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Abstract— Today modern vehicles are often equipped with a
camera, which captures the scene in front of the vehicle. The
recognition of weather conditions with this camera can help
to improve many applications as well as establish new ones.
In this article we will show how it is possible to distinguish
between scenes with clear and foggy weather situations. The
proposed method uses only gray-scale images as input signal
and is running in real time. Using spectral features and a simple
linear classifier, we can achieve high detection rates in both
daytime and night-time scenes. Furthermore, we will show that
in our application area these features outperform others.

I. INTRODUCTION

Camera based driver assistance systems are increasingly
used in current vehicles. Well known applications are for
example the Lane Departure Warning, the Speed Limit
Information, the High Beam Assistant or the Adaptive Cruise
Control. All these applications have in common that they
recognize specific objects in the image like lanes, traffic
signs, lights or vehicles. However, recognizing general image
properties, such as current weather conditions, has so far
been given little attention. In this work we are focusing on the
problem of detecting fog, i.e. distinguishing between clear
and foggy weather situations on the basis of camera images.
On the one hand, this information can help to improve
existing applications, i.e. by restoring foggy images using
known methods to improve object detection or by adjusting
the strategy of the High Beam Assistant, and on the other
hand establish new application areas like the Local Hazard
Warning of poor visibility or ambient sensitive rear lights.
For the classification of images into fog and fog-free, we
use a single grayscale camera, which is mounted in the
vehicle behind the rearview mirror. But first, it is important to
clarify the term fog. According to the international definition
in meteorology fog is defined as a cloud that touches the
ground and causes a visibility range of less than 1,000 m [1].
The visibility range thereby describes the longest distance
at which a black object of adequate size can be observed
towards the horizon. The International Commission on Il-
lumination (CIE) recommends a threshold of 5 % [2]. To
concretize the term fog in the application area of individual
road traffic following categorization has been proposed [3]:
• No Fog: Visibility range > 1,000 m.
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• Low Fog: Visibility range between 300 – 1,000 m.
• Fog: Visibility range between 100 – 300 m.
• Dense Fog: Visibility range < 100 m.

Depending on the target application it is to decide when is
referred to fog. For the Local Hazard Warning for example
this is only the category Dense Fog, for the High Beam
Assistant this may be the categories Fog and Dense Fog.

In the next section we will look at related work in the field
of image based fog detection and visibility range estimation.
Then we will present our approach to classify images into
fog and fog-free scenes and in the end we finally show how
well our method in both daytime and night-time scenes work.

II. RELATED WORK

Estimating the visibility range in fog was first investigated
by Bush and Debers for the stationary use [4]. They used
a camera mounted on a traffic management system. After
manually defined a fixed region of interest, the road region,
they performed a wavelet based contrast measurement. The
image line above which no contrast higher than 5 % appears,
defines the visibility range, which could be transformed to
world coordinates because of the known camera setup. The
first visibility range estimation in a vehicle was introduced by
Pomerleau [5]. He used arbitrary road features to determine
a percentage visibility range. Further work by Hautière et
al. [6], [7], [8] and later by Bronte et al. [9] examined the
transition between the road and the sky region to estimate a
metric visibility range. While all of these works have been
developed for use in daytime scenes, Gallen et al. introduced
an approach for night-time scenes [10]. They divided the
problem into two scenarios. If no external light sources
are present, like streetlights or lights of driving ahead or
oncoming vehicles, then the light propagation of the vehicle
headlight has been investigated. Therefore from the current
driving scene a fixed region of the road has been compared to
a template, which was previously recorded in a fog chamber.
However, if external light sources were present then their
corona was analyzed using a multi-threshold approach.

While all of these approaches try to determine the visibility
range at once, we believe that for a robust operation the
problem has to be split. First, one has to decide whether
at all a fog situation is present. If fog is present, the
degree of fog can be quantized by estimating the visibility
range e.g. by analyzing the contrast along lane markings.
The decision whether the vehicle is in a fog situation or
not is a scene classification problem, which is well known
in literature. Typical challenges are indoor/outdoor scene
classification [11], [12], [13], [14], [15], city/landscape scene
classification [16], [17], semantic scene classification [18],



[19] or generally grouping similar images in the field of
content-based image retrieval (CBIR) [20]. However, the
classification of weather situations for use in the automotive
sector has received very little attention. Roser and Moosmann
proposed a general method for weather classification based
on color and texture features [21]. They determined for
the entire image and for twelve subregions histograms of
the local contrast, minimum brightness, sharpness, hue and
saturation and concatenated them to a large feature vector.
The images were then classified as clear weather, light rain
or heavy rain by a two-stage linear SVM. They mention
that their approach is also applicable to the classification of
fog situations, but it wasn’t evaluated because of the lack of
appropriate images. Furthermore Pavlić et al. [3] proposed a
method which is able to distinguish between dense fog and
clear weather situations. It is inspired by the work of Oliva
and Torralba [18] and uses spectral features which are also
known as Gist features.

Our work is an extension of that from Pavlić et al. with
an improved detection rate. This is achieved by a modified
sampling of the power spectrum with a so called Gabor band
pass filter bank and by extracting features from some large
overlapping windows in spatial domain. Furthermore we will
show, that this approach works also very well for night-
time scenes and that spectral features outperform others in
distinguishing between clear and foggy weather situations.
Therefore we compare the features used by us with those
of Roser and Moosmann and the Wavelet features proposed
by Serrano et al. for indoor/outdoor classification [14]. The
latter use the coefficients of the Wavelet transform, as used in
the JPEG2000 compression standard for image compression,
as image descriptors.

III. METHOD

As input signal we use grayscale images from a camera
available in serial-production vehicles. To model the sensitiv-
ity of the human visual system, we first perform a conversion
to logarithmic domain [22], [23]

il(x, y) = log(i(x, y) + 1). (1)

Afterwards we normalize the image to avoid that some
image regions dominate the spectrum and to reduce illumi-
nation effects

i′(x, y) =
il(x, y) ∗ h(x, y)

ε+

√
[il(x, y) ∗ h(x, y)]

2 ∗ g(x, y)
. (2)

Thereby g(x, y) describes an isotropic low pass filter with a
radial cut off frequency at 0.015 cycles/pixel and h(x, y) =
1− g(x, y). The numerator is a high pass filter that cancels
the mean intensity of the image. The denominator acts as
a local estimator of the variance of the output of the high
pass filter. ε is a constant that avoids noise enhancements in
homogeneous image regions. For the normalization we use
a square image section and equalize the intensity values to
the range of [0, 255].

As image features we use the power spectrum

Γ(fx, fy) = |I(fx, fy)|2 , (3)

which is defined as the square magnitude of the Fourier
transform for every frequency fx and fy of the image of
size W given by

I(fx, fy) =

W−1∑
x=0

W−1∑
y=0

i′(x, y)e−j2π(fxx+fyy). (4)

Before the Fourier transform we furthermore apply a two
dimensional Hanning window to avoid leakage effects. As
can bee seen in Fig. 1 images with fog present provide a
spectrum concentrated around the zero frequency whereas
images of clear weather situations have much more high
frequency components. This is obvious as fog causes blurring
and sharp edges are composed in frequency domain by high
and low frequency components whereas weak edges only by
low ones.

Next, we perform a two stage feature reduction consisting
of sampling the spectrum in the frequency domain and a
subsequent feature selection based on Principle Components
Analysis (PCA).

The sampling is done by a filter bank of scaled and
oriented Gabor filters [24]. The ith Gabor filter is defined
as

Gi(fx, fy) = e
−2π2

(
σ2
x(f ′

x−fr)
2
+σ2

yf
′2
y

)
(5)

with f ′x = fx cos(θ) + fy sin(θ) and f ′y = −fx sin(θ) +
fy cos(θ). Thereby the filters are shifted to the position fr
and rotated by θ. So the filters are arranged semicircular
around the zero frequency in different frequency bands. An
example for a Gabor filter bank is shown in Fig. 2(a).
Since we are not necessarily interested in the directional
information of frequency components in our application an
alternative filter bank configuration is to subsume the Gabor
filter of one scale to one so-called Gabor band pass filter as
shown in Fig. 2(b).
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Fig. 2. Examples for Gabor filter banks. The horizontal and vertical axis
correspond to the fx and fy frequency, the contours display the 3 dB cutoff
frequency. Left: Gabor filter bank with 16 scales between 0.33 c/p and
0.002 c/p with 32, 32, 28, 28, 24, 24, 16, 16, 12, 12, 8, 8, 6, 6, 4 and 4
orientations per scale. Right Equivalent Gabor band pass filter bank where
the filter of one scale are subsumed to one band pass filter.

So we get a sampled spectrum by the outputs of the filter,
the so-called Gabor feature vector

g = {gi}Ki=1 (6)



Fig. 1. Images of fog and fog-free scenes and the corresponding power spectra. The power spectra are displayed in logarithmic unit, with zero frequency
in the middle and higher frequencies at the border. The images presented above show clear differences in the spectra between similar scenes. While in fog
scenes the frequency components are concentrated at the origin, in fog-free scenes they are broadly spread.

where K is the number of filters and

gi =
∑∑

Γ(fx, fy)Gi(fx, fy), i = 1, 2 . . .K. (7)

Afterwards we perform a feature selection based on PCA

ωωω = WT (g − g) . (8)

The mean Gabor feature vector

g =
1

M

M∑
m=1

gm (9)

and the transformation matrix

W = [w1 w2 . . .wN ] , (10)

which consists of the first N Eigenvectors of the covariance
matrix

C =
1

M

M∑
m=1

(gm − g) (gm − g)
T
, (11)

are for this calculated by a set of M training data.
These features are now used for classification. Although

Support Vector Machines (SVM) are the state of the art
classifiers we use for simplicity a linear classifier based on
Fisher’s Linear Discriminant Analysis (LDA)

u = dTωωω =

N∑
n=1

dnωn

{
> b, fog
< b, fog-free (12)

According to Fisher the weight vector d is calculated by the
covariance matrices C1,2 and mean feature vectors ωωω1,2 of
the two classes

d = (C1 + C2)
−1

(ωωω1 −ωωω2) . (13)

Because we have chosen the same number of training data
for each class the threshold b can be calculated by simply
intersecting the probability densities of the decision variable.
We assume that u is normal distributed for each class, hence

b = N1(u1, σ1) ∩N2(u2, σ2), (14)

where u1,2 and σ1,2 describe the mean and the standard
deviation of u for the respective class. This is equivalent
to a maximum a posteriori (MAP) estimation. Fig. 3 shows
an example output of a training with Fisher LDA.
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Fig. 3. Result of a exemplary training phase based on the Fisher LDA.
In cyan the histogram of fog-free and in red the histogram of fog decision
variables is shown. The corresponding normal distributions are shown in
blue and green. Note that they are scaled for better visualization. The
threshold, resulting from the intersection of the two normal distributions, is
shown as a black line. Although the histogram of the fog decision variables
does not fit very well with a normal distribution, this approach provides
useful results, and also has the advantage of being simple.

A. Configuration for daytime scenes

For daytime scenes we used the experimentally determined
value of ε = 10 in the pre-filtering step.

Using the spectrum based on the entire image, 94.35 %
of the scenes were accurately classified1 with a Gabor band
pass filter bank, consisting of 13 frequency bands between
0.33 and 0.005 c/p.

Extracting features from image tiles and combining them
in a feature vector is often mentioned to improve the accu-
racy, in [18] e.g. 8×8 large overlapping windows were used.
In our application this impaired the detection rate. However,
using only one line of 8 horizontally aligned windows, in
particular the 4th from top, which corresponds to the horizon
region in the image, we could improve the accuracy to
95.35 %. Thereby we used windows with 64 pixel in size
and sampled each one with a Gabor band pass filter bank
consisting of 10 frequency bands between 0.33 and 0.014 c/p.

1The evaluation method will be explained in detail in the next section.



Fig. 4. Used image region to calculate spectral features of eight horizontally
large overlapping windows. In the area of the horizon it is most likly to find
distant objects, on whose visiblity fog has the most impact, and thus can
contribute to the distiction of fog- and fog-free scenes particulaty well.

B. Configuration for night-time scenes

By switching on the high beams in fog the driver is
dazzled by his own light. Therefore it should be possible to
distinguish between clear and foggy weather conditions when
high beams are switched on. However, our objective was to
enable this even without switched high beams, i.e. only with
activated low beam. This is much more challenging, since a
distinction without the high beam is very difficult even for
the driver. To compare the performance of the classification
between activated low beam and high beam, for both situa-
tions one configurations was determined experimentally.

In the case of night-time scenes and switched low beam,
we use a Gabor filter bank consisting of 32 filters, which
were positioned in a frequency band at 0.23 c/p. This fre-
quency band corresponds to the second from the outside in
Fig. 2(a).

In the case of night-time scenes and switched high beam,
we used a Gabor filter bank consisting of 7 frequency
bands between 0.33 and 0.04 c/p. It corresponds to the seven
outermost frequency bands in Fig. 2(a).

For all night-time scenes we used the experimentally
determined value of ε = 40 in the pre-filtering step.

Fig. 5. Examples for clear and fog scenes at night. The top row shows
the camera images the bottom row the corresponding power spectra. From
left to right: No fog, fog, no fog and high beam, fog and high beam.

IV. EVALUATION

For evaluation, we used the front camera of a BMW F10,
which is mounted behind the rearview mirror and looks in
driving direction parallel to the vehicle longitudinal axis. The

camera provides grayscale images of resolution 320 × 240
pixels at an effective frame rate of 15 fps.

Based on this system on German highways images were
taken in fog and in clear weather conditions. The daytime
scenes were then labeled as category Excluded2, No Fog,
Low Fog, Fog or Dense Fog. For labeling in each image two
horizontal lines were drawn, which under the assumption of
a planar road correspond to a distance of 100 m and 300 m.
The images were finally assigned to one category depending
on the visibility of the lanes at these lines.

Fig. 6. Example images for labeling categories. Form left to right:
Excluded, No Fog, Low Fog, Fog and Dense Fog.

To evaluate the daytime scenes an 8-fold cross-validation
was used. For this purpose, eight sample sets were created,
each consisting of 5,500 images. Each sample set contains
one half fog images and the other half fog-free images.
The fog images are from the category Dense Fog, the fog-
free images from the categories No Fog and Low Fog.
Thus 44,000 images were incorporated into the evaluation
of daytime scenes. While compiling the sample sets it was
paid attention to group similar types of highway. The A8
highway is e.g. in contrast to A92 very hilly and has a
distinct vegetation beside the road. Thus images from the
A8 have much higher contrast in clear weather situations.
This way we wanted to examine how the system behaves
e.g. in basically low-contrast images, if it was trained with
basically high-contrast images. In addition to the method
presented here, the evaluation was also conducted with the
basic approache from Pavlić et al. [3] for daytime scenes,
the approach from Roser and Moosmann [21], here called
Roser features, and the approach from Serrano et al. [14],
here called Wavelet features. When using Roser respectively
Wavelet features, the best results were achieved when the
features are extracted from the pre-filtered image and then
a feature selection was performed by PCA. Moreover the
Roser features contain no color information, since only
grayscale images were available. Tab. I shows the results
of the evaluation of daytime scenes. As can be seen there
our method outperforms the others. Besides the highest
recognition rate of 95.35 % the lowest standard deviation of
the single results of the cross-validation was achieved. This
is reflected also in the best result for the worst single result.
This shows that our method in comparison to the other is
more robust to variations.

Looking at the result of the classification in detail, we can
see that our method mainly falsely detected clear weather
conditions when despite fog high contrasts appear in the im-
age. This could be observed e.g. just before passing bridges
or while overtaking trucks. With free road or at a subsequent

2The category Excluded contains images with overexposure or dazzle.



Spectral
Features

Original
Approach

Roser
Features Wavelets

To
ta

l Acc 0.9535 0.9350 0.9220 0.8959
Tp 0.9487 0.9266 0.9589 0.9100
Tn 0.9584 0.9434 0.8852 0.8818

St
d.

D
ev Acc 0.0288 0.0498 0.0560 0.0683

Tp 0.0458 0.0932 0.0617 0.1039
Tn 0.0504 0.0657 0.1158 0.1032

B
es

t Acc 0.9920 0.9991 0.9949 0.9964
Tp 0.9858 0.9982 0.9956 0.9960
Tn 0.9982 1.0000 0.9942 0.9967

W
or

st Acc 0.8922 0.8135 0.6671 0.7062
Tp 0.8058 0.6269 0.9985 0.7160
Tn 0.9982 0.9876 0.3356 0.6964

TABLE I: Evaluation results for daytime scenes. The Spectral Features
represents the method described here, the Original Approach shows the
results from [3], but using a linear classifier based on Fisher LDA. Total
accuracy (Acc), true positive rate (Tp) and true negative rate (Tn) are the
mean values of all single results. The true positive rate is the conditional
probability that images are classified as fog when labeled as fog, the true
negative rate is the conditional probability that images are classified as fog-
free when labeled as fog-free. Further important measures are the standard
deviations of the single results as well as the best and worst single result
regarding the accuracy.

drive rarely occurred false detections. Cases where a fog
situation was falsely detected, occurred sporadically, i.e.
isolated within a recording, and mostly in low-fog labeled
images. Hence, such false detections can be easily fixed by
temporal filtering, e.g. by a majority vote of the classification
results within a second or through 15 successive frames.
Fig. 7 gives some striking classification results for daytime
scenes.

Fig. 7. Exemplary classification results. From top left to bottom right:
The first two images show examples were falsely due to passing a bridge
respectively overtaking a truck clear weather situations were detected (false
negatives). The next two images show examples were our method has almost
always detected fog situations correctly (true positives), this was e.g. the case
for free road or for subsequent drives. The first two images of the second
row show examples were fog was falsely detected (false positives). This
occurred spontaneously and mostly in low-fog labeled images. The last two
images show scenes correctly recognized as clear weather conditions (true
negatives), one with basically high and one with basically low contrast, were
both were trained with the same sample set.

From the recordings of night-time scenes we selected those
in which was clearly the presence of fog respectively no
presence of fog to see. To better assess the visibility, we

periodically switched on the high beam during the measure-
ment runs, if possible.

To evaluate the night-time scenes with high beam a 4-fold
cross-validation was used. For this purpose four sample sets
were created, each consisting of 1,800 images. Each sample
set contains one half fog and the other half fog-free images.
Thus 7,600 images were incorporated into the evaluation
of night-time scenes with high beam. As could be seen in
Tab. II all methods achieved very good results, wherein the
Wavelet features and our method are slightly better than the
Roser features with detection rates of 99.45 % respectively
99.48 %.

Spectral
Features

Roser
Features Wavelets

To
ta

l Acc 0.9948 0.9841 0.9945
Tp 0.9940 0.9968 0.9932
Tn 0.9955 0.9714 0.9958

St
d.

D
ev Acc 0.0048 0.0237 0.0031

Tp 0.0070 0.0048 0.0041
Tn 0.0088 0.0483 0.0070

B
es

t Acc 1.0000 0.9979 0.9984
Tp 1.0000 0.9968 0.9979
Tn 1.0000 0.9989 0.9989

W
or

st Acc 0.9847 0.9232 0.9874
Tp 1.0000 0.9989 0.9958
Tn 0.9695 0.8474 0.9789

TABLE II: Evaluation results for night-time scenes and high beam.

To evaluate night-time scenes with low beam an 8-fold
cross-validation was used. For this purpose eight sample sets
were created, each consisting of 4,250 images. Each sample
set contains one half fog and the other half fog-free images.
Thus 34,000 images were incorporated into the evaluation
of night-time scenes with low beam. As could be seen in
Tab. III in this case our method outperforms the others.
Besides the highest recognition rate of 99.18 % the lowest
standard deviation of the single results of the cross-validation
was achieved. Furthermore it achieves the best result for the
worst single result with 97.65 % accuracy.

Spectral
Features

Roser
Features Wavelets

To
ta

l Acc 0.9918 0.9683 0.9771
Tp 0.9888 0.9952 0.9911
Tn 0.9948 0.9414 0.9663

St
d.

D
ev Acc 0.0076 0.0673 0.0343

Tp 0.0111 0.0105 0.0109
Tn 0.0096 0.1328 0.0666

B
es

t Acc 1.0000 1.0000 1.0000
Tp 1.0000 1.0000 1.0000
Tn 1.0000 1.0000 1.0000

W
or

st Acc 0.9765 0.7024 0.8736
Tp 0.9991 0.9986 0.9906
Tn 0.9539 0.4061 0.7567

TABLE III: Evaluation results for night-time scenes and low beam.

In Fig. 8 some classification results are shown from the
evaluation of night-time scenes with low beam. The first two



images top left show two exemplary situations in which the
presence of fog was correctly detected, one with free road
and one with a vehicle ahead and rear fog lamp switched
on. The following two images show two false classifications,
in which no fog was mistakenly detected. Once by an
oncoming vehicle and once by a vehicle driving ahead to
high contrasts were generated in the image. Mostly, however,
false positives were generated due to an erroneous imaging
of the sensor, whereby horizontal gradients were generated
in dark image regions. This phenomenon was evident only
in the pre-filtered images, and is not shown here. The first
two images in the second row show examples, where fog was
mistakenly classified. In the first image there is light fog and
the headlights of an oncoming vehicle produce weak edges to
an already basically low contrast scene. In the second image
produces an oncoming vehicle, which runs straight out of the
image, a diffuse light which extends over large parts of the
left side. The last two pictures show finally two scenes that
were correctly classified as free of fog, one with free road
in a low-contrast environment and another with dazzling by
an oncoming, distant vehicle.

Fig. 8. Exemplary classification results for night-time scenes. From top left
to bottom right: Each two examples of correctly detected fog scenes, falsely
detected as fog-free scenes, falsely detected as fog scenes and correctly
detected as fog-free scenes.

V. CONCLUSION
Frequency information of spectral features are well suited

to distinguish between driving scenes with clear and foggy
weather conditions. Compared to the features proposed by
Roser and Moosmann and to the Wavelet features proposed
by Serrano et al. with these the best detection rates were
achieved in both day and night driving scenes. In daytime
scenes, the result of an 8-fold cross-validation based on
44,000 images provided a detection rate of 95.35 %. The
examination of night driving scenes were divided into images
with high beam and with low beam switched. When high
beam switched, a 4-fold cross-validation based on 34,000
images provided a detection rate of 99.48 %, while the other
two methods, however, achieved similar good results. When
low beam switched, an 8-fold cross-validation based on
34,000 images provided a detection rate of 99.18 %.
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