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Abstract—In this paper we address the problem of marker-
less human performance capture from multiple camera videos.
We consider in particular the recovery of both shape and para-
metric motion information as often required in applications
that produce and manipulate animated 3D contents using mul-
tiple videos. To this aim, we propose an approach that jointly
estimates skeleton joint positions and surface deformations by
fitting a reference surface model to 3D point reconstructions.
The approach is based on a probabilistic deformable surface
registration framework coupled with a bone binding energy.
The former makes soft assignments between the model and
the observations while the latter guides the skeleton fitting.
The main benefit of this strategy lies in its ability to handle
outliers and erroneous observations frequently present in multi-
view data. For the same purpose, we also introduce a learning
based method that partition the point cloud observations into
different rigid body parts that further discriminate input
data into classes in addition to reducing the complexity of
the association between the model and the observations. We
argue that such combination of a learning based matching
and of a probabilistic fitting framework efficiently handle
unreliable observations with fake geometries or missing data
and hence, it reduces the need for tedious manual interventions.
A thorough evaluation of the method is presented that includes
comparisons with related works on most publicly available
multi-view datasets.

Keywords-human motion capture; non-rigid surface defor-
mation; pose estimation

I. INTRODUCTION

Marker-less human motion capture from multiple camera
videos is a fundamental task in many applications including
sport science, movie industry, and medical diagnostics. Since
human motion is defined by both articulated motion and sur-
face deformation they should ideally be estimated simulta-
neously. However, this requires sophisticated physics-based
models that capture the real relationships between pose and
shape. Since such models are hard to build and also involve
complex parametrization, researchers often decouple them
and treat each problem separately. One line of approaches
considers only the estimation of surface deformations by
fitting a reference model to the incoming image observa-
tions, e.g. [5], [6], [8], [9]. Another line of approaches
parameterizes the model deformations with an articulated
human skeleton represented as a kinematic chain [10], [13],
[18], [21]. While the latter are less generic and strongly
depend on the skeleton parametrization, the former are more
generic and require less priors, hence allowing for larger

Figure 1. Our approach tracks both the shape and the pose of humans
simultaneously. Results with three different standard datasets are shown
above. Left: Skirt in [10]. Top right: Bouncing in [21]. Bottom right: Free
in [17].

classes of model deformations. Since the human anatomical
structure can not be perceived by traditional visual sensors
such as color cameras, approaches that model and track
shapes instead of internal and unobserved skeletons tend
to give more reliable results with visual data. Nevertheless,
in many graphical applications that involve human body
models, the pose is required as much or more than the
shape surface. To this objective, we introduce a method that
simultaneous recovers both the shape surface, in the form
of a mesh, and its pose with articulated skeleton parameters.
This method builds on two related works. First, the patch-
based deformable surface registration framework proposed
in [6] that relies on soft observation assignments and han-
dles outliers. Second, the bone binding energy presented
in [19] that forces the skeleton model to stay inside the
deformed human body shape. The combination of these two
strategies allows us to devise an approach that benefits from
a robust surface registration when recovering human body
pose and without the need for complex inverse kinematic
parametrizations. Furthermore, in order to reduce complexity
and to better handle erroneous observations, we investigate
a learning based strategy that partition the input data into
rigid body parts as learned from the reference model. This
strategy limits the search when assigning observations to the
model as well as enabling a better discrimination between
inliers and outliers in the input data.



This paper has several contributions. Different from [6] or
[10], pose and shape are recovered at the same time. Second,
a robust framework is presented that improves over [19]
by combining probabilistic assignments between the model
and the observations with a Support Vector Machine (SVM)
based classification that partitions observations so that they
can be exploited more efficiently. Third, a thorough eval-
uation with various public dataset is presented [10], [15],
[17], [21]. This evaluation validates the effectiveness of the
proposed method.

The rest of this paper is organized as follows. In Section
II we review the most relevant related work. Details of the
proposed method are described in Section III. Validation
experiments and results are provided in Section IV, and we
conclude the paper in Section V.

II. RELATED WORK

Human motion tracking/capturing has been long studied
in both computer vision and graphic communities. Based
on the way of parameterizing motion, existing works can be
categorized into three classes:

Mesh-based approaches: In this class of methods, motion
is solely parameterized on the humanoid surface which
evolves in time, without incorporation of a skeleton model.
Authors usually introduce some constraints among vertices
such that implausible deformations are avoided. Aguiar et
al. [9] propose a scene-flow-based deformation scheme.
To overcome the accumulated flow estimation error, they
utilize Laplacian deformation framework [4] as a refinement
step. In their follow-up work [8], they first deform a low-
resolution tetrahedral mesh to roughly estimate the pose, and
then transfer it to a high-resolution scanned model. Surface
details are again preserved by Laplacian constraint. Cagniart
et al. [5] advocate to divide the mesh into small cells called
patches. A rigidity constraint is imposed among neighboring
patches which smooths model deformation. In [6], they
further improve the data term and the whole deformation
framework acts like a probabilistic iterative closest point
(ICP) approach. The advantage of these purely-mesh-based
methods is that they can generalize to non-humanoid surface
tracking, and they better handle non-rigid deformation such
as loose apparel.

Skeleton-based approaches: Since human motion is highly
articulated, many authors use skeleton-based models. Motion
is then parameterized in a low-dimensional pose parameter
space. However, in the observations, whether 3D point
clouds or silhouettes, one does not observe the skeleton
directly. A mesh surface is still needed for the fitting purpose
but it is controlled by the underlying skeleton. As a result,
skeleton plays the role of prior deformation model. From
this point of view it is actually much more constrained than
purely-mesh-based methods. There are mainly two concerns
in this family of work: first, how to parameterize motions
in terms of the skeleton, and second, how this skeleton

should interact with the reference mesh. Vlasic et al. [21]
parameterize motions as transformation of local coordinate
of each joint. Vertex transformation is computed by the lin-
ear combination of different joint transformations, known as
linear blend skinning [13]. With similar parameterizations,
Gall et al. [10] adopt quaternion blend skinning [12] which
produces less artifacts. In both methods, the skeleton acts as
a kinematic chain where local transformations are transferred
from the parents to the children. Energies between mesh and
observations are defined in pose parameter space, based on
the simple assumption that surface deformation is explained
only by the skeleton. A second stage of surface refinement
is usually required.

Hybrid approaches: The first category of approaches
emphasizes more on the surface consistency, whereas the
second category of approaches focuses on the pose. Straka
et al. [19] advocate the integration of both categories into
one energy function. They introduce differential bone co-
ordinates as an implicit skinning approach, and therewith
they formulate a skeleton-binding energy term defined on the
parameters of both mesh surface and skeleton. This allows
them to jointly estimate pose and shape, and they show that
optimizing in this coupled space results in more robustness.
Moreover, skeletons are parameterized only in terms of joint
location. Although losing some rotational degree of freedom
(DoF) for each joint, this makes the energy term quadratic
in terms of both, body joint positions and mesh vertex
positions. Therefore, the optimal solution can be obtain
via standard optimization method. The difference of our
approach compared to [19] is that we compute the bone
energy per patch rather than per vertex. In addition, our
observations are 3D visual hull reconstructions instead of
2D silhouettes. With 3D information, we are able to handle
ambiguous situations that one cannot do with only image
observations. Furthermore, we partition observations into
body part regions according to learned partitioning in the
previous frames. This allows us more efficient matching of
the reference mesh and the input 3D observations, which
combined with optimization with soft assignments from [6]
makes it more robust to outliers and missing data.

III. METHOD

To facilitate human motion tracking in synchronized and
calibrated multi-view sequences, a 3D point cloud T t is
first reconstructed using silhouette observations. Our body
model deforms according to these observations on the frame-
to-frame basis. The model comprises a reference triangle
mesh surface M and an intrinsic tree-structured skeleton.
We adopt the patch-based mesh deformation model proposed
in [5]. In this framework, vertices are grouped into NP

patches and deformation of M is parameterized in terms
of Θ = {(Rk, tk)}NP

k=1 where Rk and tk are rotation and
translation of patch Pk respectively. Our skeleton is a set of
NJ 3D joint coordinate positions J = {xj}NJ

j=1 where NJ



Figure 2. Illustration of our pipeline. In (b), patches attached to same joint are encoded in similar colors. Incoming observations (c) are partitioned and
subsampled into (d) by the SVM classifier trained with (b). By minimizing Eq. (1) define between (b) and (d), the model deforms as in (e). In this example,
we reduce the amount of target point from 7823 (c) to only 3682 (d).

is 15. The root of the tree is set at the pelvis, as in Figure
2 (a). Parameterizing directly on their position leads to a
quadratic energy term that keeps optimization feasible [19].
The skeleton is manually rigged to the mesh. Each vertex v
is associated with a non-leaf-node joint that has the largest
skinning weight from [3]. By taking the majority vote, each
patch is also associated to a joint as in Figure 2 (b). This
association is fixed throughout the whole sequence and is
used as the rigid body part label to classify the incoming
observations.

Therefore, given a model which is properly registered in
the first frame, the remaining task is to determine how the
mesh and skeleton deform based on every T t. We approach
this by minimizing a energy function defined as:

E(Θ,J) = λrEr(Θ)+λdEdata(Θ)+λbEbone(Θ,J). (1)

Er prevents neighboring patches from having different trans-
formations; Edata serves as a data term measuring how well
the configuration of patches explains the observations, and
Ebone favors bones to follow the patches attached to them.
λr, λd and λb are corresponding weights that adjusting the
influence of each term.

In addition, we partition input visual hull observations T t

into different rigid body parts by a linear multi-class Support
Vector Machine trained on the shape of the reference model
fitted to the previous frame Mt−1. This body part informa-
tion allows us to exploit T t more efficiently when defining
Edata. The outline of our method is given in Figure 2. In the
remainder of this section, we briefly review the framework
of [5] for the sake of completeness. We explain each energy
term and describe how we partition the target point cloud in
detail.

A. Rigidity term Er

Cagniart et al. [5] proposed to decompose the reference
mesh into a number of patches. Without prior knowledge of
the motion, patches are preferred to be distributed uniformly
on the surface. A rigidity constraint is exerted among them.
The idea is that neighboring patches should agree on their
prediction of the future position of each other. Specifically,
let us consider a patch Pk, a patch Pl in its neighborhood
Nk, and let xl(v) denote the predicted position of v from
Pl. The rigidity energy enforces the predicted position xk(v)
and xl(v) to be consistent:

Er(Θ) =
∑

k=1:NP

∑
Pl∈Nk

∑
v∈Pk∪Pl

wkl‖xk(v)− xl(v)‖2. (2)

Θ is implicitly encoded in xk(v) and xl(v). This energy is
quadratic in terms of Θ so its minimum can be found via
standard Gauss-Newton method.

B. Data term Edata and point cloud partitioning

The role of the data term is to connect the observations
and the model. Generally speaking, one first estimates which
target point the vertex or patch belongs to and defines a
distance between the correspondences. Next, by minimizing
this distance, the model deforms closer and closer to obser-
vations. Alternating between these two phases is known as
ICP approach. Correspondence estimation can be treated as
a classification problem. The output of the classifier is either
dense labels for each vertex [20] or sparse labels for some
feature points [2]. Cagniart et al. [6] adopt probabilistic
ICP in patch-based deformation framework. Instead of a
deterministic correspondence, each target point has a soft
assignment to every patch as in Figure 3 (a). The method
can be viewed as Expectation-Maximization algorithm in
Bayesian maximum likelihood estimation. In E-step, soft



Figure 3. Illustrations of the classification scheme in (a) Cagniart et
al. [6] and (b) our method. By performing SVM classification before the
classification in [6], our method rules out fake geometries and provides a
mechanism to work in the tradeoff between speed and accuracy.

assignments wk
i are computed and in M-step, the energy

is minimized in terms of model parameters Θ. Given the
observations T = {yi}NT

i=1, they define a data term:

Edata(Θ) =

NT∑
i=1

NP+1∑
k=1

wk
i ‖yi − x(vki )‖2, (3)

where
∑

k w
k
i = 1, vki is the corresponding vertex in Pk for

yi, which is chosen considering closeness of both normals
and distances.

Compared to the deterministic approach, the probabilistic
association offers more robustness. The drawback, however,
is the computational overhead. The data term as defined in
Eq.(3) requires traversing all target points, which is compu-
tationally expensive. Also it does not incorporate any body
part information due to the purely-surface-based assumption.
Therefore, we advocate a hierarchical classification scheme
in which unreliable or redundant observations are culled
out before entering the classification in [6], as shown in
Figure 3 (b). Since the vertex-joint association inM is fixed
throughout the whole sequence, one knows the distribution
of each rigid body part inMt−1. Meanwhile, in the context
of tracking, it is pratical to assume that Mt−1 and T t

distribute similarly. One can thus predict the rigid body part
for each instance in T t based on Mt−1.

Specifically, for each vertex v ∈ Mt−1, we use its 3D
position x(v) as feature, and the associated joint jv as
class label. Let NV denote the total number of vertex in
Mt−1. With these NV training pairs (x(v), jv) we aim to
train a classifier. Any multiclass classifier with probability
output serves our purpose. We suggest linear SVM [1] as
a preferable choice because it provides a good compromise
between accuracy and training time. In the case of binary
classification (i.e., jv ∈ {−1,+1}), it aims at finding a
hyperplane with coefficients w that satisfies the following
optimization problem:

min
w

1

2
‖w‖22 + C

N∑
i=1

ξi (4)

s.t. jv(w>x(v) + b) + ξi ≥ 1, ξi ≥ 0, ∀v ∈Mt−1.
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Figure 4. Patch-based β coordinate. γ contains information of the position
of patches along the bone, which is used to determine the wk in Ebone.

Parameters C and ξi are penalty weight and slack variables.
The decision function for classifying target points in T t is:

f(y) = sgn (w>yi + b), ∀yi ∈ T t. (5)

For more details of multiclass SVM formulations we refer
the interested readers to [11].

Each target point yi has a rigid body label predicted from
the SVM, and T t is then partitioned into NRG subsets
(NRG = NJ − # non-leaf-node joints). By checking the
probabilities from classifier, we further distinguish between
target points that are near the joints, on the bones, and
outliers. Let pi denote a posteriori probability that yi belongs
to its predicted label. We apply the following criteria:

yi ∈


Tb if 0.9 < pi

Tg if 0.5 < pi ≤ 0.9

To if pi ≤ 0.5,

(6)

where suffix b means right on bones, g means near around
joints, and o means outliers. T is thus represented as {T j

b ∪
T j
g ∪ T j

o }
NRG
j=1 . We keep all yi in Tg , exclude all yi in To

and subsample yi in Tb. For instance, we keep all yi near
the knees and only a portion of yi along the thighs and the
calves, as in Figure 2 (d). This is because patches on a bone
often move rigidly together. Only a small amount of target
points are required to register some of them, and the rest of
the patches can just follow. On the contrary, patches upon
knees cannot be well predicted by those on the calves or
thighs. They need more observations to be registered.

Let N ′T denote the number of observations after sub-
sampling and outlier removal, we then apply the “soft”
classification scheme in [6], and Eq. (3) is revised as:

Edata(Θ) =

N ′
T∑

i=1

NP+1∑
k=1

wk
i ‖yi − x(vki )‖2. (7)

C. Patch-based skeleton binding energy Ebone

In [19] Straka et al. introduce differential bone coordi-
nates β for every vertex, defined as:

βi = x(vi)−
NJ∑
j=1

ρi,j(γi,jxj + (1− γi,j)xchild(j)), (8)
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Figure 5. Illustration of the functions of Ebone and Er . Left: initial
configuration. Right: distances being minimized in the optimization. Er

minimize distance d1 and Ebone minimize d2. Both of them play the
roles of regularization terms.

where x(vi) represents 3D coordinates of the mesh vertex
vi. A bone is defined by joints xj and xchild(j). γi,j is
chosen such that the vector between vi and γi,jxj + (1 −
γi,j)xchild(j) is orthogonal to the bone. We follow this
definition but compute it in a per-patch manner. Moreover,
each patch considers only the attached joints j(k) rather than
all joints. We define our β coordinate as:

βk = ∆k − ck, (9)

where ∆k = γk,j(k)xj(k) + (1 − γk,j(k))xchild(j(k)) and ck
is the center location of patch, as shown in Figure 4. The
patch-based skeleton binding energy keeps β from varying
after transformation:

Ebone(Θ,J) =

NP∑
k=1

wk‖Tk(β0
k)− βk‖2. (10)

Here, we see that βk is a function of J and transformation
Tk includes rotation Rk and translation tk of the patch, so
Ebone is defined on the coupled space of mesh and skeleton.
wk are adjusted such that patches close to joints have less
weight on where the associated joints should be, whereas
patches in the middle of two joints contribute more. Such
information is encoded in γk,j(k).

We remark that Eq. (10) is better to be rewritten as:

Ebone(Θ,J) =

NP∑
k=1

wk‖Tk(∆0
k)−∆k‖2, (11)

because this way it can be interpreted easily together with
Er. As shown in Figure 5, when a patch moves to a new
place, it predicts both the position of neighboring patches
and ∆k.

Combining Eq. (2), Eq. (7) and Eq. (11) into Eq. (1)
we formulate our final energy function. We experimentally
set λd = 10, λr = 1, and λb = 1 such that data term
has higher importance than two smoothness terms that have
equal influence. Our method is not overly sensitive to the
exact values. Optimization of Eq. (1) is relatively standard
since all the aforementioned energy terms are quadratic in
terms of the model parameters. We therefore adopt Gauss-
Newton algorithms to solve this unconstrained least-squares

Sequence Views Frames Patch # Avg. spf.

Handstand1 [10] 8 401 144 6.07s
Wheel [10] 8 281 144 4.70s
Skirt [10] 8 721 219 3.57s

Dance [10] 8 574 223 3.68s
Crane [21] 8 175 125 3.55s

Handstand2 [21] 8 175 160 4.70s
Bouncing [21] 8 175 149 5.73s

Free [17] 8 500 172 5.46s
S4 walking [15] 4 349 186 4.76s

Table I
SEQUENCES USED FOR EVALUATION. WE FOLLOW [5] TO PATCH EACH
REFERENCE MESH. TYPICALLY A NUMBER BETWEEN 150 AND 250 IS

SUFFICIENT TO YIELDS DECENT RESULTS.
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Figure 6. Averaged bone length of six body parts in free and bouncing
sequences. Numbers in the bars are standard deviations.

minimization. We implement SVM classification with the
well-known library libsvm [1] which applies one-against-
one multiclass strategy and provides the posterior class
probabilities based on Platt scaling [1].

IV. EXPERIMENTS

In this section we evaluate our method, both qualitatively
and quantitatively. We test on 9 sequences from numerous
public available datasets. These sequences range from those
with rapid motions, e.g., Free [17] and Bouncing [21], to
particularly articulated motions, e.g., Crane [21]. Table I
lists the sequences and gives the average second per frame
(spf) our method takes. We evaluate the pose and the shape
separately, and demonstrate the effectiveness of the SVM-
based matching scheme in terms of outlier rejection (Section
IV-B) and target point subsampling (Section IV-C).

A. Evaluation on poses

With the S4 walking sequence from the HumanEva-II
dataset [15], we compare the estimated joint locations with
the ground truth obtained from markers. Skeletons in dif-
ferent datasets usually have different joint configurations in
torso so we focus on limbs and head joints, for a total of
14 joints. Frames 298-335 are excluded due to the reported
corruption of the ground truth in these frames. For the
remaining frames, our approach presents an average total
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Figure 7. The effectiveness of SVM classification scheme. (a) Silhouette
images in two views. (b) Reconstructed visual hull. Due to the ambiguity
from 2D to 3D, there are some fake geometries in front of the chest. (c)
Visual hull colored according to the probabilities from SVM classifier. (d)
Estimated surface without filtering observations. (e) Estimated surface with
outlier removal according to Eq. (6)

error of 70.86mm. According to [16], errors smaller than
80mm typically correspond to correct poses, which confirms
the reliability of our method.

It should be noticed here that modeling a real human joint
as a single 3D point is an over-simplified assumption. The
numerical error in that case is only a coarse measure of
how well the pose is estimated. Further optimizing on this
error does not necessarily improve the estimation. On the
other hand fixing the bone length increases robustness with
respect to the noisy and occluded observations as claimed
in [19]. In this work, in order to keep the bone length fixed,
additional constraints are introduced and constrained least-
square optimizations are performed. However, no reports on
how much varying bone lengths influence the recovery of
shape and pose is made. In our approach constant bone
lengths are not explicitly constrained and we show variation
of the averaged bone lengths of six body parts in the free
and bouncing sequences in Figure 6. In order to make un-
derstandable and fair measurements, we map different scales
of skeleton to centimeters using the anthropologic statistics
from NASA [14]. Bar plots in Figure 6 show that our method
exhibits significantly small bone length variations in spite
of fast and large motions. This demonstrates that thanks
to the stability of our method, bone lengths do not have
to be additionally constrained, yielding a simpler and more
efficient optimization.

B. Evaluation on shapes

1) Qualitative evolution: Our classification-based match-
ing partitions incoming target observations into rigid body
parts according to the reference shape model fitted to the
previous frame. SVM classifier is trained using 3D coordi-
nates of the reference mesh model in the previous frame
with associated labels indicating the body part they belong.

Here we demonstrate the effectiveness of this classification
scheme. Artifacts appear in visual hulls due to silhouette
ambiguities, as in Figure 7 (a) and (b). Using the visual
hull vertices as target points, we obtain the results such
as those in Figure 7 (d). However, the SVM classifier is
able to identify artifacts and to give low probabilities to
the corresponding points (Figure 7 (c)). Thus, outliers can
successfully be removed based on Eq. (6). With the outlier
rejection, our method estimates the surface as shown in
Figure 7 (e), which demonstrates that the influence of fake
geometries is alleviated.

2) Quantitative evolution: For quantitative evaluations,
a commonly used metric is the pixel overlap error that
measures the discrepancies between surface reprojections in
the images and the corresponding input silhouettes. In Table
II we show the ratio of erroneous pixels and the total number
of pixels in the original silhouette. Since our approach
builds on a patch-based deformation framework [6], we
also compare to this method. As shown in Table II, our
approach obtains better results than [6] in all sequences. This
suggests that our SVM classification scheme helps in ruling
out unreliable target points, a crucial feature when the input
observations are noisy visual hulls. For further comparisons,
we also implement a standard articulated ICP approach
similar to [7]. Our method also shows better performances
than this skeleton-based method as a result of a more flexible
surface deformation model not constrained by pose space
parametrization that is often insufficient in practice. These
two comparisons show that our method outperforms both
purely mesh-based approaches and simple skeleton-based
methods.

Pixel overlap errors are also shown for the methods [10],
[19], [21]. Nevertheless we would like to point out that
all these methods explicitly optimize silhouette reprojection
errors in images, thus naturally yielding small pixel overlap
errors. However, visual hulls are noisy observations and
our contribution is clearly to identify and remove erroneous
observations hence the pixel overlap error is not necessarily
a relevant criterion in this context. We observed anyway that,
on average, our approach provides results comparable with
these methods with no more than 6% errors, which is within
a reasonable margin of error for the silhouettes.

C. Benefits of subsampling target points

In Figure 8 we present another benefit where we subsam-
ple the observations on the bones. Blue and purple lines in
Figure 8 correspond to the averaged second per frame (spf)
and silhouette overlap error respectively when matching is
done using standard closest compatible point search. Target
observations are not partitioned and all of them are inspected
for the closest compatible point. Red and green curves corre-
spond to the averaged spf and silhouette overlap errors of our
method when classification with SVM is used for improved
matching between the reference model and the input target
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Figure 8. The tradeoff between time and overlap error on crane sequence.
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observations. When most of the target observations yi in
Tg are kept (e.g., 90%), our approach requires more time
due to the time-consuming SVM classification. In the case
where the number of observations for training is reduced,
the matching time decreases and the silhouette overlap error
goes up. In the extreme case where 30% of yi in Tg are used
for classification, nearly 1.5 seconds per frame is gained
while the increase in the error is only 0.2%. We remark here
that the tradeoff between time and error is inevitable, but that
our SVM-based approach provides a good compromise.

Lastly, some qualitative results are shown in Figure 9.
Even the challenging Free sequence can be tracked properly.
Our method is able to produce convincing results in terms
of both shape and pose.

V. CONCLUSION AND FUTURE WORK

We present an approach that captures marker-less hu-
man performances from multi-view sequences. Our method
jointly estimates poses and shapes of the human body. To
this end, we propose to use probabilistic deformable surface
registration approach based on patched representation of the
reference human body model [6] together with the bone
binding energy [19]. In addition, we introduce a novel SVM-
based classification scheme that partition target point clouds
into rigid body parts and helps better correspondence search.
We exploit posterior probabilities from classifiers to remove
the redundant and unreliable observations and report speed
up thanks to the use of the reduced set of observations for
matching.

The reliability of the proposed method is verified by
the experiments on sequences from various public datasets.
Evaluations on HumanEva-II dataset show that our ap-
proach recovers the pose correctly. Our method does not
rely on the bone-length constraint to obtain decent results.
Evaluations on other sequences demonstrate that without
explicitly optimizing on silhouettes, our approach still yield
comparable results on shape estimation. Possible future

directions include alleviating the requirement of background
subtraction, and exploiting photometry information.
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