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Fig. 1: Corneal Imaging OST-HMD calibration: (a) The user is shown an image on the HMD-screen. Here we used a checkerboard
pattern. (b) The reflection of the image on the cornea is captured by a camera and correspondences of points shown on the
HMD-screen and points in the camera image are used to estimate the position of the cornea (detected correspondences are shown in
green and the reflection on the estimated cornea position in red). (c) In the upper image we show a magnification of the overlay of
detected points and the reflection at the estimated cornea position. A hemisphere representing the cornea is visualized using an
overlaid yellow sphere in the lower image. (d) Estimating the position of the eye center from multiple cornea centers allows us to
automatically calibrate the HMD and associate points on the HMD-screen with projection rays of the scene.

Abstract— In recent years optical see-through head-mounted displays (OST-HMDs) have moved from conceptual research to a market
of mass-produced devices with new models and applications being released continuously. It remains challenging to deploy augmented
reality (AR) applications that require consistent spatial visualization. Examples include maintenance, training and medical tasks, as
the view of the attached scene camera is shifted from the user’s view. A calibration step can compute the relationship between the
HMD-screen and the user’s eye to align the digital content. However, this alignment is only viable as long as the display does not
move, an assumption that rarely holds for an extended period of time. As a consequence, continuous recalibration is necessary.
Manual calibration methods are tedious and rarely support practical applications. Existing automated methods do not account for
user-specific parameters and are error prone. We propose the combination of a pre-calibrated display with a per-frame estimation of
the user’s cornea position to estimate the individual eye center and continuously recalibrate the system. With this, we also obtain the
gaze direction, which allows for instantaneous uncalibrated eye gaze tracking, without the need for additional hardware and complex
illumination. Contrary to existing methods, we use simple image processing and do not rely on iris tracking, which is typically noisy and
can be ambiguous. Evaluation with simulated and real data shows that our approach achieves more accurate and stable eye pose
estimation, which results in an improved and practical calibration with a largely improved distribution of projection error.

Index Terms—OST-HMD calibration, eye pose estimation, corneal imaging, optical see-through

1 INTRODUCTION

The quality of an augmented reality (AR) experience depends on how
well virtual content is integrated into the real world—spatially, photo-
metrically and temporally. In other words, if the world does not appear
consistent, users are likely to dislike or reject the AR experience as a
whole. Correct spatial alignment is of utmost importance for being able
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to correctly view an augmentation [14]. If the virtual augmentation is
displayed at the wrong location, the user will notice the discrepancy
even if other parameters are rendered to match the scene. Therefore, it
is important to ensure that the virtual content is correctly aligned.

Current state-of-the-art solutions solve this problem by capturing the
world with an external camera and estimating the camera’s position rel-
ative to the scene. The image captured by the camera is then augmented
with virtual content, and the user is shown the augmented view from
the view point of the camera. However, this view can greatly differ
from the user’s perspective, for example by augmenting the view of a
mobile phone held by the user. Recent work has shown that displaying
the augmentation from the user’s perspective has potential to improve
the user’s perception and overall AR experience [21]. Therefore, head-
mounted displays (HMDs) are likely the better choice to present AR
to a user. For a long time these devices were limited to laboratories
and industrial use-cases. Recent advances in display manufacturing
lead to an increasing number of inexpensive, high-quality, consumer-
oriented HMDs, such as video see-through adaptations of Oculus Rift
(VST-HMDs) or optical see-through Google Glass and Epson Moverio
BT200 (OST-HMDs). Although OST-HMDs were at the forefront of
AR research [7, 33] they have been replaced by handheld devices and
VST-HMDs due to their limitations: a small augmentable field of view,



contrast problems and the requirement for constant recalibration of the
system, to name a few [19].

Design issues, like the small field of view and contrast can be solved
through design improvements and technical progress. Spatial alignment
of the virtual content with the real world on the other hand, depends
on external factors and must be solved for each user and execution
through calibration. Furthermore, if the HMD moves on the user’s
head, the calibration is no longer ideal and the calibration process
has to be repeated. Current solutions such as the Single Point Active
Alignment Method (SPAAM) require extensive user input whenever
the calibration is performed [2, 10, 40]. This is a very tedious process
and it furthermore introduces user dependent errors. As a result the
recalibration process is often skipped, which in return impacts the user’s
experience and acceptance of the OST-HMD.

Several researchers proposed the use of an eye-tracking camera
with HMDs for eye-gaze user interaction and to study human behav-
ior [6, 15, 32]. The eye plays an essential role in the calibration of an
OST-HMD. If the eye can be tracked by an eye-tracking camera, the
relation between the HMD-screen and the eye can be used to calibrate
the OST-HMD. Itoh and Klinker [16] build on this idea and use an RGB
camera to track the user’s eye. They detect the iris contour and use
the two-sphere eye-model to determine eye position and gaze-direction.
The assumption of empirically measured, uniform eye-parameters al-
lows their INteraction Free DIsplay CAlibration (INDICA) method to
be applied without any manual calibration. Correctly detecting and
tracking the iris is a difficult problem, as it is partially occluded by
eye-lashes and eye-lids, especially when the face and gaze direction
move away from the camera, and as the iris does not have a sharp
edge due to a gradual transition from the transparent cornea to the
white sclera. Furthermore, small errors in the detection of the iris can
lead to large errors in the estimated eye pose. Research in eye-gaze
tracking has shown that methods estimating the eye gaze from iris
contours [27, 30, 43], as used in [16], generally achieve a low precision
of about 6 degrees, which consequently results in a bad estimation of
the eye position [35]. A more stable approach that is commonly used in
commercial eye trackers is the pupil-center–cornea-reflection (PCCR)
method [11, 13, 36, 41]. It exploits the idea that the cornea can be
modeled as a spherical mirror reflecting light from the environment.
Correspondence matching of specular highlights (glints) from at least
two known 3D point light sources (IR-LEDs) then allows estimating
the position of the cornea with known size.

We propose a similar approach (shown in Fig. 1) to compute the
relationship between the OST-HMD and the eye. Different from con-
ventional eye trackers, we do not rely on additional light sources,
complex illumination algorithms and pupil tracking. Instead, we use
corneal imaging [27, 30] to analyze the reflection from an existing, pre-
calibrated OST-HMD-screen on the cornea. In an eye image, we detect
the corneal reflection of the image on the screen and find correspon-
dence pairs of screen and reflection locations to estimate the position of
the physical cornea. From at least three non-coplanar cornea positions,
we obtain the eye position as the center of rotation. This achieves
a practical and lightweight HMD (re-)calibration and gaze tracking
method, where the point of gaze (PoG) is obtained as the intersection
of the gaze ray with the screen and the scene.

With this paper, we make the following main contributions:

• We propose Corneal Imaging Calibration (CIC), a novel approach
for OST-HMD (re-)calibration based on cornea position estima-
tion using corneal imaging to obtain correspondence pairs from a
calibrated HMD-screen and its content reflection on the cornea in
an eye image.

• We show that the approach has major advantages over state-of-the-
art methods: It is more practical as it uses simple and automatable
image processing, less reliant on correct eye modeling as the error
propagates less into the result, and more robust as it does not rely
on iris detection and allows for a large number of correspondence
pairs with sub-pixel accuracy.

• The method is suitable for high-quality eye-gaze tracking as it
employs an approach similar to commercial eye-gaze trackers.
Contrary to existing solutions, it is lightweight as it does not re-
quire additional hardware in form of IR light sources and complex
illumination for pupil detection.

The remainder of this paper is structured as follows: Section 2
surveys approaches for OST-HMD (re-)calibration, eye tracking and
corneal imaging. Section 3 explains the notations used in this paper.
Section 4 provides a general overview of the OST-HMD calibration
approach. Section 5 explains the proposed method, followed by the
implemented experimental setup in Section 6. Section 7 discusses eval-
uation results compared with state-of-the-art SPAAM and automated
INDICA calibration. Finally, Section 8 concludes with a summary and
promising future directions.

2 RELATED WORK

Estimation of the eye location and the gaze direction are required for
various application scenarios, such as gaze interaction. In this paper
we show how corneal imaging can be used to calibrate an OST-HMD,
i.e., determine the relationship between the eye and the virtual screen
for robust alignment of virtual and real content, and subsequently
determine the user’s gaze direction and the point of regard. In this
section we give an overview of the related areas.

2.1 OST-HMD calibration
OST-HMD calibration models the human eye as a pinhole camera
whose image plane corresponds to the HMD-screen. The goal of the
calibration is to determine how points in the real world project onto the
HMD-screen. Given a correct calibration, the user perceives perfectly
aligned virtual and real scenes.

Research on how to achieve correct calibration has been conducted
over many years, from tedious first approaches with special setups [3],
to the much simpler manual SPAAM calibration for mono- [40], and
stereo-displays [9] and further simplifications and improvements of this
technique [10, 22, 24], towards automated calibration [16, 17, 31]. A
more detailed explanation of the evolution of OST-HMD calibration
can be found in [16].

Display-Relative Calibration (DRC) was proposed by Owen et
al. [31]. Instead of estimating all 11 projection parameters at the
same time, as is done by SPAAM and its adaptations, they propose to
split the calibration into an estimation of the display parameters and
the eye position, which is the basis of current automated calibration
approaches. The former is a static HMD-dependent parameter that can
be determined in an offline process, while the latter is estimated at exe-
cution time. They describe five options for the estimation of the user’s
eye position, ranging from not estimating it at all, over performing a
simple warping such as Easy SPAAM [10, 24], to a full 3 DOF eye
position estimation with a pupilometer. The online part however, still
requires user interaction.

Itoh and Klinker [16] proposed INDICA to determine the position
and orientation of the eye automatically. Their method detects the
user’s iris by an RGB eye camera attached beneath the HMD. From the
projection of the circular iris onto an ellipse in the eye-camera image,
they compute the 3D iris position and gaze direction. The position of
the eye’s center of projection is then constrained by a geometric eye
model at some distance along the negative gaze direction. At each
timeframe, the method computes a new projection matrix regarding
the current eye position and HMD parameters. The HMD parameters
are obtained offline through a display calibration similar to DRC or
from an initial calibration through SPAAM. The authors show that their
approach achieves more stable eye-position estimates than that from
SPAAM and improves the alignment compared to using a degraded
SPAAM calibration, where the recalibration is skipped after the OST-
HMD has moved. However, they also show that the current INDICA
contains a systematic error that stems from their simple eye-HMD
system model [17]. Additionally their method relies on iris detection
for eye position estimation and suffer from the backdraws of existing
techniques, such as low accuracy and inapplicable scenarios.



2.2 Eye Pose Estimation
Eye pose estimation refers to recovering the position and orientation
of a 3D geometric eye model relative to an eye tracking camera. This
requires image processing to track anatomic structures (iris contour,
pupil) or corneal reflections (glints, correspondences), and geometric
modeling to reconstruct the pose of the eye model from the image
information. Eye pose estimation recovers the gaze direction up to the
optical axis. An additional one-time individual calibration is necessary
to recover the true gaze direction or visual axis [13]. We distinguish
between passive methods that work on any eye image and active-light
methods that require additional controlled illumination.

Due to their reduced hardware and calibration requirements, pas-
sive methods are often applied with low-cost, non-professional and
uncontrolled applications. A common strategy recovers the 3D pose
of the eye model by reconstructing the circular iris from its projected
elliptical contour in the image [16, 17, 23, 27, 28, 29, 35, 43]. The
methods work on natural eye images, but suffer from noisy eye de-
tection and unknown parameters. A major issue is that a single eye
camera only allows reconstructing the iris up to a two-way ambiguity
that needs to be resolved from further knowledge, constraints [29] and
assumptions [16, 17, 35, 43].

Active-light methods are developed for accurate automatic eye track-
ing and require a complex hardware system with calibrated light sources
and controlled illumination. The PCCR technique is largely covered in
research [11, 36, 39] and applied in commercial systems. It involves
a two-step approach, first estimating the position of the cornea from
reflections of multiple known light sources (commonly IR LEDs), then
estimating the orientation of the eye from the center or contour of the
pupil, segmented using active IR illumination.

Eye pose estimation also allows for eye gaze tracking (EGT). Be-
side traditional scene-mounted remote trackers, advances in wearable
head-mounted trackers are likely to be integrated into HMDs. Wear-
able eye-tracking systems have been proposed in research [6, 15, 32]
and as commercial products, like the Tobii Glasses or the SMI Eye
Tracking Glasses. The many applications of EGT include interactive
gaze control [32], gaze-reactive behavior and state analysis [6, 34] and
passive data collection. First person view applications have moved into
the focus in recent years [34, 37, 38].

2.3 Corneal Imaging
The cornea is the transparent protective and optical outer layer of
the eye. It reflects a small fraction of incident illumination that can
be noticed when looking at a person’s eye [4, 5]. Analyzing and
exploiting such corneal reflections from eye images can be beneficial
to accomplish a wide range of tasks [30].

Corneal imaging refers to analyzing the comprehensive reflected
illumination from an eye image by modeling the combination of cam-
era and cornea as a catadioptric imaging system [27]. The recovered
environment map allows extraction of the visual information and ap-
plication to computational tasks in vision and graphics, such as face
reconstruction, relighting [26] and recognition [25]. Image capturing
and quality may be improved through a super-resolution strategy [28] .
Analyzing corneal reflections from a known or controlled environment
allows for a variety of geometric tasks, such as cornea position esti-
mation [11, 36, 39], cornea shape reconstruction [12] and scene pose
estimation [23, 29, 35].

Our proposed method automatically detects the reflection of a pre-
calibrated HMD-screen to obtain a number of correspondence pairs of
3D locations and imaged reflections. Exploiting the existing hardware
of OST-HMDs, therefore, allows to combine the advantages of passive
and active-light methods to achieve practical and accurate eye pose
estimation. Beside HMD calibration, this allows for instantaneous EGT,
where the PoG is obtained by intersecting the gaze ray with the screen
and the scene.

3 NOTATIONS

In this section we explain the notations used throughout the remainder
of the paper. We denote an object and its coordinate system by an upper
case letter, such as S. A single 3D point is denoted by a bold upper
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Fig. 2: Schematic overview of the automated OST-HMD calibra-
tion [16]. Recycle INDICA (3) and Full INDICA (2), reconstruct the
projection as a function of the current eyeball position E (and static pa-
rameters of the eye-HMD system). Section 4 elaborates the parameters
in this figure.

case letter, such as P, and a 2D point by a bold lower case letter, such
as p. If we refer to a point P not in the world coordinate system, we
introduce the coordinate system as an upper index to the left of P, e.g.,
AP is used to refer to P in the coordinate system A.

We denote a vector between two points with a bold lower case letter,
such as v, and a directional ray with an additional right arrow, such as−→v . Given a ray −→v we describe its unit vector as v̂ =−→v /‖−→v ‖. Lower
case letters, for example d, are used to represent scalar values.

We represent a matrix in sans serif font, such as P. In particular,
we always refer to a rotation matrix as R. If T is the transformation
from coordinate system A into coordinate system B we denote it as B

AT.
B
AT is described by ( B

AR,
B
At) where B

AR and B
At stand for rotation and

translation respectively. Furthermore, explicit transformation of AP to
BP can be written as BP = B

AR
AP+ B

At. We refer to the transpose of a
matrix or a vector as (·)T.

4 OVERVIEW OF THE AUTOMATED HMD CALIBRATION

Figure 2 summarizes the automated OST-HMD calibration methods
in [16]. The eye-HMD system is commonly modeled as an off-axis
pinhole camera with a 3-by-4 projection matrix

E
WP := EK

[
E
WR E

W t
]
, (1)

which is a function of the dynamic eye position E
W t estimated online.

EK has two representations:

EK=

 αx cx
αy cy

1

 zSE −xSE

zSE −ySE

1

 (2)

= E0K

 1+ zEE0/zSE −xEE0/zSE

1+ zEE0/zSE −yEE0/zSE

1

 , (3)

where S denotes the virtual screen coordinates, E
S t = [xSE ,ySE ,zSE ]

T,
and E0

E t = [xEE0 ,yEE0 ,zEE0 ]
T. a := [αx,αy]

T is a scaling factor that con-
verts 3D points on the screen to pixel points. cx := (w−1)/2 and
cy := (h−1)/2 define the image center with the pixel width w and
height h. E0K is the intrinsic matrix of another virtual camera defined
by the old eye position E0.

Full INDICA (2) does not rely on the old eye position E0
W t. Instead, it

requires the HMD-screen pose ( S
WR, S

W t) and the scaling vector a. On
the other hand, Recycle INDICA (3) does not rely on these parameters,
except for

[ S
W t
]

z, and it reuses the old intrinsic matrix E0K. Let T be
the coordinate system of an eye tracker rigidly mounted on the OST-
HMD, then E

W t = S
WR
( T

WR
)T ( T

W t− T
E t
)

((6) in [16]). Thus, T
E t (the

eye position w.r.t the eye tracker) is a key parameter of the automated
OST-HMD calibration.
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5 METHOD

5.1 Eye Model
The outer view of the eye exposes the textured iris with the pupil in
the center. The iris is surrounded by the white sclera, an opaque tissue
with primarily protective function (Fig. 3a). A cross-section of the eye
(Fig. 3b) reveals that the eyeball is not a simple sphere. Its outer layer
can be divided into two approximately spherical surfaces of different
radii and centers of curvature (Fig. 3c).

The centers of the spheres lie on the optical axis, which corresponds
to the gaze ray −→g . Figure 3c shows the geometric eye model with
the following empirically determined and established parameter values.
The corneal sphere is the smaller of the two with a radius rC = 7.8 mm,
and contains, among other parts of the eye, the cornea, the iris and the
pupil. The larger sphere is described by the sclera and the center of
rotation of the eye. The centers C and E of the corneal and eyeball
spheres, respectively, are located dEC = 5.7 mm apart along the gaze
direction −→g that originates in E. The contour of the iris coincides with
the intersection of the spheres, which describes the circular limbus with
a radius of 5.5 mm. L, the center of the limbus, lies 5.53 mm away
from the corneal sphere center C along −→g .

The model is not perfect, as the user-dependent parameters are
assumed to be static, and modeling the cornea and eyeball as a spherical
surface is not anatomically exact. Nonetheless, we use it as a simple but
effective approximation that has been successfully applied in previous
studies [16, 17, 23, 27, 28, 29, 39].

About 1% [27] of the incoming light is reflected of the surface
of the cornea and can be observed by an onlooker or captured by a
camera. In this sense, the eye displays properties similar to a spherical
mirror. Thus, the cornea-camera system can be described as a non-axial
catadioptric imaging system [27]. Sphere position estimation from
known 2D-3D correspondences [1, 36] can, therefore, be applied to
determine the position of the cornea relative to the camera for every
frame.

5.2 Cornea Position Estimation
Our approach determines the position of the eye center from multiple
positions of the cornea center. Therefore, for each frame we first need
to compute C from correspondence pairs of points in the camera image
and their displayed position on the HMD-screen. This computation
consists of two steps. First, we use all correct correspondences to
determine the ray −→r TC from T, the position of the tracking camera T ,
towards C, represented by the unit vector r̂TC. In a second step, we
estimate the distance dTC along r̂TC for each correct correspondence
pair separately and combine these into a stable solution.

Let a single frame contain N correspondence pairs {P,P′} of P′,
a point on the image plane of T , and P, a point displayed on the
HMD-screen. For the i-th pair, denoted by {Pi,P′i}, light emitted from
Pi reflects on the cornea at a point P′′i and projects onto P′i (Fig. 4).
Following that, according to Snell’s law, Pi, P′i and P′′i span a plane of
reflection πi, which contains T and C. The normal of the plane πi,

−→n i,
can be computed from r̂TP′i and r̂TPi as −→n i = r̂TP′i × r̂TPi .

Given two correspondence pairs {Pi,P′i} and {P j,P′j} that describe
two non-parallel planes πi and π j, the ray −→r TCi j is obtained as the
intersection of πi and π j since T and C are contained in both planes. In
general, an erroneous correspondence pair {Pk,P′k}, for example due to
false matching or measurement errors, will describe a plane πk whose
normal will not be perpendicular to −→r TC. If {Pi,P′i} and {P j,P′j}
are correct correspondences, meaning they are inliers of −→r TC, the
ray −→r TCi j will be perpendicular to the normals of the majority of the
planes described by the correspondences in the current frame. We
determine inlier correspondence-pairs with

∣∣∣∣(r̂TCi j

)T
n̂k

∣∣∣∣
{
≤ t if {Pk,P′k} is an inlier,
> t if {Pk,P′k} is an outlier.

(4)

We use an empirically estimated threshold t = 0.0001 to account
for noise and extract the largest subset of M inliers from the original
N correspondences.

The M planes spanned by the inliers contain −→r TC as it is the inter-
section of all planes π1,. . . ,πM . We estimate r̂TC as the nullspace of the
matrix A= [n̂1n̂2 · · · n̂M ]T. Singular value decomposition of A results
in three matrices U, D and V with A= UDVT, where r̂TC is the last
column of V.

Given the ray r̂TC, the distance dTCi from the camera center T to the
cornea center C, which is supported by the i-th inlier correspondence
pair {Pi,P′i}, can be computed within πi. Figure 4 shows the geometric
relationship within πi. The ray −→u , from T through P′i, intersects the
corneal sphere in the point P′′i , where Pi reflects at the corneal sphere
and projects into the camera. The position of P′′i is still unknown, as
its position varies for different distances dTCi and with the radius rC
of the cornea. The position of P′′i can be expressed as P′′i = dû, where
d is the distance along u, so that P′′i lies on the surface of the corneal
sphere with

∥∥P′′i −C
∥∥2

= r2
C. −→u reflects at P′′i as −→v .

Let −→w = Pi−P′′i be the ray from the point of reflection towards the
point displayed on the HMD-screen. −→v and −→w will coincide for the
correct distance dTCi, with

v̂× ŵ = 0. (5)

Reformulating (5) in dTCi results in a 6-th degree polynomial with
two complex, two real negative and two real positive solutions. Detailed
explanation of the computation can be found in [1, 29]. Enforcing that
the distance is positive and real leads to two possible solutions for
dTCi. While the correct estimation will remain stable for all planes, the
false solutions will vary greatly. We use the median of all values as
the estimate of the correct distance. The position is further refined by
solving

C̃ = argmin
C

∑
i=1...M

v̂i× ŵi. (6)
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5.3 Eye Position Estimation
When the gaze direction changes, the eye rotates around E, and C
moves along a spherical orbit with radius dEC around E. Figure 5
shows the cross-section of a rotating eye. Following this, we can re-
construct E from multiple cornea centers. For a known dEC, E can
be estimated from three cornea centers. Three cornea centers and the
radius dEC describe two possible eye centers. However, we can elimi-
nate the solution located closer to the camera, since this arrangement
is anatomically implausible. We fit a sphere to all estimated cornea
centers to increase the robustness of the estimation. To compute a stable
eye position Ẽ it is necessary to remove outliers, which are not within a
distance d from the surface of the sphere supported by the majority of
the calculated centers. To determine the inlier subset we first compute
an eye center E0 for any possible combination of three cornea centers
and count the number of inliers, with

|‖E0−Ck‖−dEC|
{
≤ d if Ck is an inlier,
> d if Ck is an outlier.

(7)

In our experiments we found that a threshold d = 0.3 mm provides
the best results. For the remaining K inlier cornea centers we compute
Ẽ, from the initial guess E0, with

Ẽ = argmin
E

∑
i=1...K

|‖Ci−E‖−dEC| . (8)

Eye Gaze Tracking Eye gaze tracking has many applications,
such as gaze-based interaction, gaze or eye-movement sensing and
gaze-reactive performance analysis. Although not the main goal of our
approach, it allows computing gaze without the need for an additional
calibration. After estimating the eye position E, the gaze direction for
subsequent frames is obtained as −→g = C−E.

Drift Detection As the HMD calibration and the gaze estimation
require a good estimate of E it is necessary to determine when the
HMD has moved and re-estimate E. Therefore, let E0 be the current
eye position and C j the cornea position for the current frame. If the
HMD-screen has not moved, it follows that dEC =

∥∥E0−C j
∥∥. This

does not hold if the HMD has moved or the estimation of the cornea
has failed. Therefore, we observe subsequent frames: If the majority
of these frames supports E0 we conclude that C j is the result of an
erroneous estimation. On the other hand, if the majority suggests that

the HMD has moved we estimate a new E. We use a sliding window to
determine a stable E that continuously accounts for HMD movement.
The size of the sliding window depends on the desired stability, while
three frames are enough to obtain a guess for a new eye center position,
a larger number ensures more stable results (discussed in detail in
Section 7.2.3).

6 IMPLEMENTATION

6.1 Hardware Setup
We have built an OST-HMD system equipped with an eye tracker as
described below and in Fig. 6. We use an NVIS nVisor ST60 OST-
HMD with 1280×1080 resolution. The left-eye display is used for
the current setup. An outward looking Delock USB 2.0 camera with
a 64-degree lens serves as the world camera W , and another inward
looking Delock camera with a 55-degree lens as the eye tracker T . The
cameras are attached to the HMD and provide 1600×1200 resolution
video.

The position of the tracker is chosen to be at the bottom of the left-
eye display of the HMD. The default focal length of its fixed-focus lens
is manually adjusted and fixed to a suitable length.

6.2 Feature Detection in Corneal Images
An important step in the computation is a reliable assignment of 3D
coordinates to 2D screen pixels. The 3D location of the displayed
pattern is known from the HMD-screen calibration, e.g., [17], which
assigns a 3D location to every pixel on the screen. Although it is
desirable to include all points reflected in the eye, we use only the
subset that can be robustly detected. Here, we use the inner corners of
a displayed checkerboard pattern to compute matches, as these can be
robustly detected even in images distorted by the spherical reflection,
and their positions can be determined with sub-pixel precision. Note
that to realize a non-intrusive online calibration, the checkerboard may
be displayed at a high-enough framerate to become imperceptible, or
replaced with any arbitrary screen content that allows robust detection
of 2D-3D correspondences.

We use a C++ implementation of the LibCBDetect [8] library, as
the original MATLAB implementation cannot be used for real-time
calibration, the goal of automated calibration methods. Our naı̈ve
implementation on an Intel i7-7000 with 32 GB RAM performs the
detection step in under a second on a 1600×1200 image. An optimized
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Fig. 6: Hardware setup. (Upper left) A front view of our OST-HMD
(NVIS nVisor ST60). (Upper right) A side view of the HMD. (Bottom
right) A view from behind the HMD optics. The world camera attached
on the HMD, and the eye tracking camera fixed beneath the left optical
element of the HMD.
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Fig. 7: Deviation of estimated eye positions from the ground truth due
to data perturbed by three levels of noise: Small noise, which is likely
to occur; medium noise, which will occur from small inconsistencies
or calibration errors; and large noise, which is unlikely to occur.

implementation (e.g., on a GPU) and cropping of the examined area
will further improve the processing speed, which we plan to do in the
future. LibCBDetect detects the inner corners of a checkerboard, even
if reflected on a sphere, with sub-pixel accuracy, and arranges them
into a grid of at least 9 points, thus further improving the robustness to
outliers. The library returns multiple disconnected grids if one or more
points of the inner grid are not detected.

We align each grid separately and collect the aligned points after-
wards into correspondences for each image. To determine the location
of the grids, we have printed a number of dots into the squares of
the checkerboard (Fig. 9a-c). Their location is static, and a detected
imprinted square allows to align the origin of the coordinate systems.
Here, we employ pattern matching to detect imprinted squares, as fol-
lows: As the corners of each square are known, we can re-project the
enclosed area onto a squared image and compare the result with each
possible template using an SAD similarity measure. The pattern with
the smallest difference is chosen.

Assuming that the orientations of image plane and HMD-screen are
aligned and that the captured image is a reflection, allows to align the
orientations of the displayed and detected grids. Given the orientation
and location, each point on the detected grid can be matched with its
3D coordinate on the screen. After correspondence matches have been
computed, the estimation of the cornea position and the subsequent
(re-)estimation of the eye center can be conducted in real-time.
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Fig. 8: Intermediate output from the off-line spatial HMD-screen cali-
bration step for computing ( S

WR, S
W t). (Left) 3D visualization of four

raw HMD-screen planes estimated from four view points. Our algo-
rithm averages the planes to get a single pose. Each plane is slightly
slanted in a similar orientation. (Right top) X-Z-plane view. (Left) Y-Z-
plane view. Note that the Z-axis, i.e., the view direction, is stretched to
visualize the rotation instability.

7 EXPERIMENTS

7.1 Simulated Environment
To evaluate our method we generate simulated data according to the
two-sphere eye-model. The virtual screen is positioned 700 mm behind
the camera, similarly to our HMD-screen, and the virtual eye-tracking
camera has the same intrinsic parameters and captures an image of
the same size as the eye-tracking camera used in our experiments.
First, we project 16 cornea positions from 16 different gaze directions
into the camera. For each cornea position we select pixels located
above the projection of the cornea center which are arranged in a grid
pattern, similar to the observations in our HMD calibration experiment
(described in Section 7.2). For each selected pixel p we compute the
back-projection ray, its reflection at the cornea, and the position of the
corresponding point P as the intersection of the reflection ray with the
virtual screen. To evaluate how susceptible our method is to noise,
we add zero-mean noise with standard deviations σp and σP (defined
below) to p and P, respectively. We test the following scenarios:

1. Only the pixels have noise (representing erroneous detection of
feature points in the camera image),

2. Only the 3D points have noise (simulating erroneous HMD-screen
calibration),

3. Both, pixels and points present similar noise levels.

Assuming correct eye model parameters rC and dEC, we eval-
uate combinations of the following small to large noise levels:
σp = {0.2, 0.5, 1} pixel and σP = {0.5, 2, 10} mm. For each esti-
mated cornea position, we calculate the re-projection error between
the forward projection of P and p and discard estimations with a mean
re-projection error > 2 pixels, so that only accurate cornea estimates
contribute to the eye center estimation. Figure 7 shows the eye center
deviation for 100 executions at each noise level. For σP = 10 mm,
the estimation does not succeed, as no corneal spheres satisfy the re-
quirements. This shows the importance of a good pre-calibration for
the HMD-screen. Our tests show that the expected accuracy for the
detection of p is enough to produce stable results.

Additionally, we investigate the influence of a false assumption for
the cornea radius rC by adding offsets τ = {−2, −1, 0, 1, 2} mm with
ideal measurements for p and P. We observe that the deviation con-
sisted only of a depth-error that behaved similar to a linear function of
τ . However, if the system has extremely low noise levels, we expect
that it will be possible to estimate rC as described in [41], thus improv-
ing the overall results. Although only correspondences from two IR
light sources are used in [41], our experiments show that their findings
persist, even for a larger number of correspondences.
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Fig. 9: Cornea position estimation evaluation from re-projection errors of the reflected checkerboard corners into the camera. (a) Image of the
reflected checkerboard shown on the HMD-screen. (b) Detected checkerboard corners in the image. (c) Re-projected corners using corneal sphere
positions estimated by INDICA and CIC. (d) The large re-projection error for INDICA persists throughout the sequence (Note the logarithmic
scale of the error).

7.2 HMD Calibration
Although, results of CIC and INDICA do not depend on the expertise
of the user, the results of the SPAAM calibration may degenerate,
if done by a novice. Therefore, to evaluate the performance of our
method in a realistic scenario we calibrate the HMD from multiple
sequences, which were recorded by a single user well acquainted with
the SPAAM calibration. For each sequence the HMD was placed
so that the eye-tracking camera could capture a sharp image of the
reflection on the user’s cornea. Each sequence is comprised of two
steps: first the user looked at various points displayed on the screen
of the HMD. This part is used to estimate the position of the eye
center by our method. The second part was a SPAAM calibration to
acquire ground truth data of the projection of 3D coordinates onto
the screen. To calibrate the system with INDICA, we selected viable
frames from the complete sequence. During each recording session
the user was asked to keep the HMD fixed on the head. From each
sequence we manually removed invalid frames, which could not be
used by any method, for example because the user was blinking or the
image contained extensive motion blur. While for each sequence the
first part was recorded within approximately 2 minutes, the second part
required more than 10 minutes.

7.2.1 Screen Position
To ensure that the screen pose is calibrated correctly, we captured
images of the screen reflected in a spherical mirror of known size
instead of the human eye. As the sphere projects onto a conic in the
camera, its position can be reconstructed from the occluding contour
of the imaged mirror by the algorithm described in [42]. Our method
computes the position of a sphere from 2D-3D correspondences, and,
thus, we expect results similar to those acquired by [42]. We use five
images to verify this.

The average offset is 0.3 mm, which shows that the screen calibra-
tion is very precise, although it is not ideal. This could be a result of our
assumption of a planar HMD-screen. Visualizing the screen captured
in every camera frame of the calibration step, we observe slight offsets
of the screen planes (Fig. 8), which may result from a slightly curved
screen. These observations coincide with the results of [20, 31].

7.2.2 Cornea Position
The first step of an automated calibration method estimates the position
of the cornea. In this section, we compare the results of the HMD-
screen reflection on the cornea, estimated by CIC and INDICA. Both
methods assume the same two-sphere eye-model and should obtain the
correct cornea position. Therefore, the reflection of the checkerboard
on the estimated cornea should project onto the detected points, for
example those shown in Fig. 9b. As can be seen in Fig. 9c, the reflection
on the cornea estimated by CIC almost coincides with the expected
points, while the reflection for INDICA greatly differs. The large
error is consistently obtained throughout the experimental evaluation

(Fig. 9d) with an average error of 54.936 pixel. This indicates that the
eye position estimated by INDICA is only a rough approximation of
the actual eye center.

7.2.3 Eye Position

The minimal solution for the calibration is error prone due to outliers
and ill-posed data. Although it would be ideal to collect a large dataset
for calibration, this is not possible in most application scenarios. Also,
an automated calibration should require as little time as possible before
the user can experience the correct augmentation whenever the applica-
tion is started or the HMD has moved on the head. Therefore, it is also
necessary to determine the minimum dataset size that allows a reliable
calibration.

In this section we evaluate the required dataset size for the SPAAM,
INDICA and CIC calibrations. With an increasing number of frames
each method will converge towards a stable position. We assume that
our recorded datasets are large enough for each method to successfully
converge onto a position that we define as ground truth. We then select
100 random combinations of N input data (2D-3D correspondences for
SPAAM, frames for INDICA and CIC) from each dataset and evaluate
the deviation from the ground truth. The results are shown in Fig. 10.
We use at least 6 point pairs for SPAAM, 2 frames for INDICA and
3 frames for CIC. In contrast to any of the three methods, CIC allows
us to evaluate the quality of the input data, as the re-projection error
e of the screen reflection on the estimated cornea position is known.
Therefore, we assume that all frames with e > 2 pixel are likely to be
outliers and remove them from the estimation to further improve the
results. Stricter thresholds will naturally speed up the convergence
rate at the cost of an increasing number of discarded frames. For CIC
we show the results of both, the filtered and unfiltered data. As the
re-projection error for approximately 80% of the recorded frames was
below the threshold, we believe that it is viable to employ filtering
in an application scenario. Our observations show that the converged
position of the eye-center estimation for the unfiltered dataset deviates
by approximately 0.5 mm from ẼF , the result of the filtered scenario.
In some cases, it may not be possible to use filtering due to a generally
large re-projection error. Therefore, we observe the deviation of the
estimated eye position from ẼF for the general case in Fig. 10c.

The position estimated by SPAAM remains unstable even with
16 samples with an error of approximately 10 mm. INDICA imme-
diately converges to an error of less than 1 mm, which is faster than
our method that requires 7 and 16 frames for the filtered and unfiltered
datasets, respectively. The high quality of INDICA results from a simi-
lar gaze direction for the frames used to estimate the eye center, as the
iris detection requires the contour of the iris to be visible. Our method,
on the other hand, does not restrict the gaze direction and performs
similarly. Furthermore, as is shown in [35], the approach taken by
INDICA is very sensitive to erroneous measurements and converges to
an incorrect eye center position.
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Fig. 10: The convergence rate to a stable eye position determines the time required for the calibration, i.e., how fast a usable result can be
obtained. We show the convergence rate for (a) SPAAM (in logarithmic scale), (b) INDICA, (c) CIC with unfiltered data and (d) CIC with a
preprocessing step, where we discard probable outliers. We remove all cornea centers, which resulted in a screen reflection re-projection error
> 2 pixel. Although CIC converges slower than INDICA, it converges to an expected error of < 1 mm within 7 frames in (d) and 16 frames
in (c). SPAAM calibration fails to converge to an acceptable value even after 16 correspondences are used.

7.2.4 Projection Error
In this section we use point correspondences from the second part
of the recording session to evaluate the projection error for various
setups and calibration methods. We compare the SPAAM, INDICA
and CIC calibration methods. For the automated calibration methods
we evaluate the Recycle and Full calibration approaches, which were
discussed in Section 4.

The results of the projection are shown in Fig. 11. Similar to results
reported in [16, 17], the SPAAM calibration has the smallest projection
error among the compared methods. This result is expected, as SPAAM
incorporates inaccuracies resulting from, e.g., user errors or distortion
of the screen into the projection matrix. Our method performs better
than the INDICA for both, the Recycle and Full setup. The similar
results achieved by INDICA and CIC can be explained by the small
deviation of the estimated eye centers. The estimated positions were on
average 2.03 mm apart. The eye is modeled as a pinhole camera into
which we project points at a distance of 2-3 m. In this model, an offset
of 2.03 mm does not introduce a substantial error. Additionally, while
the shift in the position, compared to CIC, will degrade the results for
parts of the dataset (e.g., points projected to the left of the correct posi-
tion) it will reduce the error for other parts (e.g., points projected to the
right of the correct position), thus disguising the degraded performance.
Such an erroneous shift can be observed in the error distribution of the
point projections. For each 3D point P we compute an error vector
e = p−pu, where p is the projection of P onto the screen, after the
calibration, and pu is the point aligned by the user. For each calibration
method we use N such projections to compute the mean vector

e0 =
1
N ∑

i=1...N
ei, (9)

where ei is the error vector for point i. We show the error vectors
for each calibration approach in Fig. 12. As expected, the SPAAM
algorithm computes an ideal distribution of the errors. INDICA shows
a strong error tendency, while CIC shows a much more uniform result.
The remaining vector e0 may result from inaccuracies in the eye model,
user errors while aligning the screen with the 3D points, or sub-optimal
HMD-screen calibration.
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Fig. 11: Projection error for various calibration approaches. CIC
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8 CONCLUSION

In this paper, we present CIC, a novel approach for automated spatial
calibration of an OST-HMD. This method employs corneal imaging
instead of iris detection to determine the position of the user’s eye. We
employ an HMD with pre-calibrated camera and screen positions to
establish correspondences of points displayed on the screen and their
reflections on the cornea, as captured by an eye-tracking camera. The
correspondences allow to compute the position of the user’s cornea,
and at least three frames with a moving cornea allow to compute the
position of the user’s eye center. We show that the position estimated
by CIC is closer to the real position, which can improve the calibration
results. CIC requires an unobstructed light-path for the HMD-screen
reflecting at the user’s eye into the camera. The use of contact lenses,
instead of glasses, will likely not impact the solution as contact lenses
do not refract the light and are attached directly to the cornea surface.
However, the impact of vision-enhancing devices on the results of CIC
remains to be investigated.

Nonetheless, the results are still not ideal, as CIC did not outperform
the manual calibration by SPAAM. In our simulation, we determined
that errors in the 3D location of the correspondences and deviation of
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Fig. 12: Error vector distribution for each evaluated method. Each projection of a 3D point describes a vector from the estimated position to the
position aligned by the user. The mean error vectors are shown in black. The position estimation by our method improves the error distribution
for both, the Recycle and the Full calibration.

the cornea size are the major error sources. Another reason may be
that the acquired ground truth information was affected by the optical
distortion of the light paths through the HMD optics. Accounting for
this non-planar deformation [18] may significantly improve the results.
In the future we plan to use an improved HMD-screen calibration,
e.g., [20], to acquire better 3D information. Given improved correspon-
dences we plan to investigate if CIC may also be used to estimate user
specific parameters, such as rC and dEC.

Obtaining a dense set of correspondences of points on the HMD-
screen and their reflections may provide valuable information about
the surface of the cornea. Reconstructing and using this shape instead
of the simple two-sphere model may further improve the stability of
the results. Correspondence matching with real screen content, or fast
imperceptible pattern display would allow for continuous non-intrusive
re-calibration.

Approaches that employ IR light sources for eye-gaze tracking have
achieved a high-quality estimation of the user’s gaze with a similar
approach. Their results greatly outperform the accuracy of passive
trackers based on the iris contour. From these observations we will
investigate if eye gaze tracking with CIC can produce similar results.
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