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Abstract This paper considers the problem of auto-

matically recovering temporally consistent animated 3D

models of arbitrary shapes in multi-camera setups. An

approach is presented that takes as input a sequence

of frame-wise reconstructed surfaces and iteratively de-

forms a reference surface such that it fits the input

observations. This approach addresses several issues in

this field that include: large frame-to-frame deforma-

tions, noise, missing data, outliers and shapes com-

posed of multiple components with arbitrary geome-

tries. The problem is cast as a geometric registration

with two major features. First, surface deformations are

modeled using mesh decomposition into elements called

patches. This strategy ensures robustness by enabling

flexible regularization priors through inter-patch rigid-

ity constraints. Second, registration is formulated as a

Bayesian estimation that alternates between probabilis-

tic datal-model association and deformation parameter

estimation. This accounts for uncertainties in the ac-

quisition process and allows for noise, outliers and miss-

ing geometries in the observed meshes. In the case of

marker-less 3D human motion capture, this framework
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can be specialized further with additional articulated

motion constraints. Extensive experiments on various

4D datasets show that complex scenes with multiple

objects of arbitrary nature can be processed in a ro-

bust way. They also demonstrate that the framework

can capture human motion and provides visually con-

vincing as well as quantitatively reliable human poses.

Keywords Multi-view ·Deformable Surface Tracking ·
Mesh Registration · Expectation-Maximization · 3D

Human Motion Tracking · Bayesian Network

1 Introduction

4D Modeling refers to the ability to produce animated

shape sequences using videos of real dynamic scenes.
This is, in particular, an alternative way to create realis-

tic animated 3D contents which appears to be a tedious

and expensive operation with graphical tools. Over the

last decade, multi-view techniques have emerged as an

effective solution to this aim. Multi-camera systems are

inexpensive to deploy and allow an non-intrusive cap-

ture of 3D performances. Considerable efforts have been

devoted to devise algorithms that automatically per-

form 3D reconstructions from the acquired visual data

(see [40] for a survey). Yet when applied to temporal se-

quences of moving objects, most of these methods pro-

vide temporally topology-inconsistent models by treat-

ing each frame independently, ignoring the dynamic na-

ture of the observed event.

A more complete 4D modeling of observed scenes is

hence of crucial importance. Producing temporally con-

sistent reconstructions enables artists to perform geom-

etry or appearance edits on the content that automat-

ically propagate through time. Animated meshes are

also of interest for the purpose of compression, storage,
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transmission and real-time rendering. Temporal infor-

mation can be leveraged to discover latent object prop-

erties and to enrich a semantic description of the scene.

Recovering the temporal evolution of shapes from

visual data remains challenging, due to perturbations in

the acquisition process such as missing data or outlying

geometries. In the case of arbitrary deformable surfaces,

it becomes even more difficult since there is no easy

way to identify erroneous correspondences. Remedies

are in general two: a sophisticated data-model associ-

ation (likelihood) or a constraining deformation model

(prior). Most existing methods adopt the latter to limit

the search space, e.g., skeletons in 3D human pose es-

timation [19, 52]. Some methods also leverage previ-

ously observed deformed surfaces by machine learning

or modal analysis techniques, to effectively reduce the

dimensionality of the optimization. These works lack

generality and quickly lose precision when observations

leave the explainable range of the model. Furthermore,

they offer limited perspectives for the case of complex

scenes involving multiple objects of unknown nature.

Some approaches, on the other hand, choose to make

fewer assumptions and simply compute the deforma-

tion of a reference mesh [12], which is more of our in-

terest. It then boils down to an optimization problem

over vertex positions, with prior knowledge regularizing

vertex displacements. The generality, however, comes

at the cost of an increased sensitivity to noise, and it

becomes necessary to either strictly control the acquisi-

tion pipeline, or to look into the associated error model.

A noise-resilient data-model association is therefore in-

dispensable.

We present a generic surface-based approach that

deforms a reference mesh according to the 3D obser-

vations, essentially casting the mesh deformation prob-

lem as a geometric registration problem. Our method

builds on three complementary contributions [8, 9, 22].

The first contribution [8] consists of a mesh deforma-

tion and a numerical optimization framework that di-

vides a surface into numerous patches. These patches

are used to locally smooth data terms and to enforce

inter-patch rigid constraints w.r.t. its rest state. Sec-

ondly, we formulate the registration problem in a prob-

abilistic way, in order to account for the noise in the

acquisition [9]. This increases the robustness and there-

fore relaxes the need for object-specific deformation pri-

ors such as skeletons, allowing for more complex scene

modeling.

Nevertheless, recovering skeletal poses is still de-

sired in many applications that requires human articu-

lated motion information. As the last contribution, we

propose to infer such information from surface defor-

mations. This comes as a side product of our defor-

mation framework and fits naturally to the aforemen-

tioned probabilistic formulation. Together, they form a

simultaneous optimization framework, which can also

be interpreted from a Bayesian network perspective.

Unlike [48], who use this idea only in refinement, we

directly use it for tracking [22]. To the best of our

knowledge, in the context of 3D human tracking, this is

the first work which recovers both human shapes and

poses with a single optimization. In extension to the

work in [22], this paper provides additional analysis on

the simultaneous optimization strategy and presents an

improved solution for the pose estimation from surface

shapes.

The remainder of this paper is organized as follows:

Sect. 2 contains an overview of the related work and dis-

cussions of our contributions. Our method is described

in Sect. 3 (surface) and Sect. 4 (skeleton). In Sect. 5, we

establish the probabilistic formulations. Thorough eval-

uations are presented in Sect. 6. Discussions are then

provided in Sect. 7, followed by concluding remarks in

Sect. 8.

2 Previous Work

Estimating motions from discrete observations is by na-

ture ambiguous and amounts to solving the data-model

correspondence problem. Motion cues have to be bal-

anced with priors encoding the deformation range. We

briefly review previous work around these two themes:

first the commonly-used motion cues in visual data and

then the existing paradigms of deformation models.

Motion cues in visual data. Several works extract sparse

feature correspondences from images to infer the mo-

tion. Popular photometric keypoint descriptors such as

SIFT [31] or SURF [3] can be complemented by edge

features, geodesic-intensity histograms [45] or the ex-

trema of the geodesic integral [51]. This sparse infor-

mation is then propagated to the rest of the mesh using

intersections of level sets of harmonic functions [1], or

using sparse matches as handles in a mesh deformation

framework [12]. However, these feature matches contain

many outliers. Popa et al [36] recommend an aggressive

filtering that checks the consistency of the forward and

backward optical flow and of the 3D point correspon-

dences. De Aguiar et al [12] find a maximally consistent

(Euclidean distance preserving) subset of handles in the

graph of correspondences via robust spectral matching.

Starck and Hilton [45] cast the feature matching as a

discrete labeling task, making use of Markov Random

Field technique to regularize the results.

In the case of multi-camera systems, however, it

is tempting to avoid such sophisticated processing on
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sparse features, because deformation priors combined

with geometric cues like silhouettes are usually suffi-

cient to obtain a good approximated deformation. Some

works drive the deformation from visual hulls exclu-

sively: Vlasic et al [52] define an non-linear fitting func-

tion and optimize a skeletal pose while Corazza et al

[11] use a articulated variant of the Iterative-Closest-

Point (ICP) algorithm. For more generality, however,

the surface tracking task can be cast as a non-rigid

registration of point sets. Li et al [28] show that in

the case of range scans, it can be driven from purely

geometric information. To increase their robustness, a

number of works model the uncertainty of point clouds.

Many works suggest that Expectation-Maximization is

an effective approach: Horaud et al [21] investigate its

use for the registration of rigid and articulated point

sets, while the Coherent Point Drift algorithm by My-

ronenko and Song [33] treats arbitrary deformations by

regularizing the displacement field.

Deformation models. A number of approaches explic-

itly define acceptable intrinsic deformation space by

manually creating a parametric model. For instance,

in the case of human motion capture, Vlasic et al [52]

or Gall et al [18] optimize the pose of skeletal mod-

els before fitting the surface to visual data. Similarly,

for faces, parameterized models of human expressions

can be used for tracking [27, 37]. Instead of manually

defining it, other works seek to learn the possible de-

formations from the data beforehand and to regularize

the results accordingly. This is usually achieved by ex-

ploiting previous observed deformations of the object

via dimension reduction [15, 50] or machine learning

techniques [20]. Salzmann et al [39] recover the 3D de-

formation of a piece of cloth using Principal Component

Analysis on a randomly generated set of possible con-

figurations. Chai et al [10] drive facial animations by

tracking a low number of facial features and mapping

them back to a linear combination of previously ac-

quired laser scanned faces. All these methods dramati-

cally increase the robustness by using severe constraints

on the deformations. Yet, they are difficult to extend

to more complex scenes, as they are often tailored for

a specific object of interest and do not generalize well.

More generic methods use physics-inspired models

to ensure as rigid as possible deformations, building

on the knowledge in Computer Graphics for simulation

and interactive modeling (see [34] for a survey). This

is usually done by emulating elastic behavior and dis-

couraging stretching and bending w.r.t. the rest state.

A survey by Botsch and Sorkine [5] discusses how this

can be approximated by penalizing changes in differ-

ential properties. A well-known example, Laplacian co-

ordinate [44], is define as the edge displacement vec-

tor, and the regularization is exerted by preventing it

from changes after local rotations. Recently, a num-

ber of Computer Vision works, e.g., [17, 29], have used

this strategy to preserve local details during tracking.

As demonstrated in [43], the Laplacian framework be-

haves well for its original purpose, that is, interpola-

tion with manually set constraints. However, its use as

in regularization terms in Vision applications requires

more attention, since they usually involve large motions

in noisy environments. In fact, as noted in the work

by White et al [53], these methods do little to penalize

strain and can cause many artifacts around the borders

of open meshes. As a consequence, [18, 52] only use it

to preserve small details when large motions have been

already recovered. De Aguiar et al [12] use a tetrahe-

dral variation of this principle, but the coarse-to-fine

strategy remains.

Such a coarse-to-fine concept suggests the need to

decouple the deformation parametrization from the in-

trinsic nature of the original geometry. This has obvi-

ous advantages in terms of computational complexity,

and is therefore used for interactive editing [7, 49] as it

allows to explicitly optimize local rotations and to em-

brace the ‘inherently non-linear’ [5] nature of the sur-

face deformation. However, in the case of data-driven

mesh deformation, this need mostly stems from the im-

perfection of noisy visual data. As such, several works

increase the robustness by embedding the deformed ge-

ometry in a coarser control structure, benefiting from

the averaging effects on data terms [28]. It should be

noted that this decoupling from the intrinsic nature

does not necessarily result in a loss of precision, since

deformations of objects usually lies in low dimensional

spaces, as indicated by the success of skeletal or dimen-

sion reduction techniques.

In this work, we recover the temporal evolution of

a surface by fitting a reference mesh (usually the first

topologically suitable reconstruction) to a sequence of

independently reconstructed meshes. We do not assume

object-specific deformation priors and yet still remain

robust to noise and errors from the input. Our contri-

butions in that aspect are two-fold: firstly we propose a

coarse control structure made of surface patches where

data terms are sampled and averaged [8]. Secondly,

based on this structure, we propose a Bayesian formula-

tion of the mesh registration problem [9]. It offers dense

and soft patch-data correspondences and increases the

robustness by explicitly modeling outliers. The registra-

tion process behaves like a probabilistic ICP algorithm.

Besides surface tracking, we additionally develop two

ways to estimate human articulated motion, inspired

respectively by beta coordinate [48] (which shares a sim-
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Fig. 1 Pk and Pl have their own rigid transform and predict
positions for their own vertices (solid curves) and the vertices

of the neighboring patches (dotted curves). The rigidity energy
penalizes the discrepancies in these predictions (dotted lines).

ilar spirit with Laplacian coordinate), and by linear

blend skinning [26]. Both approaches integrate easily

into our registration framework and hence benefit from

its robustness. The second way is further shown to yield

more valid poses than the first way from our previous

work [22]. To sum up, the presented method is a generic

surface-based tracking framework that can track arbi-

trary object shapes robustly but also specializes to ar-

ticulated human motion.

3 Patch-based Mesh Deformation Framework

As discussed in Sect. 2, the deformation of dense meshes

can often be characterized by a set of low dimensional

parameters, instead of raw vertex positions. A number

of works, targeted at the compression of mesh anima-

tions [13, 24], show that a small set of rigid transfor-

mations and weighting functions can encode visually

complex deformations, including those of cloth. In this

section, we present our mesh deformation framework

based on small surface elements called patches, each of

which has a rigid body motion. The final vertex po-

sitions are computed by blending the transformations

over different patches locally, in a way similar to linear

blend skinning [26]. Patches and blending weights are

computed on the template prior to the tracking process.

3.1 Patches

A rigid transformation w.r.t. the world coordinates is

associated with each patch Pk. It is parameterized by

the position of the patch center ck and a rotation matrix

Rk (or equivalently by a unit-length quaternion qk).

This rigid transform yields for every vertex of the mesh

a predicted position xk (dotted lines in Fig. 1):

xk = Rk(x0 − c0k) + ck, (1)

where the superscript 0 denotes the corresponding vari-

able in the reference pose.

The mesh is deformed by linearly blending the pre-

dictions made by different neighboring patches for each

vertex. The weighting functions αk are Gaussians of the

Euclidean distance to the center of the patch ck. As for

the support for blending, we consider only the patch Pk
itself and its direct neighbors, i.e., k ∪Nk:

x =
∑

s∈k∪Nk

αsxs. (2)

Blending weights αs are normalized to add up to 1.

Defining the shape parameter Θ as {(Rk, ck)}k=1:Np ,

where Np is the total number of patches, the deforma-

tion of a mesh is a function of Θ, namely, x(Θ).

Ideally, patches on the surface should follow the in-

trinsic nature of the shape, e.g. its rigid parts. How-

ever, in the absence of prior knowledge on this struc-

ture, they are preferably regularly distributed over the

surface. To this purpose, our patching method consid-

ers geodesic distances, takes a maximum patch radius

as parameter and seeds patches greedily. The idea is

to randomly choose a vertex to be the center of the

first patch and then to grow this patch until the max-

imum radius is reached. The subsequent patch centers

are chosen among the unassigned vertices which lie on

the most existing patch boundaries. The front of a new

patch is propagated from the center until the maximum

radius is reached or until the processed vertex is closer

to the center of another patch. We assume that ver-

tices distribute uniformly on the mesh and therefore

we approximate the geodesic distance with the num-

ber of edges in the shortest path linking two vertices.

The behavior of this greedy patch seeding algorithm are

shown in Fig. 2.

3.2 Rigidity constraints

Given this patch-based control structure, we define an

energy that penalizes non-rigid surface deformations

w.r.t. its original status. This is inspired by the theory

of elasticity in which deformable objects are defined

by their material properties and a rest configuration.

Many works simulate this behavior by constraining the

displacement field [17, 29, 44, 43]. They operate on

raw vertex positions and discourage the displacement

fields from changing after local transformations, which

are either expressed as a linear function of vertex posi-

tions [17, 29, 44], or iteratively estimated [43]. On the

other hand, Botsch et al [7] and Sumner et al [49] opti-

mize local transformations rather than vertex positions,

and define elastic constraints between the transformed
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Fig. 2 Greedy patching procedure evolution on the Stanford Armadillo model ( 170k vertices ) with a maximum patch radius of 40.
From left to right: patching after 1, 3, 4, 30, 143 patches have been seeded.

vertices themselves. Although this is not as physically

accurate as the proper computation of the strain energy,

we pursue this path because it naturally integrates to

our patch-based representation. Our rigidity energy, as

defined in Eq. (3) and shown in Fig. 1, simply enforces

the predictions xk(v) and xl(v) of a vertex v by two

neighboring patches, k and l ∈ Nk, to be consistent:

Er(Θ) =

Np∑
k=1

∑
l∈Nk

∑
v∈Pk∪Pl

wkl(v) ‖xk(v)− xl(v)‖2 . (3)

The choice of the weights wkl(v) is of importance as

it allows to encode material properties. In all of our

experiments, they are proportional to the sum of the

blending weights: αk(v) +αl(v) and is normalized such

that all the wkl(v) depending on the same vertex v sum

up to 1, simulating therefore uniform stiffness.

3.3 Optimization

Evolving a mesh can then be viewed as an optimization

problem balancing the rigidity energy Er (with a weight

λr) and data terms which are squared functions f2:

argmin
Θ

λrEr(Θ) +
∑

f2 (x(Θ)) , (4)

where f2 can be manually specified constraints (Sect. 3.5),

or more sophisticated probabilistic likelihoods (Sect. 5.3).

Eq. 4 is a non-linear least-squares problem, since Θ in-

volves rotations. We employ an iterative Gauss-Newton

method to find the minimizer. Instead of directly us-

ing elements in the rotation matrix as parameters with

additional soft constrains for matrix-orthogonality, as

in [49], we optimize the energy function w.r.t. small

affine updates, θk = [uk,vk] ∈ R6. Specifically, the up-

date in rotation, R̂k, is approximated by the first-order

expansion of the exponential mapping of [uk]×, namely,

I + [uk]×, and vk is the displacement of ck. As shown

in Eq. 5, this formulation allows to write the update of

coordinates xk linearly in θk, and thus of x linearly in

{θk}k=1:Np
.

xk 7→x′k = R̂k(xk − ck) + c′k

= xk + [uk]×(xk − ck) + vk = xk + Kk(xk) θk,

with Kk(xk) =
[
[ck − xk]× I

]
. (5)

The first order approximation of Eq. 3 then yields

a simple quadratic form in the update parameters.

Er(Θ) '
Np∑
k=1

∑
l∈Nk

∑
v∈Pk∪Pl

wkl ‖ (xk + Kk(xk) θk)

− (xl + Kl(xl) θl) ‖2. (6)

Knowing that Kk(xk) is actually the Jacobian of xk
w.r.t. θk, the gradient of Eq. 6 w.r.t. θk can be ex-

pressed using the chain rule:[
∂Er
∂θk

]
=

[
∂Er
∂xk

][
∂xk
∂θk

]
=

[
∂Er
∂xk

]
Kk(xk). (7)

These first order approximations can be used to

compute the gradient and the minimum of the quadratic

approximation of the energy in the tangent space but

the actual energy must be evaluated on the updated

Θ. To recover the Rk’s we actually perform the update

of rotations in quaternion representation and normal-

ize the result to limit the accumulation of numerical

error. The cost function from Eq. 4 is in practice mini-

mized by performing a line search in tangent space and

making sure that the corresponding step taken on the

parameter manifold actually decreases the energy.

3.4 Numerical Considerations

In the Gauss-Newton algorithm, the Hessian matrix is

approximated by G>G where G is the Jacobian matrix.

In our case, G>G is a 6Np × 6Np sparse matrix, with

only a few 6×6 non-zero blocks. This structure is fixed

and reflect the connectivity in the graph of patches. It is

good to look for a fill-reducing indexing of patches [25].
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(a) Object in its rest pose (b) Deformed object

Fig. 3 Behavior of the patch deformation framework in an in-
teractive application. The target positions for the constrained

vertices of the original mesh are indicated by red boxes.

Since Eq. 7 offers an analytic formulation, it is more

practical to compute directly the matrix, rather than

computing first G and then G>G. This computation

can be mostly parallelized thanks to the sparse blocky

structure. For example, the off-diagonal 6 × 6 blocks

come from the rigidity terms of Eq. 6 and require for

block (k, l) to accumulate gradient terms over Pk ∪ Pl.
These operations can be distributed on multiple pro-

cessors as they access different parts of the memory.

Finding a minimizer of the quadratic approximation

at each step of the Gauss-Newton algorithm can then

be tackled by any available sparse solver, either direct

or iterative, as discussed in [6]. In our experiments, we

have at most 400 patches and thus reasonably small ma-

trices. We therefore use a sparse Cholesky factorization

package [38] that pre-computes the symbolic part of

the factorization for efficiency. We also confirmed that

a simple Conjugate Gradient algorithm with a diagonal

preconditioner is a functional alternative that requires

much less involved implementation effort.

3.5 Example: Interactive Deformation

To evaluate the behavior of this patch-based mesh de-

formation framework, we implemented a simple inter-

active application where 3D constraints on the vertices

positions could manually be set by the user. The results

displayed in Fig. 3 illustrate two important facts on the

method. Firstly, even though the number of patches is

low, the resulting deformation of the mesh is reasonably

smooth. Secondly, the constraints are set on vertices of

the mesh and not on patch centers. This shows that the

data terms can be sampled on the original geometry and

not on the graph controlling the deformation.

4 Skeleton

As demonstrated above, our patch-based deformation

framework evolves a surface with a low dimensional

set of parameters. It is not limited to humanoid sur-

faces, holding the possibility to handle complex scenes.

Nonetheless, in the context of human motion tracking,

many authors use an intrinsic data structure to guide

the deformation in an even lower dimensional space

[19, 52], followed by a shape refinement stage. This

structure often resembles the skeleton of human bodies,

and each node actually corresponds to one human body

joint. Due to this anatomical meanings, an articulated

skeletal structure is usually preferred than the 3D sur-

face shape in many applications. Thus, in this section,

we extend our framework so that it retains the gener-

ality of surface-based methods, while providing skeletal

poses as side products.

4.1 Initialization and Pose Parametrization

Our skeleton is a hierarchical tree structure consisting

of Nj nodes (joints). It has to be placed properly inside

the mesh such that the root is close to the pelvis of the

body, and each vertex v is assigned to a branch-node

joint, as in Fig. 4(a). This rigging process and vertex-

joint associations are automatically accomplished off-

line once on the reference surface, using the software

Pinocchio [2] prior to the tracking process.

After rigging, many authors attach a local coordi-

nate frame on each joint and parameterize the pose as

the rigid transformations of these coordinates [11, 19,

52]. Meshes are thereby controlled by these transforma-

tions based on blend skinning techniques. However, sur-

face deformation is by nature high dimensional and dif-

ficult to be fully characterized by only few rigid trans-

formations. For humanoid surfaces, typically Np ≈ 150

yields plausible surface shapes, while Nj is usually less

than 20. We therefore advocate for the reverse strat-

egy: guiding the skeleton by the surface deformation,

i.e., inverse skinning. Formally, the pose is represented

as a set of positions for each joint j: J = {xj}j=1:Nj

and is parameterized as a function of shapes, J (Θ).

As illustrated in Fig. 4(b), patch transformations can

be regarded as intermediate controlling primitives that

lie in between complex vertex positions and overly sim-

plified skeletons. Both high dimensional surface shapes

and low dimensional skeletal poses are controlled by

the transformations of patches. To this end, we asso-

ciate each patch Pk to a joint j(k) by a taking majority

vote on vertex-joint assignments. Given the patch-joint

associations, there are two ways to devise J (Θ): either

through bones, or directly through joints.
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patches 

skeletons 

vertex positions 

(a) rigged ref. surface (b) controlling structure 

Fig. 4 (a) vertices associated to the same joint have the same

color. (b) the control structure of our deformation framework.

4.2 Inverse Skinning through Bones

On the reference mesh, we compute the beta-coordinate

proposed by Straka et al [48] in a per-patch manner.

It represents the displacement between the bone and

the patch center: β0
k = δ0k − c0k, where δ0k is the linear

combination of the positions of joint j(k) and its child:

δ0k = γkx
0
j + (1− γk)x0

child(j). (8)

γ is chosen such that β is orthogonal to the bone, as

shown in Fig. 5(a). We drop the dependency notation

(k) in order to keep equations uncluttered.

By preventing β from varying after deformation, we

encourage bones to follow their corresponding patches.

More specifically, if a patch undergoes a rigid transfor-

mation Tk during tracking, it predicts the new δk as

Tk(δ0k) = ck + Rkβ
0
k. Substituting into Eq. 8, one can

formulate the new position of a bone as:

γkxj + (1− γk)xchild(j) = ck + Rkβ
0
k. (9)

Here γ stays fixed to prevent bones from sliding along

the surface. Eq. 9 shows the linear relation between

the transformation of a patch and the location of its

associated joint. Since there are two unknown variables,

xj and xchild(j), we need at least two equations (i.e., two

patches) to determine the new position of one bone. In

practice, we stack this linear relation for every patch

and form a linear system:


...

...

. . . γkI . . . (1− γk)I . . .
...

...


︸ ︷︷ ︸

B



...

xj
...

xchild(j)

...


︸ ︷︷ ︸

J

=


...

ck + Rkβ
0
k

...


︸ ︷︷ ︸

∆

,

(10)

ck 

cl 

𝛽k 

𝛽l 

j

child( )j

k
l

(a) bone-based

child( )j

j

ck 

(b) joint-based

Fig. 5 Two inverse skinning strategies. In (b), the bone is shown

in dashed line because there is no explicit concept of bone.

where B is a 3Np × 3Nj matrix, J is a 3Nj × 1 vector

containing the positions of all joints, and ∆ is 3Np × 1

vector containing all Tk(δ0k). In general, Np is larger

than Nj , so Eq. 10 is an over-determined system whose

optimal solution can be obtained via pseudoinverse:

J = (B>B)−1B>∆. (11)

Eq. 11 demonstrates that the pose of the subject can

be parameterized as the function of the shape param-

eter (encoded in ∆), namely, J (Θ). Thus, each time

a when humanoid surface is deformed, the pose of the

skeleton can be computed via Eq. 11 accordingly. Since

pseudo-inverse solves a linear system in the least-square

sense, one can also formulate an equivalent energy term:

Ebone(Θ,J ) =

Np∑
k=1

κk
∥∥Tk(δ0k)− δ′k

∥∥2 , (12)

where δ′k = γkxj + (1− γk)xchild(j). It simply enforces

the right-hand and the left-hand side of Eq. 9 to be con-

sistent. This way we can also weight the contribution

of each patch differently with κk.

4.3 Inverse Skinning through Joints

An alternative way to guide the skeleton is more straight-

forward: predicting the positions of joints by every asso-

ciated patch, as illustrated in Fig. 5(b). When a patch k

moves to a new position ck with rotation Rk, it assumes

the associated joint moves together:

xk(j) = Rk(x0
j − c0k) + ck. (13)

The position of each joint is then recovered by linearly

blending the predictions from different patches:

xj =
∑
k

τkxk(j), (14)

where the weights τk are determined similarly as α in

Eq. 2. This approach fits naturally into the patch-based

deformation framework, and it requires at least only one

patch to predict two joint positions.
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It is informative to combine Eqs. 13 and 14 together

in one formulation, as it emphasizes the difference of our

approach from the others:

xj =
∑
k

τkTk(T0
k)−1x0

j . (15)

Here (T0
k)−1 means (x0

j − c0k) in Eq. 13, and Tk means

rotating with Rk and moving to the new center ck.

Eq. 15 mirrors the linear-blend skinning formulation:

xv =
∑
j

wjTj(T
0
j )
−1x0

v, (16)

where one first represents the vertices in local bone

coordinate frames, applies new transformations, and

blend the predictions from relevant joints. We clearly

see that Eqs. 15 and 16 share the same mathematical

computations, only the opposite operands. We argue

that inferring skeletons from surfaces because it is a

logical way to determine low dimensional representa-

tions (skeletal poses) from high dimensional deforma-

tions (surface shapes), instead of doing the other way

around with unrealistic rigid-body-part assumptions.

Eq. 14 provides the second way to parameterize the

pose J as a linear function of the shape parameter Θ,

encoded in xk(j). LetNj denotes the patches connected

to joint j or the parent of j. Similar to the first ap-

proach, we also formulate an equivalent energy term:

Ejoint(Θ,J ) =

Nj∑
j=1

∑
k∈Nj

τjk ‖xj − xk(j)‖2 . (17)

4.4 Optimization

Given the two different ways to obtain the pose J from

the shape Θ (Eqs. 11 and 14), one can, during tracking,

first get the optimal Θ via Eq. 4 and then compute

the pose J as a post-processing step. The alternative,

as suggested by Straka et al [48], is to simultaneously

estimate the two, with Eq. 4 is augmented into:

argmin
Θ,J

λrEr(Θ) +λsEskl(Θ,J ) +
∑

f2 (x(Θ)) . (18)

Eskl is either Ebone or Ejoint, and λs is the balancing

weight. This is again a non-linear least-squares prob-

lem. The quadratic approximation in Sect.. 3.4 applies

here as well to both Ebone or Ejoint, so the numeri-

cal considerations basically remain unchanged; only the

approximated Hessian matrix G>G becomes a (6Np +

3Nj) × (6Np + 3Nj) matrix. Although solving Eq. 18

recovers poses and shapes at once, we anyway stress

that, due to the difference in the numeric scales, poses

J behave like side products of shapes Θ. As discussed

later in Sect. 7.2, it has negligible effects on shape de-

formations. In the next section we explain more on our

data term and the optimization framework.

5 Simultaneous Shape and Pose Tracking

As discussed in Sects. 1 and 2, we deal with data-driven

mesh deformation and cast the problem as a geometric

registration of 3D point sets. The data term in Eq. 18

has to be designed carefully. In this section, we first con-

sider our problem from a Bayesian network prospect,

which leads us to a data term in the spirit of Gaus-

sian Mixture Model (GMM), and then we explain our

optimization framework which corresponds to the well-

known Expectation-Maximization algorithm.

We aim at estimating the shape Θ of the surface and

the pose J of the skeleton simultaneously. In a Bayesian

context, this means that given a set of observed 3D

points, the estimation of shape and pose is achieved by

maximizing the a posteriori (MAP) probability:

max
Θ,J

P (Θ,J |Y), (19)

where Y = {yi}i=1:m is the set of 6D vectors containing

the observed 3D coordinates {yi}i=1:m and normals.

Considering P (Y) as a constant, maximizing Eq. 19 is

equivalent to maximize the joint distribution, which can

be decomposed as follows:

max
Θ,J

P (Y,Θ,J ) = P (Y|Θ,J ) · P (J ,Θ). (20)

5.1 Bayesian Network Model

We employ two assumptions which further simplify Eq. 20:

1. surface-based approach:

P (J ,Θ) = P (J |Θ) · P (Θ). (21)

2. conditional independence between J and Y:

P (Y|Θ,J ) = P (Y|Θ). (22)

The first assumption comes from the fact that we

rely on the shape parameter Θ to determine the pose

parameter J , as described in Sect. 4. P (J ,Θ) is thus

factorized as in Eq. 21, not P (Θ|J )·P (J ). Here, P (J |Θ)

represents the probability of the skeleton pose given

the shape, and P (Θ) is the prior knowledge on possible

shape deformations. Secondly, we assume that J is con-

ditionally independent of Y given Θ, i.e., Y ⊥⊥ J |Θ. It

is a reasonable assumption, since from the input data

perspective, one usually observes only the surface of hu-

man bodies (shape) rather than the anatomical struc-

ture (skeleton). It makes sense that when conditioning
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shape pose 

pose shape 

observations observations 

(a) ours (surface-based)

shape pose 

shape pose 

observations observations 

(b) skeleton-driven

Fig. 6 Directed graphical models of two strategies.

on the shape, the observations and the skeleton can no

longer influence each other. Eq. 22 holds as the property

of conditional independence [4], and P (Y|Θ) is con-

sidered as the likelihood between observations and the

shape.

Based on Eqs. 21 and 22, the joint distribution is:

P (Y,Θ,J ) = P (Y|Θ) · P (J |Θ) · P (Θ). (23)

Alternatively, one can decompose the joint distribution

as follows:

P (Y,Θ,J ) = P (Y,J |Θ) · P (Θ), (24)

and see directly that the conditional independence be-

tween J and Y lead us to Eq. 23 by definition. Note

that Eq. 23 is actually a Bayesian network model, whose

directed graph is illustrated in Fig. 6(a). The figure also

shows, in (b), the dependence graph corresponding to

skeleton-based motion parameterizations. Next we pro-

ceed with each term in Eq. 23.

5.2 Shape Prior and Pose Posteriors

In the absence of knowledge on the nature of the shape,

we model a probability distribution over the range of

shape deformations by seeding patches on a reference

surface and making the approximation:

P (Θ) ∝ e−λrEr(Θ), (25)

where Er(Θ) is the rigidity energy defined in Eq. 3.

This energy emulates elastic behavior with respect to

the patched reference mesh. Because our patching ap-

proach infers the topology of the object from the vertex

connectivity, this reference mesh has to be topologically

suitable. See Sect. 7 for more discussion on this aspect.

The pose posteriors measure the probability of a

pose given a certain shape, approximated as:

P (J |Θ) ∝ e−λsEskl(Θ,J ), (26)

where Eskl(Θ,J ) is the skeleton energy in Eq. 18. This

approximation assumes that the connectivity between

Fig. 7 A point/normal yi with position yi is associated to vki ,

the closest vertex with a compatible normal among all the pre-
dictions for the patch Pk. In this case vki is selected because of

its position and normal predicted by the neighboring patch Pl.

the skeleton and the surface is stable, or say, the patch-

joint association j(k) does not change during tracking,

which usually holds for human subjects.

5.3 Likelihood

The likelihood P (Y|Θ) actually corresponds to the data

term in Eq. 18 and remains to be approximated to com-

plete the generative model. This is done with a mixture

of distributions parameterized by a isotropic variance

σ2, where each component corresponds to a patch. This

requires latent variables zi for each observation yi ∈ Y,

where zi = k means that yi was generated by the mix-

ture component associated with Pk. Similar to [33], we

also increase the robustness to outliers by introducing

a uniform component in the mixture to handle points

in the input data that could not be explained by the

patches. This uniform component is supported on the

scene’s bounding box and is indexed by Np + 1.

P (yi|Θ, σ) =

Np+1∑
k=1

ΠkP (yi|zi = k,Θ, σ), (27)

where the Πk = p(zi = k|Θ, σ) represent probabilities

on the latent variables marginalized over all possible

values of yi. In other words, they are prior probabili-

ties on model-data assignments. We define them as con-

stants p(zi = k) that add up to 1, using the expected

proportion of outlier surface in the observations and the

ratios of patch surfaces in the reference mesh.

The patch mixture component with index k must

encode a distance between the position yi and the patch

Pk while accounting for the alignment of normals. For
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computational cost reasons, we model this distance by

looking for each patch Pk in its different predicted poses

(i.e., the positions {xl(v)}l∈{k}∪Nk,v∈Pk
and correspond-

ing normals as in Fig. 7) for the closest vertex vki with

a compatible normal. Two points are considered com-

patible when the normals form an angle smaller than

a threshold, set to 45◦ in all of our experiments. This

leads to the model for each component of the GMM:

∀k ∈ [1, Np],

P (yi|zi = k,Θ, σ) ∝

{
N (yi|x(vki ), σ2) if vki exists

ε otherwise,

(28)

where ε encodes a negligible uniform distribution de-

fined on the scene’s bounding box, and N (·) denotes

Gaussian density.

5.4 Expectation-Maximization

The variables zi can not be observed, but we can use

the posterior distributions of Eq. 29 in the Expectation

Maximization algorithm [14].

P (zi = k|yi,Θ, σ) =
ΠkP (yi|zi = k,Θ, σ)∑Np+1
l=1 ΠlP (yi|zi = l,Θ, σ)

. (29)

The idea is to replace P (Y|Θ, σ) with the marginaliza-

tion over the hidden variables of the joint probability.

lnP (Y|Θ, σ) = ln
∑
Z

q(Z)
P (Y, Z|Θ, σ)

q(Z)
, (30)

where q(Z) is a positive real valued function that sums

up to 1. The concavity of the log function allows to

write a bound on the function of interest:

− lnP (Y|Θ, σ) ≤ −
∑
Z

q(Z) ln
P (Y, Z|Θ, σ)

q(Z)
. (31)

It can be shown that given a current estimate (Θt, σt),

it is optimal to choose q(Z) = P (Z|Y,Θt, σt) because

the bounding function then touches the bounded func-

tion at (Θt, σt). This means that the bounding function

should be the expected complete-data log-likelihood con-

ditioned by the observed data:

− lnP (Y|Θ, σ) ≤ const−EZ [lnP (Y, Z|Θ, σ)|Y,Θt, σt].

(32)

Fig. 8 The soft assignment matrix holds the posterior patch-

assignment distributions for every target point. As such, the lines
are normalized to add up to 1. The last column of the matrix

corresponds to the outlier class.

We rewrite P (Y, Z|Θ, σ) by making the assumption

that each observation yi is drawn from Y in an inde-

pendent identically distributed way:

P (Y, Z|Θ, σ) =

m∏
i=1

P (yi, zi|Θ, σ) (33)

=

Np+1∏
k=1

m∏
i=1

[
P (yi, zi = k|Θ, σ)

]δk(zi).
(34)

The choice made for q(z) then allows to write:

EZ [lnP (Y, Z|Θ, σ)|Y,Θt, σt] =

Np+1∑
k=1

m∑
i=1

EZ [δk(zi)|Y,Θt, σt] ln[Πkp(yi|zi = k,Θ, σ)], (35)

which leads to the bounding function to be minimized:

− lnP (Y|Θ, σ) ≤ const

−
Np+1∑
k=1

m∑
i=1

P (zi = k|yi,Θt, σt) lnP (yi|zi = k,Θ, σ).

(36)

We use the Expectation-Maximization algorithm to it-

eratively re-evaluate the (Θ, σ) and the posterior prob-

ability distributions on the latent variables {zi}.

In the E - Step the posterior P (zi|yi,Θt, σt) functions

are evaluated using the current estimation Θt, σt and

the corresponding predicted local deformations of the

mesh. As defined in Eq. 29, these functions require to

find for each target vertex yi and patch k the vertex

index vki of its nearest neighbor in the different pre-

dicted configurations of the patch. The complete E-

Step amounts to the computation of a m × (Np + 1)

matrix whose lines add up to 1, as shown in Fig. 8.

This is an very parallel operation as all the elements

of this matrix can be evaluated independently, except

for the normalization of each line that takes place af-

terwards. In theory, it is tempting to use space par-

titioning techniques to speed up the nearest neighbor



11

Table 1 Sequences used for evaluation. We apply different error measures, depending on the provided ground truth. A: silhouette
overlap error. B: distances in R3 between markers and associated vertices. C: 3D error on joints positions. D: 2D pixel error on re-

projected joints positions. A and B are metrics for shapes while C and D are for poses. As for input data, if photo-consistent meshes
are not provided, we run a shape from silhouette algorithm [16] to obtain coarse reconstructed visual hulls.

Sequence Views Frames Metric Input Sequence Views Frames Metric Input

Samba [52] 8 175 A

visual hull,

silhouette

Balloon [9] 16 343 -

visual hull
Crane [52] 8 174 A Basketball [9] 8 1330 -
Handstand1 [52] 8 174 A Fighting [30] 12 500 B

Bouncing [52] 8 175 A S4 walking [41] 4 350 C & D

Dance [18] 8 573 A Flashkick [46] 8 200 A

mesh,

silhouette

Wheel [18] 8 280 A Head [46] 8 250 A

Handstand2 [18] 8 400 A Pop [46] 8 250 A

Skirt [18] 8 720 A Lock [46] 8 250 A

search. However, the dependency on the orientation of

vertex normals makes this cumbersome. In practice, we

run a brute-force search (see Sect. 7.5 for CPU/GPU

timings).

The M - Step requires to minimize the bounding func-

tion defined by the the soft data - model assignment

weights that were computed in the E-Step:

Θt+1,J t+1, σt+1 = argmin

[
λrEr(Θ) + λsEskl(Θ,J )

−
Np+1∑
k=1

m∑
i=1

P (zi = k|yi,Θt, σt) lnP (yi|zi = k,Θ, σ)

]
.

(37)

The constant term is ignored due to the space limit. In

this bounding function, all energy terms are weighted

squared distances between 3D points. This fits exactly

in the framework defined in Eq. 18. To prevent from

degenerated mesh configurations, we however do not

completely minimize the bounding function. Instead,

we just run one iteration of Gauss-Newton algorithm,

which amounts to minimizing the quadratic approxima-

tion of the objective function around (Θt, J t, σt).
It should also be noted that we do not solve Eq. 37

in one maximization step but instead follow the Expec-

tation Conditional Maximization (ECM) approach [32]

that shares the convergence properties of EM while be-

ing easier to implement. The idea is to replace the M-

Step by a number of CM-steps in which variables are

optimized alone while the others are fixed. Thus, in the

M-step, we use the mesh deformation framework to first

optimize for Θt+1, then J t+1 and finally update σt+1.

6 Results

In this section, we present the results of our algorithm

on 16 publicly available multi-view sequences, ranging

from rapid motions, e.g., Flashkick [46] and Bounc-

ing [52], articulated motions, e.g., Crane [52], to non-

rigid deformations, e.g., Samba [52]. We evaluate the

shapes and the poses separately and analyze the re-

sults both qualitatively and quantitatively. Table 1 lists

a overview of these sequences and the corresponding

error measure. We first demonstrate the generality of

tracking arbitrary objects, i.e., λs = 0, and then pay

more attention to the application of human tracking.

6.1 Tracking Arbitrary Objects

The Balloon sequence shown in Fig. 9 from INRIA

Rhône-Alpes involves two humans playing a ball. A

topologically suitable reconstruction where three ob-

jects are separated is used as reference geometry. This

sequence presents some outlying geometry resulting from

the erroneous segmentation of shadows as foreground.

The outlier class introduced in the Bayesian framework

allows to limit the impact of such geometry in the in-

ference of deformation by progressively reducing the

weight of points that can’t be explained by the model.

The Basketball sequence (1330 frames - about 55

sec.) in Fig. 10 was recorded in our own multi-camera

studio. This scene is interesting for a few reasons. Firstly,

the ball bounces between legs and is sometimes held

close to the torso. The data involves two distinct objects

with fast and complex interactions. Secondly, the vi-

sual hulls contain geometries exhibiting occlusions and

numerous artifacts such as missing limbs. The results

presented in Fig. 10 show that our algorithm can re-

cover meaningful estimates of these difficult motions

and deformations using a coarse model of the surface,

even when confronted with numerous artifacts such as

missing limbs, occlusions and self intersecting geome-

try. Experiments on these two sequences demonstrate

that our framework is capable of handling generic de-

formations, not limited to human motions like [18, 52].
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Fig. 9 Frames 292 − 295 − 296 − 297 − 298 of Ball sequence show the effects of outlying geometry and the benefit of the outlier class
in the Bayesian model. The shadows are wrongly segmented as foreground, which result in outlying geometry. One can observe that as

the ball goes down, this outlying geometry is correctly handled by the EM framework and does not impact the estimation of the ball’s

deformation. As the ball bounces, the algorithm tries to find a compromise between rigidity and data while progressively reducing the
weight of the erroneous points. It quickly converges to the proper estimate.

Fig. 10 Results on Basketball Sequence. The reference mesh is displayed on the top left. The hand and ball are manually separated

for this initial mesh in a modeling software so that the deformation model would be topologically suitable. Note that despite a very

coarse reference surface, wrong geometry, missing data and fast motion have a limited impact on our tracking algorithm.

6.2 Application: 3D Human Motion Tracking

6.2.1 Evaluation on human shapes

Now we turn our focus to human tracking and first

evaluate our algorithm on shape estimation. As input,

we used the results from either precise 3D reconstruc-

tion, or a rudimentary shape from silhouette. The met-

ric is either silhouette overlap error in 2D, or distance

to markers in 3D. For sequences evaluated with 2D er-

ror, we follow [18, 48, 52] who directly use silhouettes

as input data and minimizes the re-projection error as

a refinement step. This procedure relies on the same

optimization framework defined in Sect. 3, uses con-

siderably small patches and minimizes the residual er-

ror in silhouette overlap. The gradient of this energy

is approximated by guessing from the current pose es-

timation which vertices are on occluding contours and

pulls their projections towards the observed contours

in the images. As shown in this section, compared with

the state-of-the-art approaches, our algorithm provides

satisfactory or even better results in both metrics.

Tracking with Visual Hulls as Input. We used the multi-

view image data made public by MIT CSAIL group [52]

and by MPI-Informatik [18] to run a simple shape from

silhouette algorithm [16]. The resulting visual hulls, al-

though only a coarse approximation of the true shape,

are enough to drive the deformation of the provided

template mesh through the sequences. In Samba se-

quence, skirts are difficult to handle for methods de-

forming a reference mesh as the interpolated surface

between the bottom of the skirt and the legs has to un-

dergo severe compression and stretching. We show in

Fig. 11 that our approaches produces visually convinc-

ing results. We run our algorithm on eight sequences

and compared the silhouette overlap error. Compared

with [52], the results in Fig. 12 show that our approach
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Table 2 Silhouette overlap errors (pix) for Wheel, Dance, and
Handstand2 sequences. Image resolution: 1004 × 1004.

Wheel Dance Skirt Handstand2

ours 3961 3780 3413 4573
Gall et al [18] 4168 5098 3678 5028

Straka et al [48] 4300 4100 4100 4900

yields a similar precision while using less complicated

deformation model. Similarly, we also report better re-

sults than Gall et al [18] and Straka et al [48] in Table 2.

Tracking with Photo-consistent Meshes as Input. The

Surfcap Data from University of Surrey consists of a

series of temporally inconsistent meshes obtained by the

photo-consistency driven graph-cut method [46]. Ex-

cept for some rare reconstruction artifacts, these are

overall very clean and smooth meshes. Because of their

high resolution, meshes are down-sampled to roughly

10k vertices and fed to our algorithm. We present our

results on four sequences. They show a hip-hop dancer

whose moves are very challenging due to fast motions.

The purpose of this experiments is to demonstrate the

capacity of our method in capturing fast and large mo-

tions. In Fig. 13, our results on the Flashkick dataset

show that we can cope with extremely fast deformations

such as a backflip. In Fig. 14, we present our results on

the Pop sequence in which the intricate and ambiguous

motion of crossing arms is handled properly. Addition-

ally, Fig. 15 shows the overlap error, which is given as

the ratio of erroneous pixels and total number of pix-

els in the original silhouette. We attain approximately

constant error at a value of 5%.

Temporal Consistency. In addition to silhouette over-

lap error which measures the discrepancies on 2D im-

ages, we also evaluate shapes in 3D. In Fighting se-

quence, the raw marker positions are provided for al-

most 500 frames. We follow Liu et al [30] who associ-

ated each marker to the closet vertex on the reference

surface at frame zero and obtain 7.98mm initial dis-

tance. After tracking the whole sequence, the average

distance between markers and the corresponding ver-

tices becomes 38.49mm± 32.39mm, which is reasonably

small. Note that this includes measurement errors in-

troduced by the marker-based system. It demonstrates

the efficacy of our method on recovering temporal con-

sistent meshes. The average time per frame for this se-

quence is 7 seconds. Compared to Liu et al [30] who

attain more accurate results (29.61mm ± 25.50mm),

but require several minutes per frame for tracking, and

to Stoll et al [47] which is fast (around 6 frames per

second), but less accurate (44.93mm ± 27.16mm), our

approach certainly offers a good compromise between

performance and accuracy. In Fig. 16, we overlay the

estimated meshes and skeletons on images. We see that

close interaction between subjects does not effect the

results too much, which demonstrates that our method

generalizes well to multiple humans.

6.2.2 Evaluation on human poses

It is also crucial to evaluate skeletal poses in the con-

text of human tracking. The widely-used benchmark

HumanEva-II [41] is challenging for 4D modeling be-

cause it contains too few cameras. We anyway test our

algorithm on S4 sequence walking section. Frames 298−
335 are excluded due to the reported ground truth cor-

ruption. For the remaining frames, our method presents

errors around 65mm in average (Table 3). According

to Sigal et al [42], errors smaller than 80mm typically

correspond to correct poses, which verifies the reliabil-

ity of our method in terms of human pose estimation.

Compared with Corazza et al [11] who use visual

hulls as well and report 80mm ± 13mm errors, our ap-

proach is certainly more accurate and stable. Note that

their approach is articulated ICP where deformations

are guided by the underlying skeleton. This confirms

the advantage of our inverse skinning strategy over con-

ventional skeleton-based methods: when observations

are noisy, a generic but robust surface-based approach

offers better estimates on poses than approaches that

constrain the search space with object-specific intrinsic

deformation model. Still, we would like to stress that

our goal is to track arbitrary objects and simultane-

ously provide a low-dimensional motion parametriza-

tion (which are skeletal poses) when the subjects are

humans. We do not aim to estimate precise human joint

locations since modeling a real human joint as a single

3D point is anyway an over-simplified assumption. The

numerical error here is only a coarse measure of how

well the pose is estimated. Further optimizing on this

error does not necessarily improve the estimation.

7 Discussion

7.1 Influence of parameters

Our algorithm requires some parameters to be defined:

– the number of patch per subject, Np
– the initial value for the standard deviation σ.

– the balancing between each energy term, i.e., λs and

λr in Eq. 37.

It is worthwhile investigating how the patching af-

fects tracking. We select 10 initial seeds to generate

arbitrary segmentations, repeat this process for various
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Fig. 11 Input visual hulls (1st row) and results (2nd and 3rd rows) on frame 10 − 38 − 68 − 78 − 84 − 100 − 118 − 124 of Samba

sequence. Here the skeletons are obtained via Ejoint. Our approach yields visually convincing results on the tracking of a skirt.
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(a) crane
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(b) bouncing
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(c) handstand
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(d) samba

Fig. 12 Numerical comparison of our silhouette overlap error to that of Vlasic et al [52]. Errors are shown in percentage. This

graph indicates a consistent good behavior of our approach despite the much weaker underlying deformation model. Furthermore, our
approach is fully automatic and requires no user intervention.
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Fig. 13 Results on Flashkick sequence. The kickflip itself consists of extremely fast motion as it spans over 10 frames.

Fig. 14 Results on Pop sequence. Despite the geometrically ambiguous arm crossing, our approach still produces plausible results.
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(d) lock

Fig. 15 Silhouette overlap error of our deformed model in percentage of the original silhouette area. Each color represents one camera
view. Image resolution: 1920 × 1080.
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Table 3 3D error in millimeter and 2D errors in pixel number for S4 walking. Image resolution: 656 × 490.

Inverse skinning 3D (mm) 2D/Cam. 1 (pix) 2D/Cam. 2 (pix) 2D/Cam. 3 (pix) 2D/Cam. 4 (pix)

Bone (simultaneous) 65.48 ± 7.74 9.28 ± 1.31 8.32 ± 1.34 8.33 ± 1.36 9.99 ± 2.43

Bone (post processing) 65.78 ± 7.52 9.31 ± 1.31 8.38 ± 1.29 8.35 ± 1.36 10.08 ± 2.39
Joint (simultaneous) 64.45± 7.14 9.14± 1.19 8.26± 1.23 8.21± 1.31 9.96± 2.27
Joint (post processing) 65.06 ± 7.10 9.21 ± 1.23 8.36 ± 1.22 8.26 ± 1.34 10.07 ± 2.29

Fig. 16 Frames 190 and 250 of Fighting sequence in two views. Skeletons are obtained simultaneously via Ejoint. Our approach
applies well to multiple human subjects. Yellow circle: tracking is sometimes affected by close interaction, but is soon recovered.

patch size and report the raw tracking errors (without

silhouette refinement) of Crane sequence in Fig. 17. It

indicates that small patch sizes attain lower error, both

in terms of bias (blue curve) and standard deviation

(black error bar). Note anyway that smaller patches

lead to larger approximated Hessian matrix G>G and

hence slow down the tracking. The number of patches is

considered sufficient as long as it finely samples changes

of curvature in the rest pose (see Fig. 2 for example). In

practice, for articulated human motions, we find that

150 − 200 patches offer good trade-off between speed

and accuracy. Coarse-to-fine strategies that first esti-

mate the rough shape with large patches quickly and

refine it with small ones are also possible.

The initial σ determines how greedy our algorithm

is. The starting value is always set to 2 times the aver-

age edge length. λr determines how stiff the reference

surface is. It is empirically set on one of the sequences

so that the residual energies have comparable magni-

tudes with the data term. All the other sequences use

the same value. Since both Ebone and Ejoint behave like

auxiliary energy terms to compute poses from the given

shapes, we set λs = 1 throughout all experiments.

7.2 The role of Eskl in optimization

In Sect. 4.4 and 5.1, we emphasize that skeletal poses

are side products of surface shapes. We verify this nu-

merically by reporting again the raw silhouette over-

lap errors on Crane sequence in Fig. 18. Without the

skeleton energy terms Eskl (λs = 0 in Eq. 37), the aver-

aged error of surface shapes is 6938.73, whereas Ebone
and Ejoint get 6939.65 and 6938.69, respectively. Such
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Fig. 17 Silhouette overlap error vs. different patch size /
#patches. Image resolution: 1600 × 1200.
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Fig. 18 Silhouette overlap error with different skeleton energies.
Three strategies yield almost same errors in terms of shape. Image
resolution: 1600 × 1200.

a negligible difference confirms that in our inference

framework, skeletal poses contribute little to surface

shapes. Eskl plays the role as an augmentation term

that recovers poses J in no time during optimizations.

As shown previously in Table 3, λs = 1 already yields

good numeric solutions for poses J . In Eq. 37, the mag-

nitude of Eskl is therefore relatively small compared to

the data term and hence contribute little to the gradi-

ent of shapes Θ.
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(a) Ebone (b) Ejoint

Fig. 19 Visual comparison of results on frame 70 of Samba

sequence from two different inverse skinning strategies.

7.3 Ebone Versus Ejoint

To further select between Ebone and Ejoint, we mark

two observations in Table 3:

1. Simultaneous optimization yields equivalent or even

slightly better results than post processing, which

confirms our descriptions in Sect. 4.

2. Inverse skinning via joints attains consistently bet-

ter and more stable results than via bones.

It is worth a closer look to contrast two approaches.

We particularly choose Samba sequence which contains

both rigid (arms) and non-rigid deformations (skirts).

Results of frame 70 are shown in Fig. 19. Firstly, two

surface shapes look visually the same, again confirm-

ing the above discussions that Eskl contribute little to

the gradient of the shape Θ. To analyze how differ-

ent deformations affect the poses, one can see that two

strategies present similar poses on the arms but differ-

ent behaviors on the legs. Since there is no ground truth

for poses provided in this sequence, we check how the

bone lengths of six body parts vary during tracking: the

right hip bone (RHip), the right upper and lower legs

and arms (RULeg, RLLeg, RUArm, and RLArm), and

the torso spine. The results are shown in Table 4 and

Fig. 20. In general, bone lengths in Ejoint strategy are

more correct (smaller bias) and more stable (smaller

oscillations). For rigid body parts like arms and torso,

variations are rather small and the differences are still

negligible. For non-rigid body parts e.g., RULeg, the

margins become significant (see the fluctuations of red

and green solid curves in Fig. 20). We therefore con-

clude that Ejoint is a more effective way to realize in-

verse skinning.

Table 4 Bone length variation on 6 body parts of Samba se-

quence. Bias means the absolute difference between average

length during tracking and its original length.

Body

part

Initial bone

length (m)
Bias (mm)

Standard de-

viation (mm)

Ebone Ejoint Ebone Ejoint

RHip 0.224 12.60 1.75 20.91 7.01
RULeg 0.377 7.13 4.84 27.92 9.98

RLLeg 0.454 19.16 6.45 21.97 13.99
RUArm 0.268 2.49 1.74 14.48 9.18

RLArm 0.249 5.90 4.26 9.33 4.29

Torso 0.322 5.47 7.22 6.40 5.19

7.4 Outlier consideration

In Eq. 27, we introduce an uniform component to model

outliers. We are also aware of other alternatives, e.g., es-

timating outlier likelihood patch-wise and aggregating

them [23], or removing the outlier class and replacing

Gaussian distribution with heavy-tailed Student’s-t dis-

tribution which is known to be robust to outliers [54].

However, with the first strategy we did not observe

significant improvements, and yet the second strategy

requires solving a differential equation at each itera-

tion [35], which brings heavy computation overhead.

With Fig. 21, we study the influence of this expected

outlier proportion. In this experiment, seven pairs of

consecutive meshes (Mt,Mt+1) from the Free sequence

were considered. Outlier points were distributed around

Mt+1 by duplicating a percentage of its vertices and

perturbing them with a Gaussian noise of standard de-

viation 4 edge length. Then we ran the deformable reg-

istration of Mt to Mt+1 with different values of this

parameter. The figure shows the average residual regis-

tration error as a function of eoutlier and the actual

proportion of added outliers. We conclude from this

experiment that this parameter doesn’t require to be

finely tuned and that it simply needs to be non zero

to give the optimization enough slack to progressively

ignore outliers and converge to a proper solution.

7.5 Computational cost

We list in Table 5 experimental timings on numerous se-

quences to give an idea of the complexity of the method.

These measurements were obtained by looking at times

when files were written to the hard-drive.They are only

an indication on the computational load of our method

and do not constitute a precise performance evalua-

tion. The computational cost is largely dominated by

the nearest neighbor search and the sparse linear sys-

tem solver. The nearest neighbor search is straightfor-

ward to be parallelized with GPU. It is expected that

with a smarter space partitioning approach or more
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Fig. 21 Average fitting error on 7 random frames of the Free

sequence. The x axis represents the expected outlier parameter.

The y axis represents the actual proportion of added outliers to
the target point cloud. The z axis shows the fitting error with

respect to the mean edge length.

computational resources, this step should be negligible.

The remaining bottleneck is therefore the sparse linear

solver. Preliminary experiments on the CPU indicate

that Conjugate Gradient is a viable alternative to the

direct solver we currently use.

7.6 Comments on the approach

The prediction mechanism from neighboring patches in

searching for associations described in subsection 5.3 is

the key to our method, as it encodes multiple hypoth-

esis on the position of the patch. More specifically, it

gives a chance to the surface to locally quickly return to

its rest pose by propagating the information from cor-

rectly registered patches to patches where the current

approximated deformations are erroneous.

Table 5 Average timings on standard sequences for the EM pro-
cedure (max. 10 EM steps - without silhouette refinement) with

target point clouds of roughly 10k vertices. The CPU implemen-
tation was run on a 2.5Ghz quad-core machine. The CUDA im-

plementation was run on a NVIDIA Geforce GTX260.

Sequence Frame# Ref. surface

vertex#

Average time

per frame (sec.)

CPU GPU

Flashkick 200 5445 24 3.60

Head 250 5548 29 3.79
Lock 250 5301 24 3.52

Pop 250 5596 16 3.44
Handstand 174 5939 29 4.11

Bouncing 174 3848 29 3.70

Crane 174 3407 11 2.72
Samba 150 5530 12 2.03

Failure cases. Although our framework assumes very

little on the nature of the tracked objects, one funda-

mental premise is that no drastic variations are pre-
sented in the topology. The reference frame has to be

topologically suitable, that is, it has to be split wher-

ever the surface might split in the sequence. In other

words, a moderate amount of disappearing geometry,

e.g., self-intersections or close interactions of different

subjects as in Fig. 16 can be handled, but it is highly

likely to fail when any creation of new geometry occurs.

The i.i.d. assumption that leads to Eq. 33 needs more

careful considerations when patches occlude each other.

This clearly biases the drawing of samples in the distri-

bution of 3D data. For example, in Fig. 10, when the

arms and body are merged, the local density of points in

the input data does not double, which clearly indicates

that the data generation by two overlapping patches on

the arm and the body is not independent. In that sense,

our method and Eq. 33 are only approximations.
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8 Conclusion

We develop a method to recover the free-form deforma-

tion of surfaces from data acquired in a multi-camera

setup. Our approach casts the problem as the registra-

tion of meshes by iteratively fitting a reference surface

to the rest of the sequence. Three contributions differ-

entiate our method from previous work. Firstly, we in-

troduce a generic mesh deformation and numerical op-

timization framework that enables to process complex

scenes involving several deforming objects of unknown

nature. This framework defines a coarse control struc-

ture for the deformation by splitting a reference surface

into elementary elements called patches. These patches

allow to express simple physics-inspired rigidity con-

straints on the surface and provide integration domains

on which data terms are smoothed. The second contri-

bution is a Bayesian formulation of mesh registration

that builds on the control structure defined by patches,

and models for the uncertainty in the input data. Last

but not least, we demonstrate two approaches to es-

timate skeletal poses from surface deformations, such

that the above framework is suitable for human motion

tracking. We present numerous qualitative and quanti-

tative analysis, confirming that we can recover mean-

ingful deformations in spite of fast motions, large de-

formations and significant reconstruction artifacts.
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