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Figure 1: (a) Our Laplacian Vision system with an Optical See-Through Head-Mounted Display (OST-HMD)
and user-view camera placed behind the display screen. (b) A miniature catapult launches a target ball to a
landing pad. (c) A scene with see-through visualization of a predicted ball trajectory, which is superimposed
onto the view in realtime. (d) A magnified view through the system of the landing area from the side.

ABSTRACT
Näıve physics [7], or folk physics, is our ability to under-
stand physical phenomena. We regularly use this ability in
life to avoid collisions in traffic, follow a tennis ball and time
the return shot, or while working in dynamic industrial set-
tings. Though this skill improves with practice, it is still
imperfect, which leads to mistakes and misjudgments for
time intensive tasks. People still often miss a tennis shot,
which might cause them to lose the match, or fail to avoid
a car or pedestrian, which can lead to injury or even death.

As a step towards reducing these errors in human judge-
ment, we present Laplacian Vision (LV), a vision augmenta-
tion system which assists the human ability to predict future
trajectory information. By tracking real world objects and
estimating their trajectories, we can improve a users’s pre-
diction of the landing spot of a ball or the path of an oncom-
ing car. We have designed a system that can track a flying
ball in real time, predict its future trajectory, and visualize
it in the user’s field of view. The system is also calibrated
to account for end-to-end delays so that the trajectory ap-
pears to emanate forward from the moving object. We also
conduct a user study where 29 subjects predict an object’s
landing spot, and show that prediction accuracy improves 3
fold using LV.
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1. INTRODUCTION
Näıve physics refers to the human skill involved in un-

derstanding physical phenomena [7], and is critical for daily
activities. It is used to avoid collisions in traffic, play any
kind of timing intensive sport, and conduct the most basic
motor tasks in various settings. However, this ability is lim-
ited in many ways, and real world physics is often complex
and hard to predict. For example, predicting a final landing
spot or intersection of a flying ball can be a difficult task for
us if there are strong winds, the ground is uneven, or an-
other player is occluding a clear view of the ball. Predicting
the trajectory of an oncoming car or hazardous object can
be difficult if you are looking in the other direction, have
limited depth perception, or have little time to make the
prediction.

On the other hand, computers can often exceed humans in
their abilities to predict information, especially trajectories
that involve more complex (but constant) physical proper-
ties. When humans make these mental calculations, com-
pounding of errors in the estimation of bounce or ricochet
trajectories can result in very large errors in estimation of
the final landing spot, whereas a machine can more accu-
rately predict the final landing spot of a ball after bouncing
off a number of walls by making an estimation using calcu-
lations based on Newtonian physics.



Figure 2: The concept behind our Laplacian Vision
system. By integrating predictive information from
an object in motion into a user’s field of view, the
user will be able to enhance his or her perception of
its future path using the information presented by
the HMD.

We think that using a machine’s ability to make these cal-
culations quickly can significantly augment a human’s abil-
ity to improve estimation accuracy, make sound judgments,
and ultimately avoid accidents. We can possibly even enable
humans to foresee a short-term future of the world – as if
we acquire the ability of the Laplace’s demon, a thought
experiment in the causal determinism in canonical physics
articulated by a physicist Pierre-Simon Laplace in the 19th
century [12].

As a step towards this goal, we present Laplacian Vision, a
vision augmentation system designed to assist näıve physics
(Fig. 1, 2). Using an optical see-through head mounted dis-
play and object sensing/tracking, our system predicts and
overlays the trajectory of a moving object onto the real
world from the user’s perspective. The system consists of
four main parts, including a 1) prototype optical see-through
head mounted display (OST-HMD), 2) external IR cameras
to facilitate tracking of an airborne object, 3) the trajectory
prediction and game engine integration, and 4) a calibration
step to correctly align the augmentation with a user’s eye.

1.1 Contributions
In addition to building the system itself, our main contri-

butions include:

• demonstrating the proof-of-concept system which dis-
plays an airborne ball and its future trajectory from a
first-person perspective with a user-perspective cam-
era in real time

• conducting an experiment that evaluates the improve-
ments in trajectory estimation using Laplacian Vision
versus unassisted human vision

• investigating technical challenges in realizing näıve physics
augmentation and defining new areas for exploration

2. RELATED WORK
Our system draws from ideas in a number of different

fields, including object tracking and prediction, vision sci-
ence and augmentation, and spatial augmented reality (AR).

2.1 Tracking of Moving Objects and Spatial
Augmented Reality

For most AR applications, some combination of wearable
or external tracking systems are necessary. This is even
more essential for predictive systems, which need both speed

and accuracy to assure that predictive information is cor-
rect. For example, if we want to predict the trajectory of
a moving ball in someone’s field of view, we need a system
that can both track the 3D position of the ball and con-
stantly update the ball’s trajectory model for prediction at
the same time. Tracking of objects in motion is a relatively
mature topic in computer vision, including high-speed vision
systems that have been applied to ping-pong ball trajecto-
ries (100 fps) [24], juggling balls (250 fps) [11], rain drops
(500 fps) [3], and snow flakes (1,000 fps) [21]. Interest-
ingly, these systems also employ kinematic prediction mod-
els to ensure stable tracking, excluding the last one, which
frame rate is high enough to allow perceptual consistency.
The tracking system closest to what we have implemented
is by Koike and Yamaguchi [11], who developed a system
for tracking and augmenting small balls with a projector. A
very similar work by Okumura et al. improved further on
this type of high-speed projection by integrating galvanome-
ter mirror optics [16].

However, most of the aforementioned systems are designed
simply to project images on the tracked objects for basic
augmentations, and do not consider visualizing future tra-
jectories. There have been several such works that do em-
ploy prediction for the purpose of controlling physical sys-
tems. One prime example is that of Zhang et al., who used
predicted trajectory information to control a robotic arm
and return incoming ping pong balls fed from a human [24],
This is conceptually similar to our design in some ways, but
we need to overlay information to a human user through
an HMD, calibrate the system so that the AR is correctly
perceived, and adjust prediction to compensate for tracking
and rendering delay.

Note that while our system requires tracking for correct
prediction, the tracking algorithm itself is not our primary
contribution. Low latency tracking has also been applied to
programmable headlights by Tamburo et al., which were de-
signed to sense and adapt to their surroundings to improve
safety for night driving [21]. This idea was taken a step
further by Charette et al., who used a projector based head-
light to avoid illuminating individual raindrops or snowflakes
to improve driver vision during hazardous driving condi-
tions [3]. Rays of light only passed through dark spots in
the user’s field of view, leaving droplets, snowflakes, or hail
stones unilluminated for a clearer view of the road.

Trajectory prediction has been applied in some other in-
teresting ways, such as interactive paper airplane design.
Umetani et al. built a system called Pteromys that could vi-
sualize the approximate trajectory of a paper airplane based
on the airplane’s shape and construction [23]. Though this
system was designed for offline use, it demonstrates how
trajectory information can be used to enhance creative ex-
periences for users.

2.2 Vision Science and Augmentation
Research has shown that motion estimation and hand-eye

coordination are complex tasks, involving a number of dif-
ferent processes including vestibulo-ocular eye movements,
vergence, smooth-pursuit, saccades and accommodation [2].

This kind of research is essential when designing vision
augmentation systems since augmentations typically assist
or utilize one or more of these visual functions. For example,
a system called SpiderVision proposed by Fan et al. allowed
users to see images from a camera mounted to the rear of
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Figure 3: Visualization of latency compensation. In
our system, rendering a halo at the latest position of
a flying ball takes roughly 100 ms (4 frames in 50 fps)
which causes misalignment against the real world
(the red halo). Compensating the delay by predic-
tion corrects this misalignment (the green halo).

an HMD when moving objects passed by [6].
Other types of enhancement systems including those that

improve readability or visibility, such as that by Itoh et
al. They utilized a compensation filter to eliminate visual
aberrations and enhance images of characters for improving
readability [9]. Another system similar to this by Orlosky
et al. proposed the concept of modular camera-lens based
augmentations, which allow users to quickly switch between
augmentations such as binocular zoom or field of view ex-
pansion [18]. This system also utilized eye tracking to allow
for eye-based control of desired augmentations.

The eyes are also very closely tied to the continuous pre-
diction of motion [4], which supports our hypothesis that
overlaying virtual information can improve or enhance the
prediction of future trajectories or landing spots.

2.3 Low Latency Rendering
Even if we perfectly predicted a short-term future trajec-

tory of a target object, it would be meaningless if the system
latency caused virtual information to appear behind the ball
(as shown on Fig. 3 left as an example of such a case). To
ensure that predictive information is actually useful, the sys-
tem must complete the tracking, prediction, and rendering
processes within a reasonable time interval so that the dis-
played trajectory information appears in front of the moving
object. Removing this delay is essentially impossible as the
virtual world always lags behind the real world, i.e., first we
have to wait for the motion in the real world before we can
decide what to render.

Considerable work has been conducted that investigates
how much rendering delay is noticeable to humans in a vir-
tual reality environment, which suggests that human latency
discrimination spans are less than 15 ms [14] or 16 ms [5].
This type of work has also been applied to visual-physical
systems such as touch based interfaces. In a spatial AR
context, which is relatively similar to our setup, Joda et al.
found that the minimum latency people would notice could
be as low as 2.38 ms when dragging virtual objects on a real
surface [10].

If a system achieves end-to-end latency below these thresh-
olds, it becomes, effectively, a no-delay system. In general,
however, displays including OST-HMDs have bottlenecks in
rendering delays and their fixed display update time, e.g.,
33.3 ms for 30-fps displays. A GPU renders a frame while the
previous frame is being sent out to a display panel (known
as scanout). To render a virtual trajectory, the GPU has to
fetch the trajectory data at the time rendering started. This
inevitably inserts at least one frame delay between the real
and the virtual world.
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Figure 4: Block diagram of data flow in our system.
To visualize future motion without latency to the
user, we have to minimize the latency from systems
A and B and/or improve the prediction accuracy at
System A. Each block represents a different physical
machine.

One option is to apply a post-rendering technique, such
as that of Smit et al. or Mark et al. [20, 15]. This kind of
technique adjusts the rendered image in 2D transformation
based on the last-millisecond tracking data of the target.

We have been able to implement a somewhat different
strategy for solving this problem since we are tracking ob-
jects that have a high kinetic component. One good thing
about most moving objects is that they are bound by Newto-
nian Physics, i.e., we can deterministically calculate its posi-
tions in time by the control theory [11] (Sec. 3.5). Therefore,
it is possible to predict almost exactly where the ball will
be after all processing has occurred. Essentially, we include
the frame delay in the trajectory prediction model – which
allows us to render the virtual trajectory ahead of time in
our proof-of-concept system.

3. HARDWARE SETUP AND CALIBRATION
In short, our goal was to develop a system which can pro-

vide a user with future trajectory data by predicting and
overlaying that information through an OST-HMD.

To realize this goal, our system needed to

• predict, in real time, the motion of a physical object
in the scene

• render a virtual representation of the object’s trajec-
tory on the display so that its appearance is spatially
consistent with the object.

• guarantee that the end-to-end latency from prediction
to rendering is small enough for a given task

Each of these requirements has its own implementation chal-
lenges, but the real obstacle was trying to get all of these
parts working at the same time on a rather restricted hard-
ware setup.

We first describe the data flow of the system as well as
assumptions that we make for our test implementation. We
then elaborate on the design of the hardware and software
frameworks we developed to implement Laplacian Vision.

3.1 System Dataflow
Figure 4 illustrates the general flow of data in our system.

First of all, we throw a retroreflective target ball into the



scene. The tracking system (System A) captures the tar-
get ball using two infrared cameras and then computes the
current position of the ball. The rendering/display system
(System B) then receives this calculated 3D position as UDP
packets via local Ethernet connection at 60Hz. The data is
first received by the Unity 3D game engine, where we con-
duct prediction (Sec. 3.5) and rendering. The resulting vir-
tual information is rendered at 60Hz and image frames are
sent to the OST-HMD. Finally, a user-perspective camera
(Observer) simultaneously captures both the tracked ball in
the real world and overlaid images rendered on the display.

As seen from Fig. 4, the system inevitably holds a certain
latency due to the tracking, prediction, and rendering pro-
cessing. Naive rendering would leave the rendered trajectory
behind the actual ball position. For instance, Fig. 3 (left)
shows a captured image from the user-perspective camera
with a target ball flying from right to left with a virtual
red halo. Even though the halo was rendered based on the
measured 3D position given from the tracker in real time,
the halo was rendered at the position where the ball was at
roughly 100 ms prior, which would be the end-to-end latency
of the system in a naive rendering scheme. Note that the
System B seems to have approximately 80 ms latency as a
result since the tracking system has 19 ms latency.

3.2 Assumptions
Since our system focuses on proving the LV concept on

an OST-HMD system, we are not focused on the tracking
algorithms with prediction or the low-latency rendering as a
contribution. We use an industrial outside-in tracking sys-
tem (Sec. 3.3) and its spherical tracking target as a physical
target object of which we predict a trajectory. We also as-
sume constant system latency based on our heuristic mea-
surement.

It is important to note that our prototype does not yet
incorporate head tracking, and still requires tests with user
predictions in real-world, dynamic situations. For the proof
of concept, we only test with a perspective camera to em-
ulate static viewpoints of a user (Sec. 3.4). Additional cal-
ibration and perspective calculations would be required for
a moving viewpoint.

We also limit the motion of the target ball by simply cat-
apulting it into mid air in a roughly repeatable trajectory in
an indoor environment. This reduces the complexity of the
prediction problem to allow for clearer demonstration and
evaluation of the system (Sec. 3.5).

3.3 Hardware Layout
Figure 5 shows our proof-of-concept system setup. We

used an nVisor ST60 OST-HMD from NVIS, with a 1280
x 1024 resolution and 60° diagonal field of view. As a real
world object, we used a retroreflective sphere with a diame-
ter of 40 mm. To track the sphere, we employed an external
tracking system consisting of two ARTTRACK2 cameras
hung on the ceiling of the room. This system provides the
3D position of the sphere at 60Hz, and tracking accuracy is
less than one millimeter as stated by the manufacturer.

For demonstration purposes, we installed a user-perspective
camera placed behind the left optical element of the display
so that the camera captures the same scene that would be
presented to the user, though the image is not stereoscopic.
As the user-perspective camera, we use IDS UI-1240ML-C-
HQ with a 4-mm C-mount lens. By tuning the camera’s
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Figure 5: Diagram of our hardware setup from the
side, including calibration parameters necessary for
correct rendering. The extrinsic parameter includes
rotation (R) and translation (t) from the tracking
system to the eye-HMD coordinate system.

region of interest, we get a 632× 492, 50Hz image feed.

3.4 System Calibration
Overlaying virtual content on the real scene requires cali-

bration of the OST-HMD with respect to the current view-
point of a user, in our case the user-perspective camera.
In other words, we have to define a virtual camera so that
a virtual content rendered by a graphics pipeline overlaps
with the corresponding physical object [22, 1]. We calibrate
our display system based on a manual method called Single
Point Active Alignment Method (SPAAM) [22].

Under SPAAM, the eye-HMD system, which consists of
an eyeball center and the display screen, is treated as an
off-axis pinhole camera. The camera model consists of ex-
trinsic parameters, which consist of a 6DoF transformation
from the world coordinate system to the eye-HMD coordi-
nate system with the eyeball center as the origin and the
display angle as orientation axes, and an intrinsic parame-
ter, which is a 3× 3 camera matrix of the eye-HMD camera
(Fig. 5). Concatenating both parameters result in a 3 × 4
projection matrix. The spatial calibration of OST-HMDs is
to estimate this matrix.

To estimate the projection matrix in SPAAM, the user
needs to align a 3D world reference to a 2D point shown on
the display. This procedure gives a pair of 3D-2D correspon-
dences. Since the projection matrix contains 11 variables
with unknown scale, this procedure is repeated in 3D with
different depths and 2D points at least 6 times to estimate
the matrix. In our setup, we used a target ball with 2cm
diameter as a 3D reference target, and we align the marker
to a crosshair rendered in a random position on the display
through the view from the user-perspective camera.

3.5 Motion Prediction and Visualization
Similar to [11], we employ a Kalman filter with a linear

kinematic model with the gravity vector in the motion pre-
diction. Each time the display system (System B) receives
the 3D positions of the ball from the tracking system (Sys-
tem A), the display system updates the current position and
velocity of the ball.

We update the latest position and velocity every time we
receive a new ball position from the tracker, and render a
trajectory calculated from the motion model at each display
frame. We also measured the ground level of the scene be-
forehand, and use that information to make the trajectory



bounce off of a virtual plane aligned with the phsyical ground
in the real world. All of the virtual objects and visualizations
were created using Unity 3D, version 5.2. To compensate for
the end-to-end latency (about 100 ms) when rendering the
trajectory, we we increment the trajectory’s path out sev-
eral frames so that it appears in front of the ball, as can be
seen in Figure 6. In other words, the trajectory will always
be ahead of the current measured position using this predic-
tion, which effectively makes the trajectory appear as if it is
a zero-delay system.

4. EVALUATION
To evaluate how well our LV system can assist users in

basic prediction tasks, we designed a user study where 29
subjects were asked to predict the location of impact of a
moving object. To do so, subjects watched a series of user-
perspective videos of a ball flying across a scene.

We used recorded videos to ensure consistent viewing and
fair estimation across all subjects. Although the videos lack
stereo information, we have found that the current evalu-
ation already provides considerable evidence that LV aug-
mentation significantly benefits näıve physics judgments.

Each video was presented both with and without the LV
system, and subjects were instructed to use a cursor to se-
lect the point at which they thought the ball would impact
the floor. More specific examples of these scenes are shown
in Fig. 6, with the top row representing with and without
LV conditions. The middle row shows conditions where the
videos were stopped and looped prior to impact, and the
last two show different perspective angles. Reasoning be-
hind these conditions is as follows.

The purpose of our experiments is to prove our LV sys-
tem can improve predictions in a very basic use case. For
example, the system would be impractical if users would
not even benefit from trajectory information provided from
a static viewpoint. We first wanted to test simple judgments
when the ball is coming from a particular direction, so we
designed a View Angle condition (Sec. 4.1.1). Moreover, the
system would likely be useless if it only helped users after
they watched the ball actually bouncing on the ground, so
we also designed a Video Length condition (Sec. 4.1.2).

4.1 Experimental Setup
To record the scenes with the ball flying throug the air, we

launched it using a miniature catapult (Thumbs Up Da Vinci
Catapult, Fig. 1 (b)) so that we could create controlled paths
over the different conditions. To analyze impact points, we
placed a metal plate on the ground, onto which we taped
a grid with 20 centimeter spacing. The plate was heavy
enough so that the impact did not move it. We then let the
user-perspective camera record various scenes with/without
the LV visualization for three View Angle conditions.

Video Length was adjusted to be consistent over all videos.
Recording was started at the instant the ball was launched
until shortly after (3 frames) the first impact. The reason
we recorded few buffer frames after the impact is because it
is hard to measure the impact time without checking frames
after which the ball bounced. As a result, videos with the
catapult in the scene were 1±0.02 sec (from 49 to 51 frames
in 50 fps).

Next, we elaborate the experiment conditions we intro-
duced to compare the LV system with unassisted vision.

80% 90% Impact

0° 90°

45°

Estimation game base conditions:

With Laplacian Vision Without

Figure 6: Representative user study conditions.
Subjects watched 84 different videos of ball-launch
scenes taken from the user-perspective camera. The
top row shows frames from our estimation game
both with and without LV. The small green cir-
cles represent the estimated impact point of a user
for each video. The middle row shows three Video
Length conditions, 80%, 90%, and 100% (the frame
of an actual ball impact). The last row shows two
additional viewing angles we tested, which were also
combined with the different video lengths, though
not shown here. We thus have three different View
Angle conditions of roughly 45°, 0°, and 90°.

4.1.1 View Angle condition
The first condition is the viewing perspective of the user-

perspective camera. We hypothesized that different perspec-
tives of the ball path toward the subjects would affect their
abilities to judge impact, so we placed the HMD-camera sys-
tem in three different viewing positions. First, the system
faces the catapult over the impact area. This makes the an-
gle between the line of fire of the catapult and that of sight of
the camera roughly 0°. We call this angle View Angle, which
is 0° for this case. The system was also oriented so that the
angle was roughly 45°, and finally from the side (90°). Fig. 6
left column shows the example of user-perspective images of
these three conditions.

4.1.2 Video Length condition
The second condition is the frame at which we stop the

video and loop. This was designed to test subjects’ abilities
to determine the future trajectory of the ball earlier on in
its flight path. This Video Length condition included 80%,
90%, and 100% (few frames after impact point) playbacks,
which let us test estimation abilities with different amounts



of limited information. The last frames in each of these
videos can be seen in the middle row of Fig. 6 .

For each View Angle condition, we launched the ball 5
times. Thus, we recorded 30 launch videos in total,

5× LV{on, off} ×ViewAng.{0◦, 45◦, 90◦} = 30.

Now, by taking the Video Length condition into account, we
have impact prediction sessions per user,

5× LV ×ViewAng.×VideoLen.{80%, 90%, 100%} = 90.

Note that we excluded two videos from the recordings: one
from the (off, 45◦) condition and the other from the (off, 90◦),
resulting in 84 total sessions per subject. This was because
the impact points in the videos were either very close to the
edge of the image or out of the image.

Though we initially recorded a condition with 100% play
time, i.e. subjects saw actual impacts of the ball regardless
of the LV visualization, we disregard this condition from
the main analysis. Because there was almost no signifi-
cant difference in the prediction error (defined in Sec. 4.3)
in whether showing the visualization or not (Sec. 4.3.2). We
find this is reasonable since subjects can simply watch the
actual impact and ignore any predictive information. The
100% condition is still mentioned briefly in the discussion
section since we found that the visualization actually had a
minor influence for this condition.

4.2 Data Collection
We let each subject play the game as shown in shown

in Figure 7. Each subject watched the above 56 sessions
(videos) in randomized order. For each session, the corre-
sponding video looped endlessly until the subject finalized
his or her choice of the expected impact point. To input the
point, subjects could click any point in the video using a
mouse. After clicking, a green ring was rendered at the click
point with the video still looping in the background. The
subject could click another point to change his or her choice,
and finally clicked a confirm button to record the choice and
move to the next session. The window size of the game was
fixed to the original size of the videos, and the subjects were
not allowed to change the image size during the sessions.

We distributed the game to subjects electronically, and
the subjects played the game on their own personal moni-
tors. We collected data of 29 subjects with 24 males and
5 females. The average and median age of the subjects are
28.6 and 25, respectively.

4.3 Error Analysis
We first explain how we measured the ground truth for

impact points. We checked all videos on a frame-by-frame
basis and identified frames before and after the impact in
each video. Based on the two frames, we marked a ground
point at which the ball would have touched at the time of
the impact. We treat these manually measured points as
the ground truth points. At the same time, we also marked
each grid points in the images. We use these grid points to
convert our measurements from 2D image space to points in
the 3D, real scale coordinate system on the metal plate.

Since we know that the squares on the grid have an edge-
length of 20 centimeters, we compute a 2D homography to
the real grids from the 2D points we marked. By applying
the homography matrices, we can convert all measurements
into a bird’s-eye view together with the image region of the
ground (Fig. 7, Sec. 4.3.1). For each video, we then con-
verted the ground truth points and the users’ input points in

0° 90°45°

20 cm

No visualization

With visualization

No vis., Ground Truth

With vis., Ground Truth

Figure 7: Visualization of user input for each View
Angle condition from a bird’s-eye view. Green dots
are inputs over the all subjects in sessions without
LV and red are with LV. From left to right: 45°,
0°, and 90°. The results show that LV visualization
reduces the variance of point estimation among sub-
jects. The Video Length condition is mixed.

the uv space to xy points on the board. The error measure-
ment is then defined as the real-scale distance between an
input and a corresponding ground truth point. Note that the
homography matrices from the same View Angle condition
are almost identical, thus we merged all points according to
their View Angle condition in the bird’s-eye view plots.

After computing the errors for all subjects, we applied an
analysis of variance (ANOVA) over the three conditions: the
use of LV visualization, View Angle, and Video Length. In
short, our analysis suggests that the LV visualization signifi-
cantly improves the prediction accuracy of subjects, exclud-
ing the 100% Video Length case (Sec. 4.3.2).

4.3.1 Qualitative Analysis: Bird’s-eye View Data
The bird’s-eye view in Fig. 7 gives us an intuitive visual-

ization of all user placements overlaid onto a single image.
In the figure, red represents users’ choices with LV assis-
tance and green with no assistance. The user placements
are only from the Video Length condition of 80% and 90%,
and merged together in the figure.

One interesting observation is that we can clearly see LV
creates distinctive clusters of impact points over user inputs.
The deviation of the baseline plots, i.e., without our visual-
ization, shows that subjects are less certain about the ball
trajectory.

On the other hand, these deviations have certain direc-
tional tendencies, which are different from each viewing an-
gle. We speculate this is due to the slightly misaligned visu-
alization and/or difficulty with guessing depth information
in the current user study design. Still, these results sug-
gest that our method significantly reduces error variances
even without a stereoscopic view, especially given the fact
that the system even works at a near 90° perspective – a
viewpoint that does not require strong depth perception for
prediction. Developing further evaluations of varied trajec-
tories of different objects in more complex environments will
make for interesting future work.

4.3.2 Quantitative Analysis: Error Statistics
Figure 8 shows boxplots of the errors over each of the con-

ditions. We used repeated-measures ANOVA by treating
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Figure 8: Plot showing error for the View Angle (x
axis) and Video Length (y axis) conditions. Green
represents error without visualization and red rep-
resents error using LV. -**- indicates that the cor-
responding pair has a significant difference.

videos for each condition combinations as the random vari-
able. Note that, after observing the Q-Q plot of the original
errors for LV conditions, we decided to use the square root
of the errors in the analysis to improve the data normality.

First of all, Mauchly’s test indicated non-sphericity on the
measurement with ε = {0.135, 0.238} for the Greenhouse-
Geisser and the Huynh-Feldt approximation, respectively.
By the ANOVA test, we found a significant main effect that
showing the LV visualization significantly reduces the er-
ror compared to no-visualization (F1,27 = 42.28, p� 0.01).
We found an interaction effect between the View Angle and
Video Length conditions (F4,108 = 5.13, p < 0.01). Subse-
quently, we analyzed each pair of the two conditions and the
LV condition with a post-hoc Tukey-Kramer honest signifi-
cant difference test.

The test found that showing the LV visualization signifi-
cantly reduces the error compared to no-visualization when
the Video Length condition is either 80% or 90% in all the
View Angle conditions with all p � 0.01. On the other
hand, in the condition {0°,90°}×100%, viewing with the LV
system significantly increased the error. This seems to be
due to the fact that the visualization covered the real ball at
the impact time and affected subjects’ judgments. In prac-
tice, however, predictive information would not be necessary
if a user has already seen 100% of the ball’s trajectory.

We conclude that the LV system showed clear potential
for assisting users’ näıve physics skills, and improved their
visual judgment in predicting the behavior of a real object.

4.4 Discussion
Having shown that the LV system can assist our motion

prediction ability, there are a number of interesting new
questions to explore with this type of augmentation.

Visualization of prediction: It will be interesting to
explore what kind of visualizations are suitable for other

applications with the LV system for assisting various pre-
dictions. Since our LV system visualizes information into a
user’s egocentric vision directly via an OST-HMD, this type
of first-person visualization can be applied to a number of
industrial and commercial scenarios, especially with regards
to safety. Such augmentations have been a key topic in AR
for manufacturing [17] and logistics [19]. We hope that this
work will encourage testing in environments where reducing
collisions, accidents, and mistakes are critical in nature.

Sensorimotor evaluation: Although our LV system
proved to assist a user’s sensing, further testing is needed for
the user’s actions. I.e., it is still unclear how well our system
can actually improve user’s motions or reaction times in a
real world task. For example, it would be difficult for users
to dodge an arrow, though chances of catching a flying ball
or avoiding an oncoming object can likely be improved.

Therefore, investigating LV’s benefits in other seonsori-
motor tasks will likely establish it as a practical application.

Evaluation scheme for LV systems: Improving the
evaluation scheme is also an important point to consider. In
general, a proper evaluation of an LV system is very diffi-
cult due to its real time nature. For example, we can not
freeze a physical flying ball before the impact and ask sub-
jects to record their estimations. We will need to test actual
reactions in follow-up studies.

From a perceptual point of view, it would also be valuable
to build a stereo system to see how depth perception of users
affects the effectiveness of the LV system, which might have
caused the larger error variance in 45° setups.

5. FUTURE WORK
This work is our first trial to establish a practical Lapla-

cian Vision system, and we believe the concept triggers many
exciting research questions including the following.

Firstly, we can expand the prediction capability of a LV
system by combining more sophisticated physics such as
aerodynamics, kinematics like restitution, and non-rigid ob-
ject models. For example, a tennis player can perfectly see
the entire trajectory of a served ball from the opponent,
bouncing points on the ground, and a swing point where
the player has to swing through. Note that user’s action
can also change the prediction state of an object [13].

Although we assumed the system predicts the real world,
it can also render a future state of other intelligent systems
such as a vehicle. These systems might broadcast expected
future states of their own, e.g., a driving route. Our LV sys-
tem then can integrate that information in the visualization.
This, as a positive side effect, would also reduce the cost of
prediction done by the LV system itself. Perhaps, the Inter-
net of Things on the rise will serve as an infrastructure to
realize a versatile LV system in the future.

Visualization is also a key topic to improve the perfor-
mance of LV systems as we stated in Sec. 4.4. It would be
very dependent on allowed time users can spend until they
have to make a judgment for an action.

Last, but not least, developing a more practical LV system
is beneficial to investigate the maximal potential such a sys-
tem could provide to people in daily life. The first necessary
step would be to integrate head tracking, and to test it with
a real human viewer instead of a user-perspective camera.
We would even need eye tracking for active exercises where
a display could constantly moves on a wearer’s head [8].



6. CONCLUSION
We introduce Laplacian Vision (LV), a system for aug-

menting human vision with predictive information in real
time. We then demonstrate the capabilities of the system by
visualizing the future trajectory of a ball flying through the
air. To do so, we combine object tracking, trajectory predic-
tion, spatial calibration, delay compensation, and rendering
techniques. We conduct an experiment that tests human po-
sition estimation without assistance versus with LV, and find
that LV increases accuracy of estimating the future landing
position of an object in motion about 3 times. We hope that
this work will serve as a cornerstone for vision augmentation
research with real-time physics prediction, and will inspire
others to create new predictive visualizations.
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