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Abstract— Modern vehicles are equipped with many cameras
and their use in many practical applications is extensive.
Detecting the presence of fog from images of a camera mounted
in vehicles is a very challenging task with the potential to be
used in many practical applications. Approaches introduced
until now analyze properties of local objects in the image like
lane markings, traffic signs, back lights of vehicles in front or
head lights of approaching vehicles. By contrast to all these
related works we propose to use image descriptors and a
classification procedure in order to distinguish images with fog
present from those free of fog. These image descriptors are
global and describe the entire image using Gabor filters at
different frequencies, scales and orientations. Our experiments
demonstrated hight potential of the proposed method for fog
detection on daytime images.

I. INTRODUCTION

Camera based driving assistance systems are one of the
core technology trends in intelligent vehicles. Well known
applications are, for example, the lane departure warning,
the road sign detection or the high beam assistance. All
these systems detect tangible objects in the camera images
like lane markings, road signs, light sources of the vehicles
ahead or forthcoming vehicles. Detecting context information
describing the environment surrounding, like fog, rain or
snow, is still very challenging. In this paper we address
the problem of fog detection. Previous camera based fog
detection systems analyze therefore distinct objects in the
image [7] or image regions like the road region [4], [7],
[18] or the horizon [3], [11], i.e. the position where the sky
touches the road. However, these approaches are not reliable
for everyday use, because the road or the horizon is often
occluded by other objects like vehicles or bridges, while the
features like lane markings can be of different quality, e.g
freshly painted markings significantly differ from old ones.
The only stable information that we can always see in images
of foggy weather conditions is a decrease in contrast and
blurring in the whole image. For that reason we propose a
new method to detect such an event by using global image
features. Thereby we analyze the power spectrum being the
squared magnitude of the Fourier transform of the image
that holds information about the frequencies in the image
discarding spatial information. From the power spectrum we
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build the image features that can be then fed to the classifier
trained on fog and fog free images. As a result we obtained
high recognition rates on about 1h of test videos.

There are many applications which could benefit from this
information, some of these are:
• Advice on implicit speed limit. Speed limits are either

given explicit by signs or implicit by traffic regulations.
For example if the visibility range is less then 50m, the
speed is restricted to 50 km/h. If the vehicle would be
able to recognize such a situation, the driver could be
notified to this regulation.

• Fog lamp/rear fog lamp assistant. If the presence and
occurrence of fog could be recognized by vehicles the
fog and rear fog lamp could be automatically switched
on and off, as it is often done for low beam light by
nowadays vehicles.

• Strategy adjustment of the high beam assistance. The
high beam assistance supports the driver by switching
on and off the high beam. In the presence of fog the
driver gets dazzled by his own high beam. If the vehicle
could detect fog at night the high beam assistant could
be adjusted accordingly.

• Optimizing image based detection algorithms. Fog cau-
ses a decrease in contrast and blurring in images. If such
images could be detected beforehand image restoration
algorithms could perform a preprocessing to optimize
object based recognition processes.

• Local Hazard Warning. The Local Hazard Warning tries
to countervail hazardous situations by using among
others information from vehicles being currently on the
road and precisely warns the drivers heading toward
such location. A vehicle being in a situation with dense
fog should detect it and send this information to a
central back-end that can be distributed to the other road
users.

In the following we present our new approach for image
based fog detection (chapter IV) and the results of our
evaluation (chapter V). Prior to that we will regard the terms
fog and visibility range (chapter III) as well as previous
works (chapter II). At the end we will give a conclusions
and look on future works (chapter VI).

II. PERVIOUS WORKS

In [4] C. Busch and E. Debers introduced an approach to
determine the visibility range under foggy weather conditions
from images of stationary traffic management systems. After
a manual masking of the road they performed a wavelet
based contrast measurement. The image line, upon which no
contrast higher than 5 % appears, defines the visibility range



in the camera image. From the known camera configuration
relative to the road a transformation from image to world
coordinates was done. In the range from 300 to 1000m the
proposed system outputs a visibility range in 50m steps, in
the range of less than 300 m in 10 m steps. Even if this
system was designed for a stationary use it is interesting in
our field of application, as with existing image processing
techniques, like an appropriate lane and object detection, it
could be applicable for the use in vehicles.

In [18] D. Pomerleau introduced a system to estimate
the visibility range through the use of a camera mounted
inside a vehicle. His system is generic and aims to cover
all possible situations of low visibility caused by dazzling,
rain, snow or fog. The visibility range is thereby estimated
by the attenuation of the contrast along similar road features
like lane markings, banquet or even oil stripes. Initially a
trapezoid region containing the road ahead is extracted and
warped to the bird-eye-view. Then by shifting the rows of the
image on this warped view a straight road profile is obtained.
The horizontal intensity profile of this image is analyzed at
different image rows and from the difference in intensity
peaks of the upper and lower rows the contrast attenuation
is estimated. This contrast change usually happens around
road features like lane markings.

In [11] Hautière et al. proposed a method for fog detection
form images captured by a camera mounted inside vehicles.
It is based on Duntley’s law for the contrast attenuation
C = C0e

−kd [15]. Here, C is the perceived contrast at
the distance d from an object with the intrinsic contrast of
C0 and k is the extinction coefficient that characterizes the
visibility conditions. Under the assumption that a contrast
less than 5% could not be perceived (C = 0.05) and that we
analyze a black object against a white background (C0 = 1),
Duntley’s law could be rewritten as the visibility range as a
function of the extinction coefficient dv = − 1

k ln(0.05). The
proposed method now determines the extinction coefficient
based on the inclination point of an intensity function, which
models the intensity flow from the road to the sky. This
method is based on a modified region growing approach
used to find a region containing parts of the road and the
sky. Inside this region a measurement range is defined and
the median intensity value for each image row is determined.
Based on the inclination point of the so obtained intensity
function the extinction coefficient is calculated and hence
the visibility range estimated. By perspective projection and
assuming a flat world the system outputs a metric estimation
of the visibility range. If the estimation of visibility range
delivers a value of infinity, the authors deduce that there is
no fog. Because it is not always guaranteed to find a region
containing parts of the road and the sky, the authors proposed
a modified version of their algorithm based on the approach
of Pomerleau [18] where information of lane markings are
incorporated [13]. Furthermore they introduced an approach
based on stereo camera systems to avoid the limitations and
inaccuracies from the mono camera approach and the flat
world assumption [12].

Another approach to estimate the visibility range under

foggy weather conditions was proposed by Bronte et al. [3].
They extract two adjacent image regions, a road and a sky
region, each with a region growing algorithm. Furthermore
they determine the current vanishing point respectively the
vanishing line from image features. If the vanishing point is
inside the upper sky region, they deduce the presence of fog.
Then the image row, where the two regions touch, provides
the current visibility range. By perspective projection and
assuming a flat world they calculate the visibility range in
meter. To avoid false detections they use a kind of threshold
based preceded no fog detector which sums the magnitudes
of gradients in the upper half image region. Because the
estimation of the visibility range based on a single image is
very unstable, i.e. it exhibits large variations in time, they
calculate the median visibility range over a specific period
of time.

While all methods presented until now are based on
daytime scenes, Gallen et al. introduced in [7] an aproach
for nighttime scenes. They divide the problem in two ca-
tegories, scenes containing light sources like streetlights,
ahead or forthcoming vehicles and scenes without external
light sources. In the first category they investigate the light
propagation around light sources. If the corona of a light
source has a sharp transition to the surrounding they conclude
that there is no fog, otherwise that there is fog. The trans-
lation is thereby examined by a multistage threshold based
approach. Having a scene without external light sources they
analyze the propagation of light of the vehicle headlights. For
that purpose they recorded templates for their experimental
vehicle at different visibility condition in a fog chamber. So
each template also includes a specific visibility range value.
Their method now averages a specific number of images and
compares this average image with all templates. The template
with the smallest euclidean distance in pixel values finally
provides the visibility range.

In contrast to above mentioned approaches that rely on
localized image features related to lane markings, road
profiles etc. we introduce a classification scheme based on
global image features where the classifier is trained on fog
and fog-free images.

III. REMARKS ON THE DEFINITION OF FOG AND
VISIBILITY RANGE

According to the international definition in meteorology
fog is defined as a cloud touching the ground. If the result
is a visibility reduction of less than 1000m it is called fog,
otherwise mist [1]. The visibility range is thereby defined as
the longest distance, at witch a black object of adequate size
could be seen against the sky. For our application this defi-
nition of fog is unrewarding, because a driver is not affected
by fog until the visibility range decreases considerably more.
Hence a fog detection system for driver assistance should
also react on visibility ranges less than 1000m. To derive a
definition for fog in our application, we refer to the German
road traffic regulations (StVO). According to the StVO a road
user is only allowed to drive as fast as he is able to control
his vehicle. In particular he has to adjust his driving speed



Fig. 1. Illustration of the overall stopping distance subject to the vehicle
speed, resp. recommended maximum speed subject to current visibility
range.

on the current road, traffic, visibility and weather conditions.
Assuming a driver controls his vehicle when he is able to
bring it to a halt within the current visibility range, we could
derive a definition for fog by the relation between the current
vehicle speed and the resulting overall stopping distance. The
overall stopping distance d = dR + dS is defined as the sum
of the distance covering while reaction time dR = v · tR
and the stopping distance dS = v2

2a . Thereby v describes the
vehicle speed, tR the reaction time and a the deceleration.
Under the simplified assumption of a constant deceleration
during the braking action the vehicle speed could be written
as a function of the overall stopping distance

v (d) =
−tR +

√
t2R + 2d/a2

1/a2
. (1)

Assuming tR = 0.8s as mean reaction time and a =
7.716m/s2 as mean deceleration1 we get the current speed
as a function of the overall breaking distance as shown in
fig. 1. Thereby the overall breaking distance is plotted along
the ordinate and the vehicle speed along the abscissa.

That is how it becomes obvious that e.g. a vehicle speed
of 200 km/h leads to an overall breaking distance of a bit
less than 250m. On the other side, if substituting the overall
braking distance by the visibility range, we can see from
this figure, that at a visibility range of e.g. 100m one should
not drive faster than 120 km/h. So we derive following fog
categories:
• Visibility distance above 1000m: No Fog
• Visibility distance between 300 and 1000m: Low Fog
• Visibility distance between 100 and 300m: Fog
• Visibility distance below 100m: Dense Fog

Depending on the specific application different fog categories
are relevant. E.g. the fog categories Fog and Dense Fog are
relevant for the high beam assistant whereas for the Local
Hazard Warning it’s only Dense Fog.

1The values for the mean reaction time and the mean deceleration
originate from an example of the Bavarian police, taken from their web-
site http://www.polizei.bayern.de/verkehr/studien/index.html/31494 on 28th
October 2011.

IV. SPECTRAL FOG DETECTION

Studies in scene perception have shown that observers are
able to recognize real-world scenes at a single glance [19],
[21]. In an Rapid Serial Visual Presentation (e.g. RSVP with
100 ms exposure per image) they were able to detect an
image, just given a description like ”birthday party”. The
phenomena of understanding everything at once, regardless
of the visual complexity of the scene, refers to the gist of
a scene [20]. In image processing different approaches were
introduced to perform simple classification tasks based on the
gist of the scene by using global image features [8], [9], [16],
[22], [24], [25]. Furthermore Oliva and Torralba presented a
possibility to classify natural images in semantic classes [17],
[23]. It turns out, that the energy spectrum of an image, the
squared magnitude of the Fourier transform, is a good choice
for global features, because it doesn’t contain any spatial
information. Fig. 2 shows different scenes under foggy and
clear weather conditions as well as the corresponding power
spectra. In the case of a fog scene the frequency components
are concentrated at the zero frequency whereas in a fog
free scene one finds a broadly spread spectrum. The reason
for that is contrast attenuation and blurring in the image
caused by fog. While sharp edges are modeled by many
low and high frequencies, smooth edges consist of only
low frequencies. Now it’s a matter of working out these
differences in spectra by appropriate methods from image
processing. We first normalize the input image i (x, y) in a
prefiltering step. Afterwards we perform a feature extraction
that is based on the calculation of the power spectrum of the
image followed by two-stage feature reduction done in terms
of a Gabor filter bank sampling and Principal Components
Analysis (PCA). Finally we use a Support Vector Machine
(SVM) to perform the classification task. Fig. 3 summarizes
our single steps.

Preprocessing

Feature Extraction

Windowing

FFT

Gabor Sampling

Feature Reduction

Scaling

Classification

Training

Fig. 3. Summery of the single steps for fog detection.



Fig. 2. Images of fog and fog free scenes and the corresponding power spectra. The power spectra are displayed in logarithmic unit, with zero frequency
in the middle and higher frequencies at the border. The images presented above show clear differences in the spectra between similar scenes. While in fog
scenes the frequency components are concentrated at the origin, in fog free scenes they are broadly spread.

A. Preprocessing

To avoid that some image regions dominate the spectrum
and to reduce illumination effects we first perform a norma-
lization:

i′ (x, y) =
i (x, y) ∗ h (x, y)

ε+

√
[i (x, y) ∗ h (x, y)]

2 ∗ g (x, y)
. (2)

Thereby g (x, y) describes an isotropic low pass filter with a
radial cut off frequency at 0.015 lines/pixel and h (x, y) =
1− g (x, y). The numerator is a high pass filter that cancels
the mean intensity of the image. The denominator acts as
a local estimator of the variance of the output of the high
pass filter. ε is a constant that avoids noise enhancements in
homogeneous image regions, we therefore used the experi-
mental determined value ε = 10. For the normalization we
use a square image section and equalize the intensity values
to the range [0, 255].

B. Feature Extraction

For the classification we model the variation of fog and
fog free scenes in the power spectrum

Γ (fx, fy) = |I (fx, fy)|2 , (3)

which is defined by the square magnitude of the Fourier
transform for every frequency fx and fy of the image given
by

I (fx, fy) =

N−1∑
x=0

N−1∑
y=0

i′ (x, y) e−j2π(fxx+fyy) (4)

of the prefiltered, square image section of size N .
Before the Fourier transform we perform a windowing

with a two dimensional Hanning window to avoid broadband
signal components along the axis, which would result from
the implicit assumption of a periodically continued signal
[10]. Because of the symmetry in the power spectrum we
hence get total of N2/2 features. With regard to an accurate
classification we perform a two stage feature reduction by
sampling the spectrum and a subsequently Principal Com-
ponents Analysis.

The Gabor sampling is done by a filter bank of scaled and
oriented filters. The ith Gabor filter is defined as

Gi (fx, fy) = Ke
−2π2

(
σ2
x(f ′

x−fr)
2
+σ2

yf
′2
y

)
(5)

with f ′x = fx cos(Θ) + fy sin(Θ) and f ′y = −fx sin(Θ) +
fy cos(Θ). Thereby the filters are shifted to the position fr
and rotated by Θ so that they are positioned semicircular
around the zero frequency at different radii. We used a filter
bank with 10 frequency bands and a decreasing number of
orientations, from 24 in the outer to 4 in the inner band.
Other configurations, e.g. 5 frequency bands, each with 12
orientations, yield to similar results (see fig. 4).

(a) (b)
Fig. 4. Example for two configurations of Gabor filter banks. (a) 100
Gabor filters with 10 scales, each with 24, 16, 12, 12, 8, 8, 6, 6, 4 resp. 4
orientations. (b) 60 Gabor filters with 5 scales, each with 12 orientations.

The Gabor features are used for the subsequent PCA.
Therefore we determine the Gabor features

gi =
∑∑

Γ (fx, fy)Gi (fx, fy) , i = 1, 2 . . .K (6)

from M images, i.e. from our training data consisting of an
equivalent number of fog and fog free images, and collect
them in the Gabor feature vector g = {gi}Ki=1. The size of
this feature vector is equal to the number of Gabor filters K.
Afterwards we determine the mean Gabor feature vector

g =
1

M

M∑
m=1

gm (7)

and the covariance matrix

C =
1

M

M∑
m=1

φφφmφφφ
T
m =

1

M
AAT (8)

with φφφm = gm − g and A = [φφφ1 φφφ2 . . .φφφM ] and perform
the eigenvalue decomposition

V−1CV = D. (9)

Thereby the diagonal matrix D contains the eigenvalues and
V = [v1 v2 . . .vK ] the corresponding eigenvectors, the so
called principal components. The eigenvalues are sorted in



descending order. Now, for the feature reduction, we use the
first N, N < K eigenvectors and collect them in the matrix
W = [w1 w2 . . .wN ]. We therefore used the first N = 6
eigenvectors. Now the reduced feature vector is given by

ω̃ωω = WT (g − g) . (10)

Before using these features for the classification respec-
tively training task we perform a scaling of each feature to
the range of [−1, 1]. The scale coefficients are gathered in
the scale matrix S = diag {si}Li=1. From feature extraction
we finally get the global feature vector

ωωω = Sω̃ωω
= S

(
WT (g − g)

)
.

(11)

C. Classification

For classification we used a SVM with a Radial Basis
Function (RBF) kernel

K (ωωωi,ωωω) = e−γ|ωωωi−ωωω|2 . (12)

were ωωωi, i = 1, . . . ,M are the feature vectors from the
training set and ωωω is the feature vector of the image to
be classified. The regularization parameter C and γ were
determined by the training data.

V. EVALUATION

For the evaluation we used the front camera of the
current BMW 5 series (F10), mounted behind the rear mirror
parallel to the vehicles longitudinal axis and showing in the
driving direction. The camera system provides images with
a resolution of 320× 240 pixels at a rate of 60 fps2.

Based on this system we recorded images with daytime
fog situations on highways. Afterwards the single images
were labeled in the categories3 Excluded, No Fog, Low Fog,
Fog and Dense Fog, as defined in section III.

Fig. 5. Example images for labeling categories. Form left to right:
Excluded, No Fog, Low Fog, Fog and Dense Fog.

For the labeling we plotted in every image a horizontal line
at a distance of 100m and 300m. The pixel coordinates of
these lines were calculated by perspective projection from the
known camera setup and by assuming a flat world, i.e. that
the road is planar. The images are then manually labeled to
one of the categories according to the possibility to visually
recognize any contrast above predefined distances. In our
case we labeled the image as Dense Fog if no contrast could
not be observed above the 100 m distance. This was done
for all recorded images.

2The camera system performs a time multiplexing for different image
processing functions. A single function, like the lane detection, works at 15
fps.

3The categoriy Excluded contains images with overexposure or dazzle.

To determine the overall accuracy, the true positive4 and
the true negative5 rate of our method we used a 8-fold cross-
validation. The recorded data was split into eight equal sized
sample sets with the same number of fog and fog free images.
Each sample set consists of 5, 500 images, composed of
2, 750 fog and 2, 750 fog free images. As fog images we
used Dense Fog labeled images, as fog free images 500 Low
Fog and 2, 250 No Fog labeled images. By the composition of
the sample sets we payed attention to group similar highway
types. E.g. the German highway A8 is, in contrast to the A92,
hilly and has a distinct vegetation, which yields to a higher
image contrast at clear weather conditions. This means we
wanted also to see how the system behaves if we train it
e.g. with images of a highway type with basically higher
contrasts like the A8 and test it with images of a highway
type with low contrasts like the A92. Finally the classifier
was trained with one sample set and tested with each of the
remaining seven. This was repeated until each sample set
was used ones as training data. The overall accuracy, true
positive and true negative rate was determined by averaging
all results, these are 94%, 93% respectively 96%. The single
evaluation results are shown in table I.

VI. CONCLUSIONS AND FUTURE WORKS

We demonstrated how the presence of dense fog in images
of a daytime driving scene can be recognized by a vision
system. Instead of analyzing local features like lane markings
or the road region, we used global features in terms of the
power spectrum of the Fourier transform. The evaluation
results on the basis of 44, 000 images showed the potential
of our method. Fog free images were classified with 96 %
as fog free and fog images were callsified in 93 % as fog
images. In total we we achieved an overall accuracy of 94%.
Here is to be considered, that we only used No Fog, Low
Fog and Dense Fog labeled images and that the total data
set does not cover all road profiles. This is important for a
well parametrized classifier, but, as a future step, we have to
analyze the behavior for images from other categories too.
Furthermore another interesting question is if and how this
method would work on night-time scenes.
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