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Automatic Normal Positioning of Robotic
Ultrasound Probe based only on Confidence Map

Optimization and Force Measurement
Zhongliang Jiang1, Matthias Grimm1, Mingchuan Zhou1, Javier Esteban1, Walter Simson1,

Guillaume Zahnd1 and Nassir Navab1,2

Abstract—Acquiring good image quality is one of the main
challenges for fully-automatic robot-assisted ultrasound systems
(RUSS). The presented method aims at overcoming this challenge
for orthopaedic applications by optimizing the orientation of the
robotic ultrasound (US) probe, i.e. aligning the central axis of the
US probe to the tissue’s surface normal at the point of contact
in order to improve sound propagation within the tissue. We
first optimize the in-plane orientation of the probe by analyzing
the confidence map [1] of the US image. We then carry out a
fan motion and analyze the resulting forces estimated from joint
torques to align the central axis of the probe to the normal within
the plane orthogonal to the initial image plane. This results in
the final 3D alignment of the probe’s main axis with the normal
to the anatomical surface at the point of contact without using
external sensors for surface reconstruction or localizing the point
of contact in an anatomical atlas. The algorithm is evaluated
both on a phantom and on human tissues (forearm, upper
arm and lower back). The mean absolute angular difference (±
STD) between true and estimated normal on stationary phantom,
forearm, upper arm and lower back was 3.1± 1.0◦, 3.7± 1.7◦,
5.3±1.3◦ and 6.9±3.5◦, respectively. In comparison, six human
operators obtained errors of 3.2 ± 1.7◦ on the phantom. Hence
the method is able to automatically position the probe normal to
the scanned tissue at the point of contact and thus improve the
quality of automatically acquired ultrasound images.

Index Terms—Medical Robots and Systems; Force and Tactile
Sensing; Robotic Ultrasound

I. INTRODUCTION

ULTRASOUND (US) is widely used for real-time diagno-
sis of internal tissues and organs. Unlike X-ray or com-

puted tomography (CT), US imaging is noninvasive, cheap,
radiation-free, able to show organ movement in real-time,
and therefore widely integrated in clinical practice. However,
substantial experience and visuo-tactile skills are required for
achieving high-quality US images. Ideal placement of the US
probe [2] and suitable contact force between the probe and
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Fig. 1. The two rotations carried out to optimize the probe orientation.

patient [3] are crucial to achieve good image quality. Even
for an experienced operator, it is difficult to exactly replicate
acquisition parameters (orientation, position and contact force)
resulting in large quality variations [4].

To address these challenges, various robotic US systems
(RUSSs) have been proposed to assist in US scanning due
to their high accuracy, stability and reproducibility. Pierrot et
al. developed a robotic system with a force control scheme
exerting a given force for accurate 3-D reconstruction [5].
Gilbertson et al. designed a programmable-force US probe
to reduce image variations by providing a known contact
force [6]. Conti et al. proposed a collaborative RUSS to
maintain optimal pressure and provide an interface for 3D
volumetric representation [7]. Schneider et al. introduced a
method to register pre-operative CT to intra-operative camera
images with the help of robot [8]. To improve the imaging
quality, Burcher et al. corrected tissue deformation based on
the measured contact force and positionial information [3].
More RUSSs have been designed for accurate 3D US imag-
ing [9] and interventional navigation [10].

The previously mentioned works focus on optimizing the
contact force Fc in order to achieve better image quality.
Besides Fc, the orientation of the US probe also heavily
influences the resulting image quality. In order to obtain an
optimal image quality, both need to be optimized. However,
automatic optimization of the probe orientation has not been
fully researched. In a preliminary work, the impact of probe
orientation on image quality was investigated [11], and it was
concluded that a better quality was obtained when the angle of
incidence θAOI (namely the angle between the US waves and
the normal direction of the surface) close to zero. This can be
explained by the fact that a zero θAOI leads to more echoes
being reflected back and hence received, rather than scattered



2 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JANUARY, 2020

away. Furthermore Chatelain et al. discovered that the amount
of received sound waves is further increased when the angle
between the central axis of the probe and the normal of the
tissue in the image plane is zero [12].

Summarizing to achieve optimal image quality the central
axis A of the probe needs to be aligned with the surface
normal N, which requires estimating N for any contact point.
Then the probe can be positioned such that A and N align.
A and N can be decomposed into two orthogonal parts:
an in-plane component Ai and Ni, aligned with the image
plane of the US view and an out-of-plane component Ao and
No orthogonal to the in-plane component, respectively. The
location of the two components is depicted in Fig. 2.

To set a suitable probe orientation for autonomous RUSS,
Huang et al. used the normal direction of a local plane around
the scanning path obtained by a depth camera prior to US
scanning [9]. Calculating the normal direction N using a non-
deformed scan obtained before the probe reaches the patient is
error-prone, as the scan does not include deformations induced
by the contact of the probe with the patients skin. To make
RUSS adaptable to unknown and/or changing environments,
Chatelain et al. employed a visual servoing method to optimize
the probe orientation in the in-plane direction based on an
US confidence map [12]. Briefly, an US confidence map
provides a per-pixel measurement of the image quality (signal
loss) [1]. However, the method only focused on the in-plane
part, while the out-of-plane part still needed to be adjusted via
telemanipulation.

Without the ability to finely tune the probe orientation (both
from in-plane and out-of-plane view), RUSS would be unable
to automatically obtain good quality scans from non-flat sur-
faces such as human anatomies. To develop a fully automatic
RUSS with the ability to provide good image quality, the
capability to ascertain the normal direction between probe and
surface without requiring external help from human operators
is crucial. Due to its independence to calibration accuracy and
its sensitivity to changes in contact condition [13], the contact
force Fc is a promising candidate for detecting the specified
normal direction N.

The present work aims at introducing a method to identify
the normal direction N of the contact surface for autonomous
RUSS for any given point of contact. This is done using esti-
mated forces and the US image. To the best of our knowledge,
this is the first paper combining force estimates and real-time
US images for estimating the optimal probe orientation. The
use of only those two measurements is inspired by the way
US sonographers conduct US scans. They do not look at the
patient but only at the US images. The main contribution
is the ability to fully automatically detect N and thereby
improve imaging quality without requiring an external force
sensor or knowledge about the scanned tissue. This is achieved
by first computing the in-plane component Ni based on the
confidence map of the real-time US image. Then the out-of-
plane component No is computed by first doing a fan motion
in the out-of-plane direction and then analyzing the estimated
external force from joint torques. The method was validated
using both a gel-wax phantom and a volunteer’s forearm, upper
arm and lower back.

1

2

5
4

3

a)

b)

c) In-plane view

d) Out-of-plane view

e) Oblique direction

f) Perpendicular direction

Case e)

Case f)

In-plane

Out-of-plane
5 4

Bone boundary 

Fig. 2. Impact of the probe orientation on US images. 1: US probe; 2:
Surface; 3: Contact force Fc; 4: probes central axis A; 5: Normal direction
N. TCP refers to the tool center point. a) and b) describe ideal and non-ideal
probe orientation in 3D, respectively; c) and d) are the in-plane and out-of-
plane view, respectively; e) and f) are images from an ideal and non-ideal
orientation (θAOI = 10◦). The main difference is the loss of detail (clear
boundary of radius bone).

II. ALGORITHM OVERVIEW AND THEORETICAL
JUSTIFICATION

This section describes the proposed method for computing
the normal direction N with respect to the contact surface.
N is determined using US images and an estimation of the
Cartesian force from joint torques without requiring prior
knowledge of the tested tissue or additional sensors. Then
an analysis of the estimated force is presented to provide an
insight into the dynamic behavior of the estimated force and
its impact on the presented application.

A. Strategy for Computing the Normal Direction

In this work, a convex US probe (C5-2/60, Ultrasonix,
Richmond, Canada) providing large penetration depth and field
of view is attached to the end-effecor of a robotic manipulator
(KUKA LBR iiwa 7 R800, KUKA Roboter GmbH, Augsburg,
Germany).

In order to automatically align the probe axis A with the
normal N from an arbitrary starting point (see Fig. 2 b)),
the in-plane and out-of-plane alignments are carried out sep-
arately. Fig. 2 c) and d) describe the two adjustments from
the starting orientation (black dashed line) to the desired
orientation (red dashed line), respectively. Fig. 2 e) and f) show
the corresponding US images of a radial bone obtained with
θAOI equals ten and zero degrees. The latter scan contains
a more clear bone outline. This is important, especially for
US-CT registration [14], which allows to transfer preoperative
CT data into the operating room (e.g. for planning or label
transfer). Furthermore the clearer anatomical boundaries aid
3D reconstruction [15]) and carotid stenosis diagnosis [16].

Since the acquired US image is coplanar with the in-plane
view, the resulting image quality is highly related to the
angular difference between Ni and Ai. Methods working
directly with pixel intensities are sensitive to artifacts, such
as shadows produced by anatomies (see red ellipse in Fig. 3
a)). Building upon the confidence map strategy [1], an original
method is used to determine the weighted barycenter of the
regions containing tissues (i.e. where the probe is in contact
with the imaged object), as opposed to those obscured by
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shadows (i.e. out of contact). This allows to compute the
correction factor for the orientation in-plane component Ai.

Shadow

a) US B-Mode image b) Confidence map

Fig. 3. In-plane orientation adjustment strategy. a) US B-mode scan of
forearm; b) corresponding confidence map. The red line depicts Ni.

A B

Rotation direction

A B

Rotation direction

a) c) b) 

0 4 8 12 16 20
Time (s)

-12

-8

-4

0

4

8

Fo
rc

e
 (

N
)

0 4 8 12 16 20
Time (s)

PA: 4.4 N
PB: -6.5 N

PA: 6.6 N
PB: -6.4 N

Recorded TCPFy

Recorded Fc

e) d) 

Ideal SDCF
Noisy SDCF

-15 -10 -5 0 5 10
(degree)

15

Feature 
point

0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
liz

e
d

 v
a
lu

e

f) 

Desired Fc

tc tc

Fig. 4. Cartesian force during fan motion. a) and b) are fan motions of the
probe in the out-of-plane direction. Forward from A to B and backward from
B to A; c) is the physical force model; d) and e) are the recorded TCP F̂y

(blue line) and contact force (Fc, orange line) corresponding to the cases
a) and b) on the gel-wax phantom, where desired Fc = 10 N and stiffness
= 500 N/m. f) shows the ideal normalized SDCF and normalized first detail
coefficient of the noisy SDCF. PA and PB marked in d) and e) are the forces
recorded at location A and B in a) and b).

To detect the normal component No, force information is
used, since US images correspond by definition to the in-plane
view, thus making the use of image-based metrics to gather
information about the out-of-plane dimension challenging. In
addition, the force is invariant to registration or calibration
errors and it can be estimated by the torque sensors present in
all the robot’s joints. The contact force Fc between probe and
patient is usually set to 3−15 N in clinical practice. Reducing
Fc yields a worse contact, whereas a larger Fc reduces the
image quality due to deformations.

Then, a fan motion (θAOI = [−15, 15◦]) around the probe
long axis (orange arrow in Fig. 2 a)) is executed forward
and backward (see Fig. 4 a) and b)) and the resulting force
estimated from the joint torques in the direction TCPY (green
arrow in Fig. 2 a)) TCP F̂y is recorded (see Fig. 4 d) and
e)). In addition, the theoretical TCPFy (see Fig. 4 c)) can be
calculated as Eq. (1).

TCPFy = −Fc tan(θAOI) (1)

Since Fc is constant during the fan motion, TCPFy only
depends on θAOI . Ideally θAOI is zero, which corresponds to
Ao coinciding with No. This leads to a resulting force TCPFy
of zero. TCP refers to the tool center point.

B. Cartesian Force Analysis

The external force TCPFy at the TCP can be estimated
from the joint torques. Since the estimated Cartesian force
depends on the joint configuration, singularities should be
avoided to get better measurements. The recorded TCP F̂y
during a forward and backward fan motion is shown in Fig. 4
d) and e). As it can be seen, the same real world point (e.g.
A) can yield different recorded forces. The largest observed
difference was 5 N without payload and external interaction
forces. This difference is mainly caused by the torque sensors
inaccuracy and varying static friction in joints. Furthermore,
although the forward and backward fan motions are symmetric
in Cartesian frame, the joint configurations may be different,
because a compliant control scheme is used to guarantee good
image quality and patient safety [17].

As shown in Fig. 4 d) and e), the recorded Fc is initially
less than the desired Fc (10 N) because it has been partly
compensated by the controller using a virtual force produced
by the probe displacement in TCPZ direction after activation
of the force control [17]. For each contact, the contact condi-
tions are different and hence the initial recorded F̂c is varying.
However, when the fan motion is started, the absolute value of
the recorded F̂c gradually increases toward the desired force
until the tissue deformation creates a reaction force to balance
the force F̂c applied by the robot. The corresponding time
stamp is marked as tc in Fig. 4. Since the initial F̂c varies, tc
is also varying. Therefore the value of TCPFy at tc (marked as
Vc) is non-deterministic. Hence, it is not possible to use a fixed
threshold for determining the normal No. For example, the
TCP F̂y was zero at about 4 s, whereas the normal direction
is close to 12 s (middle of time period) in Fig. 4 d).

C. Smooth Derivative of Contact Force (SDCF)

In order to overcome the non-deterministic behaviour of the
estimated force, a new feature — smooth derivative of contact
force (SDCF) — is defined as in Eq. (2):

SDCF (n) =
1

N

n∑
i=n−N+1

|TCP F̂y(i+ 1)− TCP F̂y(i)| (2)

where n ≥ N , N is the span of the averaging filter and is
empirically set to 100.

Since Fc is fixed during the fan motion, the SDCF only
depends on the angle θAOI . The normalized SDCF (n = 1)
obtained under ideal conditions is shown in Fig. 4 f). Further
considering that Fc slightly varies during the fan motion,
uniform noise between [−1, 1] N is added to the desired force.
Then the noisy SDCF is calculated based on the noisy Fc with
n = 100. The normalized first detail coefficient of discrete
wavelet transform (wavelet: sym4, level: 5) result of noisy
SDCF is also shown in Fig. 4 f).

As shown in the figure, both ideal and detail coefficient of
noisy SDCF are minimal (marked with a red point), when
the probe’s axis A coincides with the surface normal N.
This means that the SDCF is a promising feature to detect
the normal direction, even when F̂c slightly differs from
the desired Fc. In addition, since the SDCF represents the
change rate of TCP F̂y rather than the absolute force value, the
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effect from the non-deterministic behavior in the beginning is
reduced. Furthermore, an approach based on finding the proper
minimum of the SDCF is likely to yield better results than
a threshold-based approach, especially when non-stationary
objects are involved. More details about identifying the
desired No are described in Section IV.

III. OPTIMIZATION OF IN-PLANE ORIENTATION

A. Ultrasound Confidence Map

Since the US view is coplanar with the in-plane view,
an image-based method can be used to identify the in-plane
normal Ni. Therefore, the US confidence map [1] is exploited.
It provides an objective, stable and repeatable per-pixel assess-
ment of imaging quality based on the estimation of the signal
loss. An US image is transformed into a probabilistic map
C ∈ R2 −→ [0, 1], where the maximum value (1, white) means
perfect signal quality and the minimum value (0, black) means
no signal. For each pixel, the corresponding value of C can be
interpreted as the chance of the signal reaching the transducer,
which makes C locally more continuous than the intensity
values (see red ellipse in Fig 3). Furthermore, regions where
the probe is not in contact with the patient are easily detectable
due to their low confidence (see the shadow in Fig. 3). Thus
the US confidence map is a good tool to optimize the in-
plane orientation, especially in the presence of shadows at the
periphery of the US scan.

B. Orientation Computation for In-Plane Component

The present framework is based on the use of convex
US probes, however it could straightforwardly be applied to
linear transducers as well. For a convex probe, the US image
can be defined in polar coordinates as Ω = [rmin, rmax] ×
[θmin, θmax], where Ω represents the US scan; rmin and rmax
denote the radius of the probe and the scan depth, respectively;
θmin and θmax are the angular offsets from the two sides of
the central line (θmax = −θmin), respectively. The line from
the US focal point and the confidence-weighted barycenter ζc
is a good approximation of Ni [12]. Hence the robot is moved
such that Ai intersects ζc, which can be calculated as follows:

ζc =
1

ℵc

∫ θmax

θmin

∫ r′

rmin

θ

θmax − θmin
C(θ, r)drdθ (3)

where ℵc =
∫ ∫

(θ,r)∈Ω
C(θ, r)drdθ is the accumulated con-

fidence value over the entire image (Ω), r′ ∈ (rmin, rmax]
defines the region of interest, θ is the angular deviation from
central scan-line in the image and θmin and θmax were set to
−0.5 and 0.5 respectively.

To reach the desired position, a rotational offset Rc is
applied to the current position. Rc is calculated as follows:

Rc = −1

2
kcζcΨp (4)

where kc is the control gain, Ψp is the angular field of view
of the convex probe. This is done iteratively until no further
improvement is reached.

IV. OPTIMIZATION OF OUT-OF-PLANE ORIENTATION

This section proposes a method to compute No using force
values recorded during a fan motion of the robot. Due to large
noise in the recorded force data, several de-noising steps are
applied. An overview of the method is given in Fig. 5.

RecordingFan Kalman DWT
Computing

Detail coefficients candidate LMs
Fusion Out-of-plane

Low-pass

(d1, d2, d3)
adjustmentalgorithm

motion force filter filter SDCF

Extract

Fig. 5. Overview over the out-of-plane optimization algorithm.

A. Kalman Filter Implementation

Most general-purpose robotic manipulators have the ability
to estimate TCPFy based on joint torques. However, the
forces involved in RUSS are smaller than 10 N due to
safety concerns. Hence, digital noise has severe impact on
the estimated Cartesian force for this application. In addition,
changes of the contact point between probe and patient due to
patient movement further reduce the accuracy of the recorded
force (blue line in Fig. 6). The Kalman filter is a standard
technique to reduce noise by correcting new measurements
based on previous ones. Hence a Kalman filter is employed to
denoise the recorded force as in [18].

The fan motion is executed with a low velocity
(0.025 rad/s) compared to the sampling frequency of the
force (100 Hz). Thus the computed force values differ only
slightly for consecutive sampling points. In addition, the
Kalman filter operates only on the recorded force, hence the
transition matrices for the estimated state (A) and measured
state (H) are set to identity. Furthermore, the estimation and
measurement noise covariance matrices are empirically set
to 10−8 and 4 × 10−6, respectively. The performance of the
Kalman filter when applied to the recorded force values during
two forward and backward fan-motions with the same motion
parameters are depicted in Fig. 6, one on a phantom and one
on a volunteer’s lower back. The volunteer is breathing, which
causes significant fluctuations of the recorded force as shown
in Fig. 6 b).

B. Extraction of Frequency-Band Components from SDCF

Due to the low rotational velocity, the important force
components are concentrated in the low frequency domain.
Hence a low pass filter is employed after the Kalman filter
to further reduce noise. In order to determine a suitable stop-
band frequency Fs, the Fast Fourier Transform (FFT) is used
to investigate the frequency decomposition of the recorded
TCP F̂y . An example of the FFT result and the corresponding
power spectral density (PSD) of the force recorded on the
phantom is shown in Fig. 7 a). The high frequency part can
be removed because it mainly corresponds to digital noise of
the sensors. Based on Fig. 7 a), the PSD is rapidly attenuated
after 5 Hz and the energy (cumulative PSD) of the signal
components at 15 Hz occupies 85% of the total signal energy.
Hence, Fs is set to 15 Hz. The result of the low-pass filter
is depicted in Fig. 7 b).
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The SDCF is calculated using the result of the low-pass
filter and Eq. (2). Its normalized result is shown in Fig. 7 b).
Due to the non-periodic nature of the force caused by the fan
motion, there is no identifiable main frequency in the FFT
result. In order to obtain accurate identification results, the
discrete wavelet transformation (DWT) is used to divide the
SDCF into its different frequency band components.

The DWT provides high frequency and temporal resolution,
which makes it suitable for processing unstable signals. The
DWT requires a decomposition level and wavelet function as
input. The sym4 wavelet function was empirically chosen as
basis function in this paper. To investigate the effect of the
different frequency parts, the decomposition level was set to
5. This results in five detail coefficients di, i = 1 . . . 5 covering
the intervals [Fs2 –Fs], [Fs4 –Fs2 ], [Fs8 –Fs4 ], [Fs16 –Fs8 ] and [Fs32 –
Fs
16 ], respectively. The di have different frequency interval
size, hence their amplitude range also differs. Therefore the
amplitudes are normalized between [0, 1] (as depicted in Fig. 7
c)). Since the normalization is linear, it does not affect the
locations of local minima.

As shown in Fig. 7 c), the amplitude graphs for d4 and d5

are unlike the other three. This is due to them having a low
frequency value and small frequency range. Low frequencies
are influenced by contact point changes, e.g. due to breathing.
Hence, only d1, d2 and d3 are used to detect No.

C. Extracting Local Minima from SDCF

In theory, the SDCF is minimal when A is aligned with
N as shown in Fig. 4 f). Due to noise, this minimum is
not necessarily the global minimum for real scenarios. The
experimental detail signals (di, i = 1, 2, 3) from Fig. 7 c)
have multiple local minima (LM). The LM can be detected
by comparing nearby points using Eq. (5). The detected LM
are depicted as red stars in Fig. 8.

Ii = {t| di(t−∆t) > di(t) ∧ di(t+ ∆t) > di(t)} (5)

where I is the set used to save the corresponding time stamps
of LM, i = 1, 2, 3 is the detail coefficient index, t is the time
stamp and ∆t = 10 ms is the sampling interval. The equation
is written in set-builder notation.
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and d3, respectively. The parameters are set as follows: W1 = 0.8, L1 =
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A method is proposed to detect the right LM for each
di. During this process, two variables (LM∗ and LM∗∗) are
defined. LM∗ are the LM remaining after removing neighbor-
ing LM (LM located in close proximity to each other, see
the enlarged plot in Fig. 8 b). LM∗∗ are the LM∗ remaining
after further removing the so-called NP-LMs (noise-perturbed)
which are caused by noise perturbing the estimated force (see
the pink rectangle in Fig. 8).

To extract the LM∗, a sliding window filter with width W1

and length L1 is applied to remove all but the first element
for each neighboring LM group. The LM∗ are marked with
a black circle in Fig. 8 and the corresponding timestamps
form the set I∗i . To further remove NP-LM, the input signal
di is partitioned into segments along the LM∗. If a LM∗

amplitude is close to the maximum amplitude of one of its
neighbouring segments, it is discarded. The remaining LM
(LM∗∗) are marked with a green square in Fig. 8. A set I∗∗i
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containing their corresponding timestamps is created. This is
explained in Eq (6).

I∗∗i = {t| LMk
i − di(t) > H1 ∧R Mk

i − di(t) > H1} (6)

where i = 1, 2, 3 is the detail coefficient index, t are the
recorded time stamps, k = 1, 2,..., length(I∗i ) − 2, H1 is
the amplitude threshold, LMk

i and RMk
i are the maximum

amplitude values of the left and right segments adjacent to the
kth LM. The equation is written in set-builder notation.

In order to identify the desired LM candidate for each di,
a feature A∗ is defined as in Eq. (7).

A∗(LM, i) = (LMLM
i − di(t)) · (RMLM

i − di(t)) (7)

where i = 1, 2, 3 is the detail coefficient index, LM is the
LM, t = I∗∗i (k) is the timestamp of the LM, LM j

i and RM j
i

are the maximum amplitude values of the segment left and
right of LM .

For each di the LM∗∗ with the largest A∗ is selected as the
final candidate (depicted with red circle in Fig. 8).

D. Computation of Normal Direction
The potential normal direction is computed from the final

LM (P 1
b , P 2

b and P 3
b ) of the detail coefficients di, respectively.

To further improve the robustness of the identified result, a
fusion algorithm using the three candidate LM is proposed.
As it can be seen in Fig. 9, there are three possible cases and
five potential results:
Case 1: The maximum A∗ of P 1

b , P 2
b and P 3

b is larger than the
threshold HA. The timestamp of the LM with maximum
A∗ is returned.

Case 2: The three selected LM have a similar timestamp. Then
the mean timestamp is returned.

Case 3: Two of the selected LM have similar timestamps.
The mean of their timestamps is denoted as tmean, while
the third timestamp td differs. The two selected LM with
similar timestamps are denoted as a and b, the last one
is called c. T1 and T2 are computed as described in Case
3.1 and Case 3.2, respectively. If T2 is greater than T1,
td is returned, otherwise tmean.

Case 3.1: A LM corresponding to tmean is searched in the
set LM∗∗c . If there is an element in I∗∗c with a timestamp
not more than H3 seconds away from tmean, the search
is considered a success. T1 is computed as the sum of
the A∗ of the searched LM (if available), P ab and P bb .

Case 3.2: As in case 3.1, the two corresponding LM for td are
searched among the LM∗∗a and LM∗∗b . T2 is computed as
the sum of the A∗ of the searched LM (if available) and
P cb .

Failure: If all three selected LM have different timestamps,
then the algorithm returns a failure.

Finally, the returned No is the Ao corresponding to the
returned timestamp.

V. RESULTS

A. Experimental Setup
The overall experimental setup is shown in Fig. 10. A

convex US probe is attached to a robot flange using a 3D-
printed mount and B-mode US images are acquired using

Initialization

Fig. 9. Fusion algorithm to extract No from the recorded probe orientations
based on timestamps. The parameters are set as follows: HA = 0.3, H2 =
0.8 and H3 = 1.5.

an Ultrasonix RP machine (BK Ultrasound, Peabody, MA,
USA). B-mode images are transferred to a computer using an
Ethernet cable and the OpenIGTLink protocol. The computer
communicates with the robot using ROS (Robot Operating
System). Control commands and the robot status are ex-
changed at 100 Hz. The algorithm was evaluated on a gel-
wax phantom with a flat surface and on a human volunteer
(lower arm, upper arm, lower back). The phantom is fixed in
foam plastic to imitate the behavior of skin. The phantom is
placed on a flat surface. Hence the ground truth is represented
as ~BVg = [0, 0, 1] in the robotic base frame. For the human
volunteer, the ground truth is computed based on scanning
the surface around the desired path. The angular difference
between estimated normal N̂ and ground truth normal N is
computed using the equation: θ = cos−1(N̂ ·N/(|N̂| · |N|)).

2: Convex probe

4: Gel-wax  phantom

5: Ultrasound machine

1:  Robotic arm

1

2

3

4

5

3: In-vivo tissue

Fig. 10. Experimental setup.

B. Validation of Estimating Ni using the Gel-Wax Phantom

The computation of Ni is the first step of the proposed
algorithm. It was validated using a series of experiments
performed on the gel-wax phantom using three different initial
θAOI and four different initial offset angles θIN in the in-
plane view, where θIN is the angular difference between
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Ai and Ni. The US confidence map is calculated from US
images, which are highly sensible to deformations. In order
to assess the impact of deformation on in-plane adjustment,
the robot is controlled in position mode. Each of the twelve
experiments is performed four times with different depths
(z = z0 + 0.5, z0 + 1, z0 + 1.5, z0 + 2 mm), where z0 is
the depth at which the probe starts touching the phantom.

Ni is estimated using Eq. (3) with r′ = rmin+ 0.2(rmax−
rmin). The error (ein, mean±STD) for different θIN and θAOI
is shown in Table-I. The experiments show that the method is
able to achieve good estimates for Ni.

TABLE I
MEAN ABSOLUTE ERROR (±STD) OF IN-PLANE IDENTIFIED RESULTS

θIN

ein θAOI
0 5 10

0 1.11 ± 0.55 0.18 ± 0.09 1.20 ± 0.79
3 0.94 ± 0.66 0.84 ± 0.29 0.56 ± 0.36
6 1.38 ± 0.41 1.61 ± 0.53 1.55 ± 0.39
9 2.71 ± 0.57 2.92 ± 0.20 2.69 ± 0.81

*Units are in degree.

C. Validation of Estimating No using the Gel-Wax Phantom

Five experiments were performed on the gel-wax phantom
with flat surface and Fc = 8 N . To make the tests more
realistic and challenging, an asymmetric fan motion (θAOI =
[−6, 15◦]) is employed. The calculated angular differences
θc between A and N of the five paired fan motions are
shown in Fig. 11. It is calculated by

√
θ2
IN + θ2

AOI . Ai

is not necessarily aligned with Ni, therefore even if Ao is
aligned with No, an error of zero is not necessarily achieved.
Therefore the minimum error for each fan motion is equal to
θIN . For multiple repeated fan motions, it can be seen that
θIN increases with the number of fan motions. This is caused
by the probe sliding on the contact surface, due to US gel and
deformations of the soft tissue.

The Ao corresponding to the timestamps of the computed
results (red and green dots in Fig. 11) are taken as estimated
No. Except for one result (third fan motion, green dot), all
results are close to the desired direction (< 5◦), despite θIN
being non-zero. Furthermore, five of the ten results are very
close to the minimum (< 0.5◦). This shows that the method
can detect No purely based on the estimated force provided
by a robot without external force sensor.

5
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15
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e
g
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)

Forward fan motion
Backward fan motion

Identified result error

Fig. 11. Computed results for five paired fan motions. The red and green
dots depict the results for the forward and backward fan motion, respectively.

To further analyse the proposed method, the normalized
amplitude for the di for the fifth paired fan motion (largest

initial angle difference with 3.3◦ and 3.6◦) are shown in
Fig. 12. The final differences between the ideal N and detected
N̂ are 3.5◦ and 3.8◦ for the forward and backward fan
motion. However, when the in-plane component is ignored, the
errors are 1.0◦ (

√
3.472 − 3.322) and 1.3◦ (

√
3.842 − 3.602),

respectively. This means that No can be estimated reliably,
even if the estimation for Ni is poor.
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Fig. 12. Feature curve for one paired fan motion. The two red dashed lines
represent the selected timestamps based on the detail signals of SDCF (di)
for the forward and backward fan motion, respectively

D. Comparison with Human Operators

To compare the proposed algorithm with US operators, six
volunteers experienced in US scanning were each asked to
manually position the US probe along the normal direction
of the same phantom ten times (60 times total). The average
errors for the human operators are 3.2± 1.7◦ while the error
of the proposed method on the same phantom is 3.1 ± 1.0◦.
From Fig. 13, the operators perform better than the proposed
method in the best case (error: 0.2◦ vs 1.7◦) while the error
of proposed method is more stable and in the worst case
(3.6◦) performs better than human operators (5.9◦). Based
on a t-test (probability p = 0.52 > 0.05), there is no
significant difference between the proposed method and human
operators. Hence the proposed method is able to detect N with
a comparable accuracy to the participating human operators on
a phantom.

E. In-Vivo Validation

The recorded force is highly related to the properties of
the scanned tissue. In order to evaluate the applicability of
the proposed method on humans, experiments were performed
on the forearm, upper arm and lower back with breathing of
a volunteer. Eight scans were performed per anatomy. The
computed error is shown in Fig. 13. Since there is variation
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in the involved tissue stiffness, the robot stiffness was set
to 250 N/m, 350 N/m and 450 N/m during the tests to
investigate the impact of the robot stiffness and Fc = 6 N .

From Fig. 13, it can be seen that the algorithm performed
best on the phantom. This is due to the phantom being
stationary whereas humans exhibit motion. For the forearm,
the lowest error for each set of experiments is smaller than
2◦, and the 25th percentile of all three sets of experiments is
close to 2◦. The algorithm performed best when the stiffness
was 450 N/m, having a maximum error of 5.8◦. For the
upper arm, the average errors corresponding to the different
stiffnesses are distributed around 5.5◦. For stiffness 350 N/m,
both the variance and the upper error bound (7.6◦) were the
lowest among the stiffnesses. The error for the lower back is
larger than for the other anatomies due to respiratory motion.
However, the algorithm still achieves good best case results
(1.7◦, 2.9◦ and 1.7◦) for the different stiffness, respectively.
The results suggest that the robot stiffness should be adapted
to the tissues stiffness.

4

6

8

10

12

E
rr

o
r 

(d
e
g

re
e
)

2

Phantom Forearm Upper arm Back

250 N/m
350 N/m
450 N/m

RUSS stiffness:
Human operator

Fig. 13. Identification errors on phantom/volunteer. The first two plots are the
experiments performed on the phantom by humans and the proposed method.
The other plots show the results of the method on in-vivo tissues.

F. Applicability to Other Anatomies

The proposed method was developed for orthopaedic appli-
cations, where deformations are less severe due to the presence
of bones possessing large elastic modulus (8.91 GPa) [19].
In order to apply the method to very soft tissues (e.g. breast)
the out-of-plane optimization would need to be changed, as
the optimal orientation is not necessarily the normal. In that
case, one could learn the optimal force for the out-of-plane
orientation which may not be systematically normal to the
original curvature of the anatomy. The in-plane orientation
could be applied without change.

VI. CONCLUSION

A full orientation (both in-plane and out-of-plane) optimiza-
tion algorithm was introduced to enable RUSS to automatically
obtain better quality orthopaedics US images. The focus of the
algorithm is on aligning the probe to the (in- and out-of-plane)
normal to the surface at the point of contact. The proposed
method does not require external force sensors or knowledge
about the scanned anatomy. The main drawback of the method
is that it requires a full fan motion at each point of contact.
The current work only focuses on optimizing the orientation
of the US probe. Future work could include jointly optimizing
the contact force and the orientation in order to obtain an ideal

image. We hope that the proposed approach moves us a step
further towards large-scale use of RUSS in operating theatres
by allowing robots to understand the handling of the probe in
order to acquire better quality of images.
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