray
data is only solved for static objects, e. g. the abdomen. In cardiac
imaging, a rotational angiography sequence takes approx. 5 s and
therefore spans several heart beats. Since such an acquisition
scheme forces a trade-off between consistency of the scene and
reasonable angular spacings between camera positions, standard
reconstruction techniques fail at recovering the 3D + t scene.

We propose a new reconstruction framework based on vari-
ational level sets including a new energy term for symbolic
reconstruction and incorporating the motion into the level set
formalism. The resulting simultaneous estimation of shape and
motion proves feasible in the presented experiments. Since the
proposed formulation offers a great flexibility in incorporating
other data terms, it could be of interest for other reconstruction
settings as well.

Index Terms—Cardiac imaging, Cone-beam CT, Dynamic
reconstruction, Rotational angiography.

I. INTRODUCTION

The clinical motivation for providing a 3D(+t) reconstruc-
tion of the coronary arteries from rotational angiography data
is to provide the physician with intra-interventional volumetric
data. Currently, patients with acute coronary syndrome either
get a conventional CT (for a definite rule-out) or are directly
sent to the catheter lab where diagnosis and intervention are
performed at once using a C-arm system. In the former case,
the physician may obtain a 3D reconstruction which is not
intra-interventional whereas in the latter case, there are only
series of 2D X-rays available for diagnosis and navigation.

Bringing the two worlds together requires a reconstruction
from calibrated angiographic projections which can be ob-
tained during a rotational run (≈ 190◦) of the C-arm around
the patient (see Fig. 1). Such a run takes about 4 s to 5 s.
The resulting inconsistent projection data inhibits 3D recon-
struction. This is the reason why a simultaneous estimation of
shape and motion is needed in order to compensate for the
heart motion during the reconstruction of the shape.

The ill-posedness of a direct tomographic 4D reconstruction
suggests to seek a symbolic or binary reconstruction first
and then use the recovered motion for a later tomographic
reconstruction. Such a symbolic reconstruction is performed
on the contrasted coronary arteries. After enhancing these
tubular structures with some kind of “vesselness” filter (like
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the ones presented in [1] or [2]) in 2D, they are suitable
features, covering the motion in the relevant area around the
patient’s heart.

Please note that this work is an extension of [3], allowing a
wider range of motions (periodic deformable vs. global rigid)
and requiring different evaluation measures.

II. RELATED WORK

To the authors’ knowledge, all previous work on cardiac
cone-beam CT makes strong use of the assumption that the
heart motion can be grouped into several phases (usually
defined by a percentage value between two adjacent R-peaks).
Within such a phase (e. g. 10%− 20%), the heart is assumed
to re-position exactly. This permits a retrospective gating
using the simultaneously recorded ECG signals. Based on
this, Blondel et al. [4], Hansis et al. [5], and Movassaghi
et al. [6] mostly rely on epipolar geometry and triangulation.
Temporally distant but spatially consistent projections (yield-
ing a wider baseline) are used to reconstruct 3D points and
track them over time. Using traditional computed tomography
solutions (like filtered back projection [7] or algebraic recon-
struction [8], [9]) Prümmer et al. [10] and Schäfer et al. [11]
both perform phase-wise tomographic reconstructions. These
phase-wise reconstructions can then be fused if the motion
between cardiac phases is somehow known. Of these two,
[11] focuses on the motion-compensated FDK-reconstruction
algorithm, assuming a known motion field, whereas [10]
also proposes to do multiple sweeps for acquiring enough
projection data.

In order to avoid making strong (and often not valid)
assumptions about data consistency, we propose a variational
level set framework for symbolic reconstruction instead of us-
ing tomographic- or triangulation-based methods. This enables
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Fig. 1. The problem setting: A rotational angiography of a dynamic scene.
(Image is derived from work by Patrick J. Lynch, medical illustrator; C. Carl Jaffe, MD,
cardiologist. http://creativecommons.org/licenses/by/2.5/)



a soft coupling in space and time, thereby having the potential
to yield more robust algorithms.

Although we employ a novel model and energy formulation,
we still want to point the reader to the following works which
we share some ideas with: Yoon et al. [12] perform a CT-like
reconstruction from X-ray data using multiphase level sets.
This enables the reconstruction of piece-wise constant tissue
from very few projections but does not deal with motion. Rathi
et al. [13] and Cremers et al. [14] perform deformable tracking
on 2D images using active contours which is related to our
time-coupling.

Additionally, there is a lot of related work in the computer
vision community on 3D reconstruction from optical images
using level sets, graph cuts, or voxel occupancy grids. For the
sake of brevity, we do not delve into this field but just want
to mention Franco et al. [15] who present a nice solution to
the problem of 3D reconstruction from probabilistic silhouette
images in a synchronized multi-view environment.

III. METHODS

Having laid out our motivation for developing a level set
framework (offering the desired soft coupling) for symbolic
reconstruction, we now proceed to its modeling and imple-
mentation.

A. Dynamic Level Sets

Since we seek to obtain a symbolic or binary reconstruction
of our 3D scene over time, we have chosen to model the
“inside” and “outside” of reconstructed coronaries using a
level set function

Φ0 :
{

R3 → R
x0 7→ Φ0(x0)

(1)

on some reference domain with coordinates x0 and the con-
vention Φ0(x0) < 0 for “inside” or “reconstructed vessel
points”. (Please refer to [16] for a short introduction to
variational level set methods.) In order to establish a temporal
relationship of the reconstruction frames, this level set function
is made dynamic by introducing a parametric warping trans-
formation ϕ. This transformation maps points from location
x at time t to coordinates x0 in the reference frame. Note that
this reference frame (where the shape is reconstructed using
one single level set function Φ0) is arbitrary and not fixed
to any point in time. This way, we avoid any bias toward a
specific point in time. For the experiments presented in this
paper, we model the motion as

ϕ(x, t,α) = R(t,α) ·x+ T (t,α) + u(x, t,α) , (2)

where the rotation matrix R and the translation vector T to-
gether represent a dynamic rigid motion and u is a deformable
motion. The former is modeled using 6 temporal B-splines
with 12 degrees of freedom each, the latter is a tensor-product
spline with 53 · 12 knots in R3, totaling to α ∈ R4572. Both
motion parts are assumed to be periodic at this stage. However,
there is no restriction when modeling the scene motion and
future work will be aimed at including global, non-periodic
motions, too.

A dynamic level set function is now obtained by using the
motion model (2) to warp the shape model (1), yielding the
dynamic level set function

Φ(x, t,α) = Φ0

(
ϕ(x, t,α)

)
. (3)

Note that one could also directly model a 4D level set function
Φ(x, t). But using a parametric warping function ϕ has several
advantages:
• The shape reconstruction is implicitly regularized over

time, since there is only one shape model.
• The motion can be recovered directly, simplifying its later

use in a tomographic reconstruction as well as enabling
a direct motion regularization (as opposed to imposing
temporal soft constraints on Φ).

• Memory requirements for separate shape and motion
models are much lower compared to a 4D Φ grid if the
motion is parametrized.

B. Reconstruction Energies

Having modeled the shape and the motion to be optimized,
we now describe the energy functional that fits the reconstruc-
tion parameters Φ0 (implicitly representing the shape) and α
(representing the motion) to the given L projection images Il
acquired at times tl, 1 ≤ l ≤ L. The projection images’ pixels
are assumed to contain intensity values in [0, 1], corresponding
to the probability that the associated ray hit a vessel. Imposing
penalties on false positive and false negative reconstructed
points in space works in a manner similar to what was first
presented by Chan and Vese [16] in the segmentation domain
but taking into account the projective character of the imaging
device:

Let V be the reconstruction volume, Pl : R3 → R2 the
projection operator for frame l, and H the Heaviside step
function (or rather a mollified version of it, see [16] for
examples). The false positive term is then

EFP(Φ0,α) =
L∑
l=1

∫
V

SFP

(
Il
(
Pl(x)

))
·

·
[
1−H

(
Φ0(ϕ(x, tl,α))

)]
·
[
1− Il

(
Pl(x)

)]
dx , (4)

where SFP(i) = H
(

1
2 − i

)
is a switching function, enabling

the false positive penalty for low intensities/probabilities i ∈
[0, 1

2 ] only. In this formula, the first two factors filter out the
false (1st factor) positive (2nd factor) reconstructions, whereas
the 3rd factor weights the penalty. This way, reconstructed
points are penalized every time they are hit by a “non-vessel
ray”.

Penalizing false negatives works in a similar way. However,
the big difference is that we cannot accumulate penalties in
volume space. Due to the images being probabilistic projec-
tions, we may impose a false negative penalty if, and only if,
no object is reconstructed along the whole ray corresponding
to a high intensity pixel.1 Thus, whole rays have to be

1Note that another approach would be to focus on a point in space
and impose a false negative penalty iff all projected intensities enforce an
object. However, this would favor “empty” reconstructions due to the initially
inconsistent data.



considered instead of single points:

EFN(Φ0,α) =
L∑
l=1

∫
A

SFN
(
Il(p)

)
·

·H
(

min
x∈Xl(p)

Φ0

(
ϕ(x, tl,α)

))
· Il
(
p
)

dp (5)

Here, A ⊂ R2 is the projection image space, Xl(p) is the
set of volume points corresponding to pixel p in image l, and
SFN(i) = H

(
i− 1

2

)
is the switching function enabling the

term for falsely reconstructed points only. The three factors
here are responsible for selecting pixels which indicate a vessel
to be reconstructed on the ray to pixel p (1st factor), selecting
rays where all Φ values are positive, i. e. there is no object
reconstructed (2nd factor), and adding a weighted penalty (3rd

factor), respectively.
Although the two data terms differ in their integration

domains (volumes vs. imaging planes), they are presented
using these intuitive formulas. For computation purposes,
the data terms may either be appropriately weighted or one
may convert the area integrals in the false negative term to
volumetric integrals using the coarea formula.

C. Regularization
In terms of regularization we only need to care about

shape regularization since the motion parameters are inherently
regularized due to the usage of B-Splines with an appropriate
number of knots. For obtaining a smooth shape reconstruction
in the reference frame, we use

Eshape(Φ0) =
∫
V0

δ(Φ0(x0)) · ‖∇Φ0(x0)‖ dx0 (6)

for penalizing the level set surface area, thus favoring recon-
structions with low surface curvatures.

D. Implementation
Optimizing the system

E(Φ0,α) = λFN ·EFN(Φ0,α) + λFP ·EFP(Φ0,α)
+ λshape ·Eshape(Φ0) (7)

is rather complex as the shape model Φ0 and the deformation
parameters α have to be computed simultaneously. The former
is minimized using the variational derivative of δE

δΦ0
, the latter

by calculating the gradient ∇αE. Computing these terms from
their analytic forms involves deriving the minimum functional
from equation (5), several numerical approximations, and a
step size management during gradient descent for Φ0 and α.

The most demanding issue to solve is the computation of
EFN and its derivatives. Computing the minimum functional in
the equation’s second factor requires a customized ray casting
step with a warping of every sample point.

Several approaches to implement such a scheme are possi-
ble, including GPU-based methods. After considering aspects
related to memory usage and speed of computation, we
decided to use a CPU-based procedure, parallelized using
OpenMP. Even though GPUs appear to be a natural choice for
ray casting, their bad support for “arbitrary writes” disqualifies
them for this algorithm.

(a) (b)

(c) (d)

Fig. 2. Exemplary overlays for error evaluation. The noise level for
the projections and reconstructions shown is 50 %. Top row: Overlay of
reconstructed shape borders (red) on input projection data. Bottom row: 3D
overlay of ground truth data (green) and reconstructed shapes (red). The left
column shows the “Synthetic” data set whereas the right column shows the
“Phantom” data set. Note that the whole setup is dynamic and the printed
images can only show a snapshot of the non-rigidly moving artery trees.

IV. EXPERIMENTS AND DISCUSSION

We test our method using synthetic and phantom data. The
“Synthetic” data is created by modeling tubes of considerable
diameter clearly visible in the projection images (see Fig.
2(a) and (c)) while the “Phantom” data was physically built,
scanned (without motion), reconstructed and segmented. It
contains thin vessels which can barely be represented at our
current voxel resolution as visible in Fig. 2(d).

In both cases, we use 3 × 4 projection matrices, obtained
from the calibration of a real stationary C-arm, to generate
projections of the data. During the simulated image acqui-
sition process we apply a periodic deformable motion with
amplitudes of 10 mm for the translations, 10◦ for the rotations
and up to 30 mm for the deformations. An image enhancement
step as necessary in the real setting can be omitted grace to the
use of symbolic ground truth data. Instead, we add Gaussian
noise (with zero mean and standard deviations of 0 % to 50 %
of the full intensity range) to the projection images in order
to simulate more realistic projections and test the algorithm’s
sensitivity to noise. Sample projections with 50 % noise are
shown in Fig. 2(a) and 2(b).

In order to speed up testing, we work on rather coarse data
using 48 projections at 155 × 120 pixels each (compared to
200-400 images with 620× 480 pixels each in a real setting).
The reconstruction volume V covers a cube of size (15 cm)3,
discretized as grid of 503 voxels (yielding a 3 mm spacing in
each dimension).

All experiments have been run on a machine with 24 cores.
Execution time depends on several factors such as noise and



TABLE I
COMPARISON OF RECONSTRUCTION ERRORS FOR THE “SYNTHETIC” AND

“PHANTOM” DATA SETS AT SIX DIFFERENT NOISE LEVELS EACH.

Data Set Noise level R Se Sp

Synthetic 0 % 85.1 % 86.1 % 99.9 %
Synthetic 10 % 84.9 % 84.4 % 99.9 %
Synthetic 20 % 84.6 % 83.5 % 99.9 %
Synthetic 30 % 83.8 % 80.1 % 99.9 %
Synthetic 40 % 83.2 % 80.1 % 99.9 %
Synthetic 50 % 81.3 % 75.9 % 99.9 %

Phantom 0 % 66.7 % 75.2 % 99.6 %
Phantom 10 % 66.6 % 78.0 % 99.6 %
Phantom 20 % 65.0 % 73.8 % 99.6 %
Phantom 30 % 67.0 % 74.2 % 99.6 %
Phantom 40 % 66.3 % 72.8 % 99.6 %
Phantom 50 % 64.7 % 71.7 % 99.6 %

both, motion and scene complexity but is usually below 1 h.
Error measures well-known from the segmentation domain

are used for a quantitative evaluation of the symbolic recon-
struction: Let Tp, Tn, Fp, and Fn be the true positive, true
negative, false positive, and false negative voxel counts for a
symbolic reconstruction, resp. Then

overlap ratio R =
2 ·Tp

(Tp + Fn) + (Tp + Fp)
, (8)

sensitivity Se =
Tp

Tp + Fn
, (9)

and specificity Sp =
Tn

Tn + Fp
(10)

are used to measure the accuracy of the reconstruction.
A comparison of these measures for two data sets and

six noise levels is given in TABLE I. The phantom data set
performs worse than the synthetic model. The specificity Sp
is of limited interest since it mainly correlates with the ratio
of vessel voxels to the reconstruction volume’s total number
of voxels. It always approaches 1 if the reconstruction volume
is large enough (Tn is big) and is just given for completeness.
The chosen error measures are not really well-suited for
evaluating this data with its relatively coarse resolution. Since
the vessel structures (esp. of the “Phantom” data set) are barely
representable at the given resolution, the voxel counts are also
subject to discretization errors. However, a visual evaluation
of the recovered motion as in Fig. 2(d) shows that the motion
estimation is still very accurate. Unfortunately, a quantitative
evaluation of positional errors is quite difficult since there
is no reference frame where this error could be measured.
A deformable registration (with all its ambiguities) would
be required to compute motion errors between reconstruction
and ground truth volumes. Previous experiments with rigid
motion models (enabling a better evaluation of position errors)
in [3], however, have shown that the estimated motion is
usually sub-voxel accurate (about 1 mm errors for 1.5 mm
voxel spacings). This is even more relevant for subsequent
motion-corrected tomographic reconstructions. Comparing the
evaluation measures across noise levels shows the very high
robustness of the proposed formulation w.r.t. noise.

V. CONCLUSION

The symbolic 3D + t reconstruction presented in this paper
is another step towards dynamic reconstruction from rotational
cone-beam data. Its major benefit is that it does not depend on
hard constraints such as perfect ECG signals or an exact re-
positioning of cardiac anatomy between heart beats. Thus, the
computed motion is more robustly obtained than with other
approaches and it may by used for a subsequent, motion-
corrected tomographic reconstruction.

The experiments show the framework’s ability to obtain a
4D reconstruction from a series of very noisy 2D projections.
The types of motion covered by our periodic deformable
models are very similar to real cardiac motion. Future work
aims at allowing global, non-periodic motions and optimizing
the implementation, thus enabling to work with real data.
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