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Abstract

We present a novel method for detecting 3D model in-
stances and estimating their 6D poses from RGB data in
a single shot. To this end, we extend the popular SSD
paradigm to cover the full 6D pose space and train on syn-
thetic model data only. Our approach competes or sur-
passes current state-of-the-art methods that leverage RGB-
D data on multiple challenging datasets. Furthermore, our
method produces these results at around 10Hz, which is
many times faster than the related methods. For the sake
of reproducibility, we make our trained networks and detec-
tion code publicly available.1

1. Introduction

While category-level classification and detection from
images has recently experienced a tremendous leap forward
thanks to deep learning, the same has not yet happened for
what concerns 3D model localization and 6D object pose es-
timation. In contrast to large-scale classification challenges
such as PASCAL VOC [9] or ILSVRC [26], the domain of
6D pose estimation requires instance detection of known 3D
CAD models with high precision and accurate poses, as de-
manded by applications in the context of augmented reality
and robotic manipulation.

Most of the best performing 3D detectors follow a view-
based paradigm, in which a discrete set of object views
is generated and used for subsequent feature computation
[31, 14]. During testing, the scene is sampled at discrete
positions, features computed and then matched against the
object database to establish correspondences among train-
ing views and scene locations. Features can either be an
encoding of image properties (color gradients, depth val-
ues, normal orientations) [12, 16, 18] or, more recently, the
result of learning [4, 29, 5, 6, 17]. In either case, the accu-
racy of both detection and pose estimation hinges on three
aspects: (1) the coverage of the 6D pose space in terms of
viewpoint and scale, (2) the discriminative power of the fea-
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tures to tell objects and views apart and (3) the robustness
of matching towards clutter, illumination and occlusion.

CNN-based category detectors such as YOLO [25] or
SSD [22] have shown terrific results on large-scale 2D
datasets. Their idea is to inverse the sampling strategy such
that scene sampling is not anymore a set of discrete input
points leading to continuous output. Instead, the input space
is dense on the whole image and the output space is dis-
cretized into many overlapping bounding boxes of varying
shapes and sizes. This inversion allows for smooth scale
search over many differently-sized feature maps and simul-
taneous classification of all boxes in a single pass. In order
to compensate for the discretization of the output domain,
each bounding box regresses a refinement of its corners.

The goal of this work is to develop a deep network for
object detection that can accurately deal with 3D models
and 6D pose estimation by assuming an RGB image as
unique input at test time. To this end, we bring the con-
cept of SSD over to this domain with the following contri-
butions: (1) a training stage that makes use of synthetic 3D
model information only, (2) a decomposition of the model
pose space that allows for easy training and handling of
symmetries and (3) an extension of SSD that produces 2D
detections and infers proper 6D poses.

We argue that in most cases, color information alone can
already provide close to perfect detection rates with good
poses. Although our method does not need depth data, it is
readily available with RGB-D sensors and almost all recent
state-of-the-art 3D detectors make use of it for both fea-
ture computation and final pose refinement. We will thus
treat depth as an optional modality for hypothesis verifica-
tion and pose refinement and will assess the performance of
our method with both 2D and 3D error metrics on multiple
challenging datasets for the case of RGB and RGB-D data.

Throughout experimental results on multiple benchmark
datasets, we demonstrate that our color-based approach is
competitive with respect to state-of-the-art detectors that
leverage RGB-D data or can even outperform them, while
being many times faster. Indeed, we show that the prevalent
trend of overly relying on depth for 3D instance detection is
not justified when using color correctly.

https://wadimkehl.github.io/


Figure 1: Schematic overview of the SSD-style network prediction. We feed our network with a 299 ⇥ 299 RGB image
and produce six feature maps at different scales from the input image using branches from InceptionV4. Each map is then
convolved with trained prediction kernels of shape (4 + C + V + R) to determine object class, 2D bounding box as well as
scores for possible viewpoints and in-plane rotations that are parsed to build 6D pose hypotheses. Thereby, C denotes the
number of object classes, V the number of viewpoints and R the number of in-plane rotation classes. The other 4 values are
utilized to refine the corners of the discrete bounding boxes to tightly fit the detected object.

2. Related work

We will first focus on recent work in the domain of 3D
detection and 6D pose estimation before taking a closer look
at SSD-style methods for category-level problems.

To cover the upper hemisphere of one object with a small
degree of in-plane rotation at multiple distances, the authors
in [14] need 3115 template views over contour gradients
and interior normals. Hashing of such views has been used
to achieve sub-linear matching complexity [18, 16], but this
usually trades speed for accuracy. Related scale-invariant
approaches [16, 4, 29, 6, 17] employ depth information as
an integral part for either feature learning or extraction, thus
avoiding scale-space search and cutting down the number
of views by around an order of magnitude. Since they re-
quire depth to work, they can fail when depth is missing or
erroneous. While scale can be inferred with RGB-D data,
there has not been yet any convincing work to eradicate the
requirement of in-plane rotated views. Rotation-invariant
methods are based on local keypoints in either 2D [32] or
3D [7, 3, 30] by explicitly computing or voting for an ori-
entation or a local reference frame, but they fail for objects
of poor geometry or texture.

Although rarely mentioned, all of the view-based meth-
ods cover only a very small, predefined 6D pose space.
Placing the object differently, e.g. on its head, would lead

to failure if this view had not been specifically included
during training. Unfortunately, additional views increase
computation and add to overall ambiguity in the matching
stage. Even worse, for all discussed methods, scene sam-
pling is crucial. If too coarse, objects of smaller scale can
be missed whereas a fine-grained sampling increases com-
putation and often leads to more false positive detections.
Therefore, we explore a path similar to works on large-scale
classification where dense feature maps on multiple scales
have produced state-of-the-art results. Instead of relying on
classifying proposed bounding boxes [10, 11, 21], whose
performance hinges on the proposals’ quality, recent single-
shot detectors [25, 22] classify a (large) discrete set of fixed
bounding boxes. This streamlines the network architecture
and gives freedom to the a-priori placement of boxes.

As for works regressing the pose from RGB images,
the related works of [24, 23] recently extended SSD to in-
clude pose estimates for categories. [23] infers 3D bound-
ing boxes of objects in urban traffic and regresses 3D box
corners and an azimuth angle whereas [24] introduces an
additional binning of poses to express not only the category
but also a notion of local orientation such as ’bike from the
side’ or ’plane from below’. The difference to us is that they
train on real images to predict poses in a very constrained
subspace. Instead, our domain demands training on syn-
thetic model-based data and the need to encompass the full



6D pose space to accomplish tasks such as grasping or AR.

3. Methodology

The input to our method is an RGB image that is pro-
cessed by the network to output localized 2D detections
with bounding boxes. Additionally, each 2D box is pro-
vided with a pool of the most likely 6D poses for that in-
stance. To represent a 6D pose, we parse the scores for
viewpoint and in-plane rotation that have been inferred from
the network and use projective properties to instantiate 6D
hypotheses. In a final step, we refine each pose in every
pool and select the best after verification. This last step can
either be conducted in 2D or optionally in 3D if depth data
is available. We present each part now in more detail.

3.1. Network architecture

Our base network is derived from a pre-trained Incep-
tionV4 instance [27] and is fed with a color image (re-
sized to 299 ⇥ 299) to compute feature maps at multiple
scales. In order to get our first feature map of dimen-
sionality 71 ⇥ 71 ⇥ 384, we branch off before the last
pooling layer within the stem and append one ’Inception-
A’ block. Thereafter, we successively branch off after the
’Inception-A’ blocks for a 35 ⇥ 35 ⇥ 384 feature map, af-
ter the ’Inception-B’ blocks for a 17 ⇥ 17 ⇥ 1024 feature
map and after the ’Inception-C’ blocks for a 9 ⇥ 9 ⇥ 1536
map.2 To cover objects at larger scale, we extend the net-
work with two more parts. First, a ’Reduction-B’ followed
by two ’Inception-C’ blocks to output a 5⇥ 5⇥ 1024 map.
Second, one ’Reduction-B’ and one ’Inception-C’ to pro-
duce a 3⇥ 3⇥ 1024 map.

From here we follow the paradigm of SSD. Specifically,
each of these six feature maps is convolved with predic-
tion kernels that are supposed to regress localized detections
from feature map positions. Let (w
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) be the width,
height and channel depth at scale s. For each scale, we train
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kernel that provides for each feature map location
the scores for object ID, discrete viewpoint and in-plane ro-
tation. Since we introduce a discretization error by this grid,
we create B

s

bounding boxes at each location with different
aspect ratios. Additionally, we regress a refinement of their
four corners. If C, V,R are the numbers of object classes,
sampled viewpoints and in-plane rotations respectively, we
produce a (w

s

, h

s

, B

s

⇥(C+V +R+4)) detection map for
the scale s. The network has a total number of 21222 pos-
sible bounding boxes in different shapes and sizes. While
this might seem high, the actual runtime of our method is re-
markably low thanks to the fully-convolutional design and
the good true negative behavior, which tend to yield a very
confident and small set of detections. We refer to Figure 1
for a schematic overview.

2We changed the padding of Inception-B s.t. the next block contains a
map with odd dimensionality to always contain a central position.

Figure 2: Exemplary training images for the datasets used.
Using MS COCO images as background, we render object
instances with random poses into the scene. The green
boxes visualize the network’s bounding boxes that have
been assigned as positive samples for training.

Viewpoint scoring versus pose regression The choice
of viewpoint classification over pose regression is deliber-
ate. Although works that do direct rotation regression exist
[19, 28], early experimentation showed clearly that the clas-
sification approach is more reliable for the task of detecting
poses. In particular, it seems that the layers do a better job at
scoring discrete viewpoints than at outputting numerically
accurate translations and rotations. The decomposition of a
6D pose in viewpoint and in-plane rotation is elegant and al-
lows us to tackle the problem more naturally. While a new
viewpoint exhibits a new visual structure, an in-plane ro-
tated view is a non-linear transformation of the same view.
Furthermore, simultaneous scoring of all views allows us to
parse multiple detections at a given image location, e.g. by
accepting all viewpoints above a certain threshold. Equally
important, this approach allows us to deal with symmetries
or views of similar appearance in a straight-forward fashion.

3.2. Training stage

We take random images from MS COCO [20] as back-
ground and render our objects with random transformations
into the scene using OpenGL commands. For each rendered
instance, we compute the IoU (intersection over union) of
each box with the rendered mask and every box b with IoU
> 0.5 is taken as a positive sample for this object class.
Additionally, we determine for the used transformation its



Figure 3: Discrete 6D pose space with each point repre-
senting a classifiable viewpoint. If symmetric, we use only
the green points for view ID assignment during training
whereas semi-symmetric objects use the red points as well.

closest sampled discrete viewpoint and in-plane rotation as
well as set its four corner values to the tightest fit around the
mask as a regression target. We show some training images
in Figure 2.

Similar to SSD [22], we employ many different kinds of
augmentation, such as changing the brightness and contrast
of the image. Differently to them, though, we do not flip the
images since it would lead to confusion between views and
to wrong pose detections later on. We also make sure that
each training image contains a 1:2 positives-negatives ra-
tio by selecting hard negatives (unassigned boxes with high
object probability) during back-propagation.

Our loss is similar to the MultiBox loss of SSD or
YOLO, but we extend the formulation to take discrete views
and in-plane rotations into account. Given a set of positive
boxes Pos and hard-mined negative boxes Neg for a train-
ing image, we minimize the following energy:

L(Pos,Neg) :=
X

b2Neg

L

class

+

X

b2Pos

(L
class

+ ↵L

fit

+ �L

view

+ �L
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) (1)

As it can be seen from (1), we sum over positive and
negative boxes for class probabilities (L

class

). Addition-
ally, each positive box contributes weighted terms for view-
point (L

view

) and in-plane classification (L
inplane

), as well
as a fitting error of the boxes’ corners (L

fit

). For the clas-
sification terms, i.e., L

class

, L
view

, L
inplane

, we employ a
standard softmax cross-entropy loss, whereas a more robust
smooth L1-norm is used for corner regression (L

fit

).

Dealing with symmetry and view ambiguity Our ap-
proach demands the elimination of viewpoint confusion for

Figure 4: For each object we precomputed the perfect
bounding box and the 2D object centroid with respect to
each possible discrete rotation in a prior offline stage. To
this end, we rendered the object at a canonical centroid
distance z

r

= 0.5m. Subsequently, the object distance
z

s

can be inferred from the projective ratio according to
z

s

= lr
ls
z

r

, where l

r

denotes diagonal length of the pre-
computed bounding box and l

s

denotes the diagonal length
of the predicted bounding box on the image plane.

proper convergence. We thus have to treat symmetrical or
semi-symmetrical (constructible with plane reflection) ob-
jects with special care. Given an equidistantly-sampled
sphere from which we take our viewpoints, we discard
positions that lead to ambiguity. For symmetric objects,
we solely sample views along an arc, whereas for semi-
symmetric objects we omit one hemisphere entirely. This
approach easily generalizes to cope with views which are
mutually indistinguishable although this might require man-
ual annotation for specific objects in practice. In essence,
we simply ignore certain views from the output of the con-
volutional classifiers during testing and take special care of
viewpoint assignment in training. We refer to Figure 3 for a
visualization of the pose space.

3.3. Detection stage

We run a forward-pass on the input image to collect
all detections above a certain threshold, followed by non-
maximum suppression. This yields refined and tight 2D
bounding boxes with an associated object ID and scores for
all views and in-plane rotations. For each detected 2D box
we thus parse the most confident views as well as in-plane
rotations to build a pool of 6D hypotheses from which we
select the best after refinement. See Figure 5 for the pooled
hypotheses and Figure 6 for the final output.

3.3.1 From 2D bounding box to 6D hypothesis

So far, all computation has been conducted on the image
plane and we need to find a way to hypothesize 6D poses
from our network output. We can easily construct a 3D ro-
tation, given view ID and in-plane rotation ID, and can use
the bounding box to infer 3D translation. To this end, we



Figure 5: Prediction output and 6D pose pooling of our
network on the Tejani dataset and the multi-object dataset.
Each 2D prediction builds a pool of 6D poses by parsing
the most confident views and in-plane rotations. Since our
networks are trained with various augmentations, they can
adapt to different global illumination settings.

render all possible combinations of discrete views and in-
plane rotations at a canonical centroid distance z

r

= 0.5m
in an offline stage and compute their bounding boxes. Given
the diagonal length l

r

of the bounding box during this of-
fline stage and the one predicted by the network l

r

, we can
infer the object distance z

s

= lr
ls
z

r

from their projective ra-
tio, as illustrated in Figure 4. In a similar fashion, we can
derive the projected centroid position and back-project to a
3D point with known camera intrinsics.

3.3.2 Pose refinement and verification

The obtained poses are already quite accurate, yet can in
general benefit from a further refinement. Since we will re-
gard the problem for both RGB and RGB-D data, the pose
refinement will either be done with an edge-based or cloud-
based ICP approach. If using RGB only, we render each
hypothesis into the scene and extract a sparse set of 3D con-
tour points. Each 3D point X

i

, projected to ⇡(X
i

) = x

i

,
then shoots a ray perpendicular to its orientation to find the
closest scene edge y

i

. We seek the best alignment of the 3D
model such that the average projected error is minimal:

argmin
R,t

X

i
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i
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i

||2
◆
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We minimize this energy with an IRLS approach (simi-
lar to [8]) and robustify it using Geman-McLure weighting.
In the case of RGB-D, we render the current pose and solve
with standard projective ICP with a point-to-plane formu-
lation in closed form [2]. In both cases, we run multiple

rounds of correspondence search to improve refinement and
we use multi-threading to accelerate the process.

The above procedure provides multiple refined poses for
each 2D box and we need to choose the best one. To this
end, we employ a verification procedure. Using only RGB,
we do a final rendering and compute the average deviation
of orientation between contour gradients and overlapping
scene gradients via absolute dot products. In case RGB-
D data is available, we render the hypotheses and estimate
camera-space normals to measure the similarity again with
absolute dot products.

4. Evaluation

We implemented our method in C++ using TensorFlow
1.0 [1] and cuDNN 5 and ran it on a i7-5820K@3.3GHz
with an NVIDIA GTX 1080. Our evaluation has been con-
ducted on three datasets. The first, presented in Tejani et
al. [29], consists of six sequences where each sequence
requires the detection and pose estimation of multiple in-
stances of the same object in clutter and with different lev-
els of mild occlusion. The second dataset, presented in [14],
consists of 15 sequences where each frame presents one in-
stance to detect and the main challenge is the high amount
of clutter in the scene. As others, we will skip two se-
quences since they lack a meshed model. The third dataset,
presented in [4] is an extension of the second where one
sequence has been annotated with instances of multiple ob-
jects undergoing heavy occlusions at times.

Network configuration and training To get the best re-
sults it is necessary to find an appropriate sampling of the
model view space. If the sampling is too coarse we either
miss an object in certain poses or build suboptimal 6D hy-
potheses whereas a very fine sampling can lead to a more
difficult training. We found an equidistant sampling of the
unit sphere into 642 views to work well in practice. Since
the datasets only exhibit the upper hemisphere of the ob-
jects, we ended up with 337 possible view IDs. Addition-
ally, we sampled the in-plane rotations from -45 to 45 de-
grees in steps of 5 to have a total of 19 bins.

Given the above configuration, we trained the last layers
of the network and the predictor kernels using ADAM and
a constant learning rate of 0.0003 until we saw convergence
on a synthetic validation set. The balancing of the loss term
weights proved to be vital to provide both good detections
and poses. After multiple trials we determined ↵ = 1.5,
� = 2.5 and � = 1.5 to work well for us. We refer the
reader to the supplementary material to see the error devel-
opment for different configurations.

4.1. Single object scenario

Since 3D detection is a multi-stage pipeline for us, we
first evaluate purely the 2D detection performance between



(a) 2D Detections (b) Unrefined (c) RGB refinement (d) RGB-D refinement

Figure 6: After predicting 2D detections (a), we build 6D hypotheses and run pose refinement and a final verification. While
the unrefined poses (b) are rather approximate, contour-based refinement (c) produces already visually acceptable results.
Occlusion-aware projective ICP with cloud data (d) leads to a very accurate alignment.

Sequence LineMOD [12] LC-HF [29] Kehl [17] Us
Camera 0.589 0.394 0.383 0.741

Coffee 0.942 0.891 0.972 0.983

Joystick 0.846 0.549 0.892 0.997

Juice 0.595 0.883 0.866 0.919

Milk 0.558 0.397 0.463 0.780

Shampoo 0.922 0.792 0.910 0.892
Total 0.740 0.651 0.747 0.885

Table 1: F1-scores on the re-annotated version of [29]. Al-
though our method is the only one to solely use RGB data,
our results are considerably higher than all related works.

our predicted boxes and the tight bounding boxes of the ren-
dered groundtruth instances on the first two datasets. Note
that we always conduct proper detection and not localiza-
tion, i.e. we do not constrain the maximum number of al-
lowed detections but instead accept all predictions above
a chosen threshold. We count a detection to be correct
when the IoU score of a predicted bounding box with the
groundtruth box is higher than 0.5. We present our F1-
scores in Tables 1 and 2 for different detection thresholds.

It is important to mention that the compared methods,
which all use RGB-D data, allow a detection to survive af-
ter rigorous color- and depth-based checks whereas we use
simple thresholding for each prediction. Therefore, it is eas-
ier for them to suppress false positives to increase their pre-
cision whereas our confidence comes from color cues only.

On the Tejani dataset we outperform all related RGB-D
methods by a huge margin of 13.8% while using color only.
We analyzed the detection quality on the two most diffi-
cult sequences. The ’camera’ has instances of smaller scale
which are partially occluded and therefore simply missed
whereas the ’milk’ sequence exhibits stronger occlusions
in virtually every frame. Although we were able to detect
the ’milk’ instances, our predictors could not overcome the
occlusions and regressed wrongly-sized boxes which were
not tight enough to satisfy the IoU threshold. These were

counted as false positives and thus lowered our recall3.
On the second dataset we have mixed results where we

can outperform state-of-the-art RGB-D methods on some
sequences while being worse on others. For larger feature-
rich objects like ’benchvise’, ’iron’ or ’driller’ our method
performs better than the related work since our network can
draw from color and textural information. For some objects,
such as ’lamp’ or ’cam’, the performance is worse than the
related work. Our method relies on color information only
and thus requires a certain color similarity between syn-
thetic renderings of the CAD model and their appearance in
the scene. Some objects exhibit specular effects (i.e. chang-
ing colors for different camera positions) or the frames can
undergo sensor-side changes of exposure or white balanc-
ing, causing a color shift. Brachmann et al. [5] avoid this
problem by training on a well-distributed subset of real se-
quence images. Our problem is much harder since we train
on synthetic data only and must generalize to real, unseen
imagery.

Our performance for objects of smaller scale such as
’ape’, ’duck’ and ’cat’ is worse and we observed a drop
both in recall and precision. We attribute the lower recall to
our bounding box placement, which can have ’blind spots’
at some locations and consequently, leading to situations
where a small-scale instance cannot be covered sufficiently
by any box to fire. The lower precision, on the other hand,
stems from the fact that these objects are textureless and
of uniform color which increases confusion with the heavy
scene clutter.

4.1.1 Pose estimation

We chose for each object the threshold that yielded the high-
est F1-score and run all following pose estimation experi-
ments with this setting. We are interested in the pose accu-
racy for all correctly detected instances.

3We refer to the supplement for more detailed graphs.



ape bvise cam can cat driller duck box glue holep iron lamp phone
Our method 76.3 97.1 92.2 93.1 89.3 97.8 80.0 93.6 76.3 71.6 98.2 93.0 92.4

Kehl [17] 98.1 94.8 93.4 82.6 98.1 96.5 97.9 100 74.1 97.9 91.0 98.2 84.9
LineMOD [14] 53.3 84.6 64.0 51.2 65.6 69.1 58.0 86.0 43.8 51.6 68.3 67.5 56.3

LC-HF [29] 85.5 96.1 71.8 70.9 88.8 90.5 90.7 74.0 67.8 87.5 73.5 92.1 72.8

Table 2: F1-scores for each sequence of [14]. Note that the LineMOD scores are supplied from [29] with their evaluation
since [14] does not provide them. Using color only we can easily compete with the other RGB-D based methods.

Sequence IoU-2D IoU-3D VSS-2D VSS-3D
Camera 0.973 0.904 0.693 0.778
Coffee 0.998 0.996 0.765 0.931

Joystick 1 0.953 0.655 0.866
Juice 0.994 0.962 0.742 0.865
Milk 0.970 0.990 0.722 0.810

Shampoo 0.993 0.974 0.767 0.874
Total 0.988 0.963 0.724 0.854

Table 3: Average pose errors for the Tejani dataset.

RGB
Ours Brachmann 2016 [5] LineMOD [13]

IoU 99.4 % 97.5% 86.5%
ADD [12] 76.3% 50.2% 24.2%

RGB-D
Ours Brachmann 2016 [5] Brachmann 2014 [4]

IoU 96.5 % 99.6% 99.1%
ADD [12] 90.9% 99.0% 97.4%

Table 4: Average pose errors for the LineMOD dataset.

Error metrics To measure 2D pose errors we will com-
pute both an IoU score and a Visual Surface Similarity
(VSS) [15]. The former is different than the detection IoU
check since it measures the overlap of the rendered masks’
bounding boxes between groundtruth and final pose esti-
mate and accepts a pose if the overlap is larger than 0.5.
VSS is a tighter measure since it counts the average pixel-
wise overlap of the mask. This measure assesses well the
suitability for AR applications and has the advantage of be-
ing agnostic towards the symmetry of objects. To measure
the 3D pose error we use the ADD score from [14]. This as-
sesses the accuracy for manipulation tasks by measuring the
average deviation between transformed model point clouds
of groundtruth and hypothesis. If it is smaller than 1

10 th of
the model diameter, it is counted as a correct pose.

Refinement with different parsing values As men-
tioned, we parse the most confident views and in-plane ro-
tations to build a pool of 6D hypotheses for each 2D de-
tection. Here, we want to assess the final pose accuracy

Figure 7: Average VSS scores for the ’coffee’ object for
different numbers of parsed views and in-plane rotations as
well as different pose refinement options.

when changing the number of parsed views V and rotations
R for different refinement strategies We present in Figure
7 the results on Tejani’s ’coffee’ sequence for the cases of
no refinement, edge-based and cloud-based refinement (see
Figure 6 for an example). To decide for the best pose we
employ verification over contours for the first two cases and
normals for the latter. As can be seen, the final poses with-
out any refinement are imperfect but usually provide very
good initializations for further processing. Additional 2D
refinement yields better poses but cannot cope well with
occluders whereas depth-based refinement leads to perfect
poses in practice. The figure gives also insight for vary-
ing V and R for hypothesis pool creation. Naturally, with
higher numbers the chances of finding a more accurate pose
improve since we evaluate a larger portion of the 6D space.
It is evident, however, that every additional parsed view V

gives a larger benefit than taking more in-plane rotations R
into the pool. We explain this by the fact that our viewpoint
sampling is coarser than our in-plane sampling and thus re-
veals more uncovered pose space when parsed, which in
turn helps especially depth-based refinement. Since we cre-
ate a pool of V · R poses for each 2D detection, we fixed
V = 3, R = 3 for all experiments as a compromise between
accuracy and refinement runtime.



Figure 8: Left: Detection scores on the multi-object dataset
for a different global threshold. Right: Runtime increase for
the network prediction with an increased number of objects.

Performance on the two datasets We present our pose
errors in Tables 3 and 4 after 2D and 3D refinement. Note
that we do not compute the ADD scores for Tejani since
each object is of (semi-)symmetric nature, leading always
to near-perfect ADD scores of 1. The poses are visually ac-
curate after 2D refinement and furthermore are boosted by
an additional depth-based refinement stage. On the second
dataset we are actually able to come very close to Brach-
mann et al. which is surprising since they have a huge ad-
vantage of real data training. For the case of pure RGB-
based poses, we can even overtake their results. We provide
more detailed error tables in the supplement.

4.2. Multiple object detection

The last dataset has annotations for 9 out of the 15 ob-
jects and is quite difficult since many instances undergo
heavy occlusion. Different to the single object scenario,
we have now a network with one global detection threshold
for all objects and we present our scores in Figure 8 when
varying this threshold. Brachmann et al. [5] can report an
impressive Average Precision (AP) of 0.51 whereas we can
report an AP of 0.38. It can be observed that our method de-
grades gracefully as the recall does not drop suddenly from
one threshold step to the next. Note again that Brachmann
et al. have the advantage of training on real images of the
sequence whereas we must detect heavily-occluded objects
from synthetic training only.

4.3. Runtime and scalability

For a single object in the database, Kehl et al. [17] re-
port a runtime of around 650ms per frame whereas Brach-
mann et al. [4, 5] report around 450ms. Above methods
are scalable and thus have a sublinear runtime growth with
an increasing database size. Our method is a lot faster than
the related work while being scalable as well. In particular,
we can report a runtime of approximately 85ms for a sin-
gle object. We show our prediction times in Figure 8 which
reveals that we scale very well with an increasing number

Figure 9: One failure case where incorrect bounding box
regression, induced by occlusion, led to wrong 6D hypoth-
esis creation. In such cases a subsequent refinement cannot
always recover the correct pose anymore.

of objects in the network. While the prediction is fast, our
pose refinement takes more time since we need to refine ev-
ery pose of each pool. On average, given that we have about
3 to 5 positive detections per frame, we need a total of an
additional 24ms for refinement, leading to a total runtime of
around 10Hz.

4.4. Failure cases

The most prominent issue is the difference in colors be-
tween synthetic model and scene appearance, also including
local illumination changes such as specular reflections. In
these cases, the object confidence might fall under the de-
tection threshold since the difference between the synthetic
and the real domain is too large. A more advanced augmen-
tation would be needed to successfully tackle this problem.
Another possible problem can stem from the bounding box
regression. If the regressed corners are not providing a tight
fit, it can lead to translations that are too offset during 6D
pose construction. An example of this problem can be seen
in Figure 9 where the occluded milk produces wrong off-
sets. We also observed that small objects are sometimes
difficult to detect which is even more true after resizing the
input to 299⇥299. Again, designing a more robust training
as well as a larger network input could be of benefit here.

Conclusion

To our knowledge, we are the first to present an SSD-
style detector for 3D instance detection and full 6D pose
estimation that is trained on synthetic model information.
We have shown that color-based detectors are indeed able
to match and surpass current state-of-the-art methods that
leverage RGB-D data while being around one order of mag-
nitude faster. Future work should include a higher ro-
bustness towards color deviation between CAD model and
scene appearance. Avoiding the problem of proper loss term
balancing is also an interesting direction for future research.
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SSD-6D: Making RGB-Based 3D Detection and 6D Pose Estimation Great Again
Supplementary material

1. Object-wise detection scores
We present the detection score graphs for each object of the first two datasets in Figures 1 and 2 from which we determined

the best object-wise threshold. For reproducibility, we list them in Tables 1 and 2.

Camera Coffee Joystick Juice Milk Shampoo

0.55 0.35 0.5 0.25 0.3 0.45

Table 1: Object-wise thresholds for the Tejani dataset.

Figure 1: Plotting the detection scores for each object on the Tejani dataset for a varying threshold.

1



ape bvise cam can cat driller duck box glue holep iron lamp phone

0.5 0.15 0.2 0.75 0.35 0.25 0.25 0.25 0.4 0.4 0.3 0.55 0.35

Table 2: Object-wise thresholds for the LineMOD dataset.

Figure 2: Plotting the detection scores for each object on the LineMOD dataset for a varying threshold.



2. Detailed pose errors for the LineMOD dataset

ape bvise cam can cat driller duck box glue holep iron lamp phone

IoU-2D 0.99 1.00 0.99 1.0 0.99 0.99 0.98 0.99 0.98 0.99 0.99 0.99 1.00

IoU-3D 0.96 0.98 0.98 0.99 0.95 0.95 0.95 0.98 0.89 0.97 0.97 0.98 0.93

VSS-2D 0.73 0.67 0.73 0.75 0.67 0.66 0.71 0.78 0.72 0.70 0.74 0.66 0.72

VSS-3D 0.84 0.88 0.90 0.86 0.81 0.84 0.83 0.88 0.75 0.77 0.85 0.84 0.81

ADD-2D 0.65 0.80 0.78 0.86 0.70 0.73 0.66 1.00 1.00 0.49 0.78 0.73 0.79

ADD-3D 0.85 0.94 0.94 0.94 0.86 0.85 0.82 1.00 1.00 0.73 0.95 0.87 0.87

Table 3: Object-wise pose errors for the LineMOD dataset.

3. Error development for different loss term weights
We plot the average error on a synthetic validation set. While the accuracies for class, viewpoint and in-plane rotations

increase, the networks converge at different levels. We also plot the more important mean angular deviation for viewpoint
and in-plane rotation since this is usually the expected error of the pooled hypotheses before refinement.

(a) ↵ = 1,� = 1, � = 1 (b) ↵ = 3,� = 1, � = 1 (c) ↵ = 1,� = 1, � = 3 (d) ↵ = 1,� = 3, � = 1

(e) ↵ = 1,� = 2, � = 2 (f) ↵ = 3,� = 1, � = 3 (g) ↵ = 2,� = 2, � = 1

Figure 3: Development of training error on a synthetic validation set.



Figure 4: Qualitative results on the LineMOD dataset. From left to right: 2D prediction, hypothesis pool, result after 2D
refinement, result after 3D refinement.



Figure 5: Qualitative results on the LineMOD dataset. From left to right: 2D prediction, hypothesis pool, result after 2D
refinement, result after 3D refinement.



Figure 6: Qualitative results on the multi-object dataset. From left to right: 2D prediction, hypothesis pool, result after 2D
refinement, result after 3D refinement.



Figure 7: Qualitative results on the Tejani dataset. From left to right: 2D prediction, hypothesis pool, result after 2D
refinement, result after 3D refinement.


