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Abstract—In recent years, location tracking systems have
become important in areas such as transportation, shopping,
logistics and medicine. One of the most recent approaches are
proximity-based location tracking systems, which use the received
signal strength (RSSI) measured between a sender and an anchor
module. The advantages of these systems are high scalability,
minimal calibration effort and low costs. However, there are also
disadvantages e.g. the fluctuating signal strength under certain
circumstances in the environment. To detect, if an object has
entered a predefined region, the RSSI must exceed a specified
threshold. When the current signal fluctuates due to obstacles
(other objects, people, etc.) the static threshold does not apply for
the defined region any longer. In this case automatic adjustments
of the threshold are made with the help of a reference module.
Various factors are measured between reference, anchor as
well as a sender module and subsequently used to correct the
static threshold. The dynamic adjustment was tested through
three experiments and showed satisfactory results concerning the
hypotheses. For further research, additional factors might need
to be included to make the proposed method more dynamic and
responsive to the environment.

Keywords—Bluetooth, Bluetooth Low Energy, Correlation,
Correlation Coefficient, Dynamic, Kalman Filter, Location, Lo-
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I. INTRODUCTION

Proximity-based location tracking systems are becoming
more and more popular and as a result are used more
commonly because of a cost-benefit advantage over other
methods/systems. The required hardware is available off-the-
shelf and in comparison to other location tracking systems,
they allow for an easier setup and higher scalability in terms
of maintenance effort at lower costs. However, the systems
also come with a disadvantage: The level of accuracy that
can be reached with, for example, trilateration is higher than
when using proximity. Companies like Apple are trying to
bring proximity-based systems to the masses by providing
suitable interfaces for hardware manufacturers.

Technologies like ZigBee and as of late also Bluetooth
fulfill requirements for the use in a proximity-based location

tracking system. There are also systems on the market which
include additional sensors to detect motion and which were
specifically developed for localization purposes.

Usually, signal strengths measured from a receiver module,
also called the anchor, to a sender module are compared to a
static value (also referred to as threshold in the following).
Depending on the difference of the respective signal strengths,
the location tracking system moves to a specific state. If the
signal strength is higher than the static value, the system
concludes that the sender module is positioned inside a certain
region and if it is lower, it is outside of this region. These
static values are often stored in the anchors themselves or in
a database on a computer in the backend. If there are two
values saved indicating ”far away” (low value) and ”nearby”
(high value), then matching the current signal strength against
these two values reveals in which range the user/the sender
module could be.

One problem though with wireless technologies like
Bluetooth is the fluctuation of the signals over time even
while receiver and sender are placed at fixed locations.
Environmental influences, multipath effects and shadowing
lead to such fluctuations [1], making it more difficult as well
as unstable to compare against specific static values. If the
current signal strength values increase because of fluctuations
while the threshold stays the same because only one is
measured in an initialization step, the region defined by the
threshold increases.
This paper investigates the idea that instead of static values,
we could use dynamic values which adjust themselves
automatically through periodic measurements. The system
would always obtain the regions defined by exactly those
dynamic values. One way to achieve this is to place a
reference module at a fixed spot, let an anchor measure the
signal strength of the reference module in periodic intervals
and see if any fluctuations can be detected (see figure 1). If
they can be detected and if they correlate with other sender
modules, the static values could be adjusted. In the case
of positive fluctuations, the values increase. In the case of
negative fluctuations, they decrease.978-1-4799-5344-8/15/$31.00 c© 2015 IEEE



Fig. 1. On the left: Initial setup with an anchor module mounted on the ceiling
in the center of the room. Two threshold values (one for ”nearby”/upper thresh-
old and one for ”far away”/lower threshold) from previous measurements are
stored on a computer used for the calculation of the location. On the right:
The proposed setup with two reference modules mounted on the ceiling in
specific ranges for defining the two regions.

To show that reference modules can be used to improve the
stability of a proximity-based location tracking system, some
hypotheses are necessary:

• Hypothesis 1: Reference module 1 (R1) records fluc-
tuations caused by environmental influences, multipath
effects and shadowing

• Hypothesis 2: The fluctuations recorded by R1 are com-
parable to the fluctuations recorded by another sender
module (S1)

• Hypothesis 3: Through the measured signal strength of
R1, the static value depicting the region can be adjusted
to stay similar despite fluctuations

II. RELATED WORK

Goldsmith et al. [2] published a book about various wire-
less technologies (including Bluetooth) describing the RSSI-
distance relation as well as several propagation effects on
the signal power. For an in-depth analysis of location-based
services and applications focusing on WiFi, see [3].
Patwari et al. [4] used a proximity-based location tracking
system to analyze with the Cramér-Rao bound on what an
unbiased real time location tracking system (RTLS) without
channel fading and multipath effects would look like. They
mention that a more precise location tracking system implies
higher costs, overall bigger devices and increased power
consumption. Those are the reasons why they continued with
a simple proximity-based system based on received signal
strength measurements. Kim et al. [5] and Mechitov et al.
[6] also use a proximity-based location tracking system but
with an anchor grid to estimate the target’s position. They try
to use more sensors to increase stability as well as accuracy
by using anchors as reference modules.
Dil et al. [7] show that range/proximity-based location tracking
systems perform better with less calibration effort than a
system based on RSSI fingerprints. Proximity-based systems
have the advantage of a fast setup and less calibration effort.
Erceg et al. [8] and Solahuddin et al. [9] worked on the Log
Normal Shadowing model which calculates the path loss of a
signal over a certain distance. We use this model because of

its accurate estimations which furthermore takes effects such
as multipath and shadowing into account. The Log Normal
Shadowing model can also be used to calculate the Path Loss
Exponents of various test setups when the signal strengths are
known. These values give us more information about the test
environment.
Cinefra et al. [10] present in their work that the orientation
of anchors when placing them is important. They point out
that Gaussian and Kalman filters yield the best results when
applied to the raw signal strength values. They also use an
adaptive system where a base station (one of the anchors)
constantly updates the used path loss model with new cali-
bration parameters to calculate a new position for the user.
Cinefra et al. determined the following parameters to have a
negative effect on location tracking accuracy: various sender
devices having varying levels of transmitting power, the height
of the sender devices and people’s presence when tracking the
sender modules. However, they were not able to analyze and
prove any effects in detail.
Turner et al. [11] use a self-calibrating location tracking
system based on WiFi. They collect fingerprints from access
points on known positions and use them for calibrating the
new environment for the system. They conclude that when
using 802.11 access points, it is unrealistic to set up a location
tracking system with an accuracy better than five meters due
to environmental as well as algorithmic issues.
Two papers by Pan et al. [12] [13] describe how to transfer
a calibrated environment from space A to space B with a
minimized amount of calibration effort. This is useful to show
how two different, independent spaces are related to each other
since multiple similar factors are identified with a quadratically
constrained quadratic program (QCQP). They analyzed trans-
ferring calibrated and collected information across space, time
and devices.

III. MATERIAL AND METHODS

In our system, we use Bluetooth modules from the company
connectBlue to set up a state-of-the-art proximity-based loca-
tion tracking system. We use the Bluetooth module OBS421
as anchor and several OLS425 modules as sender modules.
There are some limitations such as hardware restrictions when
relying on these off-the-shelf products but the low costs of the
modules outweighed the disadvantages.
The general setup of the system is as follows: the sender
modules need to advertise an ID in a periodic time interval
while the anchor module needs to scan the area for all
Bluetooth modules and then measure the signal strength for
each of the found modules. The anchor module is connected to
a computer in the backend which logs all the measured data,
e.g. signal strengths, into a database.

The sender modules send an advertisement with their ID
every 250 milliseconds and the anchors scan the environment
every 1.28 seconds. Due to the Bluetooth specifications and
the hardware restrictions, it is not possible to scan without
modifying the firmware to operate at a higher rate. In order
to find the tags periodically, we chose 250 milliseconds based



Fig. 2. Overview of the three different setups with the location tracking
anchor (1), the two reference modules R1, R2 as well as the sender module
S1 placed at their respective positions. R1 and S1 were always placed 2 meters
apart from the anchor. R2 was 5 meters apart.

on [14] for a good balance between power consumption and
finding the tags at all times. Additionally, we went with the
lowest possible interval of 1.28 seconds to scan for new tags
for a high update rate. A test software was written to conduct
experiments in an office with the size of approx. 10x10x3
meters. Three different setups were tested (see figure 2).
The reference module R1 was placed 2 meters next to the
anchor at the ceiling. The second reference module R2 was
placed 5 meters next to the anchor (see figure 3). As part of
each test run, there were time spans where either people were
in the office moving around causing fluctuations or the office
was empty.

Fig. 3. Side view of setup 1 with the location tracking anchor (1), module
R1 (2), module R2 (3) and module S1 (4). S1 was mounted on a tripod. The
other modules were attached to the ceiling with tape.

Since the receiver and sender modules use different an-
tennas, the orientation of the modules has to be taken into
account when planning the experiments. The antenna plots
of the receiver module [15] show a uniformly distributed
characteristic but the plot for the sender module shows that
the antenna scatters more towards one direction (see figure 4).

We used Pearson’s R correlation coefficient to obtain some
sort of information about the correlation between the data of
each module. The correlations for each setup can be seen
in table I. Analyzing the results after conducting three test
runs, we found that only setup 1 was interesting to further
investigate. The only noteworthy correlation was recorded in
setup 1, where S1 was placed underneath R1. In all the other
tests, the correlation was not significantly high suggesting

Fig. 4. Antenna characteristics of the sender module. In (1) the directivity
of the antenna can be seen on the left graph. Because of the directivity, the
sender modules have to be installed in a specific orientation on the ceiling.

that two modules share a similar trend regarding the signal
strengths. Therefore, we repeated the tests with setup 1 two
more times for a total of three test runs (see table II for T2
and T3).
In all test runs for setup 1, the modules were positioned in the
exact same locations on the ceiling. Every experiment began
in the afternoon and continued over night to specify whether
the results showed significant differences when people were
moving in the office or when the office was empty at night.
For each of the located sender modules, four different values
were stored in the database: the signal strength, the moving
average of the signal strength, the standard deviation of the
signal strength as well as the estimated Kalman filter value
up to now. After storing the signal strength values, there were
two options to adjust the threshold dynamically.

• Option 1: Calculate the moving average as well as the
standard deviation from the stored signal strength values
up to now and depending on the later, the threshold is
adjusted (increased or decreased).

• Option 2: Use the standard deviation of the estimated
Kalman filter value to decide if the threshold should be
adjusted or not.

Figure 5 shows how the dynamic adjustments of the thresh-
olds work. Let x1 be the raw signal for R1 and x2 the
raw signal for S1. f(x) is the filter which is applied to the
raw signal (moving average, Kalman, ...) and g(x) is the
current standard deviation for all the previous signal strength
values. h(x1, x2) calculates β, the correlation coefficient. The
threshold is depicted as y. m1 and m2 are the current moving
average values of R1 and S1. The query on the raw signal
strengths can be seen in algorithm 1. For the experiments, α
was set to 0.5 for the first test run and then 0.3 for the later
ones. γ was always set to 0.5.

Algorithm 1 adjust threshold
if h(x1, x2) > γ ∧ g(f(x1)) > α ∧ g(f(x2)) > α ∧
((|f(x1)−m1| > 0 ∧ |f(x2)−m2| > 0)∨
(|f(x1)−m1| < 0 ∧ |f(x2)−m2| < 0)) then
y = y + (m1−f(x1))+(m2−f(x2))

2
end if

First, the algorithm examines if the correlation coefficient
is greater than γ. Additionally, the standard deviations of both



Fig. 5. The process behind the dynamic threshold adjustment. The raw signal
strengths of R1/R2 and S1 are the inputs while the output decides whether
the threshold should be adjusted or not.

signals from R1 and S1 are calculated to check the fluctuations
in the data. In the last part of the query, the absolute difference
between the moving average and the filtered signal strength
value is calculated for each module. If the differences are
either both positive or both negative and the rest of the factors
are true, then the threshold y is adjusted. The adjustment
is based on the mean value of added differences from both
modules.

Since the distances between the modules in the test setup
could be measured, we were able to calculate the expected
signal strengths via the Log Distance Path Loss model (also
called Log Normal Shadowing model):

Pd = Pd0 − 10 ∗ n ∗ log10( dd0 ) + χ

The Log Distance Path Loss model describes the estimated
signal strength at a given distance and includes factors such
as a reference signal strength value or the Path Loss Exponent
(PLE). The Path Loss Exponent represents the signal drop over
distance in various environments. Calculating the PLE value of
each module and comparing them would provide insight into
the influences (people, objects obstructing the line of sight
etc.) in a test environment if the values would be significantly
different (see [16]).
Pd and Pd0 represent signal strengths at given distances with

d0 being a fixed distance (usually 1 meter). Pd0 serves as sig-
nal strength reference which has to be measured beforehand.
n is the Path Loss Exponent. In general, n = 2 is used for free
space while higher values are used to model more obstacles
in the environment and lower values for an unobstructed line
of sight between the modules. χ is a zero-mean normally
distributed value which describes the shadowing effect:

χσ ∼ N(0, σ2)

IV. RESULTS

The correlation was checked between modules and
calculated for the following combinations:

• Reference module 1 (R1) - Reference module 2 (R2)
• Reference module 2 (R2) - Sender module 1 (S1)
• Reference module 1 (R1) - Sender module 1 (S1)

The results can be seen in table I. A value between +1 and 0
represents a positive correlation whereas a value between 0 and
-1 indicates a negative correlation (and 0 for no correlation).

TABLE I
CORRELATION BETWEEN THE MODULES FOR EACH SETUP.

Setup 1 Test run 1 (T1) Raw Moving average Kalman
R1 and R2 0.19 0.25 0.23
R2 and S1 -0.04 -0.15 -0.05
R1 and S1 0.08 0.46 0.11

Setup 2 Test run 1 (T1) Raw Moving average Kalman
R1 and R2 0.20 0.77 0.24
R2 and S1 0.0 -0.20 0.0
R1 and S1 -0.12 -0.58 -0.16

Setup 3 Test run 1 (T1) Raw Moving average Kalman
R1 and R2 -0.52 -0.93 -0.54
R2 and S1 0.09 -0.13 0.09
R1 and S1 -0.28 -0.09 -0.29

A positive correlation between R1 and R2 as well as R1
and S1 can be seen in the first two test runs. The same
goes for the first two test runs for R2 and S1 with negative
correlations. Setup 1 was the only test run with a positive
correlation between R1 and S1. If we take the moving average
and calculate all coefficients with the current signals for each
tag, the correlations become more apparent (see table I). The
gray rows depict the values with correlations greater than 0.
We decided to conduct two more test runs with setup 1 since
it was showing promising results regarding the correlation of
R1-S1. The results of T2 and T3 can be seen in table II. In
the following, we are only discussing the three tests (T1, T2
and T3) of setup 1.
As for taking the reference modules as thresholds: The min-
imum value of T1-R1 was -75 and the maximum value of
T1-R2 was -73. Assuming that we take the value of R1 as
dynamically changing upper threshold and R2 as dynamically
changing lower threshold, it would have been problematic if
these values were read continuously since the lower threshold



would be higher than the upper threshold. However, there was
no entry of R1 measuring the value -75 and R2 measuring the
value -73 at the same time in the recorded data.
For the second test run, the minimum value of R1 was -77
and the maximum value of R2 was -83. Looking at the data,
there was no overlap of the values from R1 and R2 so taking
the values from R1 as upper threshold and the values from R2
as lower threshold seems unproblematic. It is remarkable that
the signal from T2-R2 is considerably lower than the signal
from T1-R2. This can be explained by a slight correction of
the module placement after test run 1. The minimum value of
R1 (-74) in test run 3 and the maximum value of R2 (-83) do
not overlap either and therefore can be used as upper threshold
and lower threshold respectively.
The means for T1 to T3 were taken as initial thresholds
and were then adjusted with the averaged difference between
the moving average and the estimated Kalman value of the
respective test runs.

TABLE II
SUMMARY OF ALL MEANS, STANDARD DEVIATIONS AND CALCULATED

PATH LOSS EXPONENTS FOR EACH MODULE AND TEST RUN.

Setup 1 Test run 2 (T2) Raw Moving average Kalman
R1 and R2 0.33 0.32 0.37
R2 and S1 -0.25 -0.12 -0.27
R1 and S1 0.08 0.36 0.16

Setup 1 Test run 3 (T3) Raw Moving average Kalman
R1 and R2 0.07 0.75 0.17
R2 and S1 -0.12 -0.83 -0.15
R1 and S1 -0.18 -0.64 -0.19

Test run 1 (T1) R1 R2 S1
Mean -71.84 -77.92 -79.17

Standard deviation 0.49 1.17 1.28
PLE n 1.54 1.46 2.74

Test run 2 (T2) R1 R2 S1
Mean -75.42 -92.90 -81.09

Standard deviation 0.71 1.67 0.72
PLE n 2.65 3.59 3.26

Test run 3 (T3) R1 R2 S1
Mean -71.09 -90.06 -91.71

Standard deviation 0.47 2.11 6.59
PLE n 1.3 3.18 5.68

Table II shows all the mean and standard deviation values
of the test runs with the Path Loss Exponents describing how
people, shadowing, multipath effects and other influences led
to a decrease in signal strength during the tests. A person
moving the tripod with the module S1 explains why the Path
Loss Exponent value was so surprisingly high at T3-S1.

A summary of the amount of threshold adjustments in
all three test runs:

• T1: 4459 adjustments out of 9900 signal values
• T2: 264 adjustments out of 670 signal values
• T3: 1078 adjustments out of 26000 signal values

Fig. 6. The results from each test run visualized with the adjusted threshold
drawn in lightblue. The raw signal strength values were recorded with an
offset of +128 dbm. The values seen in the figure are the filtered/adjusted
ones. An adjustment of the threshold can be seen e.g. in the first test run at
timestamp 5000.

V. DISCUSSION

The results from table I show only positive correlations
for the signal measurements where S1 is placed underneath
R1. This suggests that the same could happen when S1 was
placed underneath R1 in setup 2 and 3. These cases need to
be examined in future work.

The first hypothesis can be proven with all test runs
for setup 1 (see figure 6). In the first two graphs, fluctuations
of the signal strengths can be seen at the beginning when
people were still in the office. Then the signal stabilizes while
on the third graph, toward the end, people were entering the
office and moving the tripod (S1).
The second hypothesis can be proven with the test runs T1
and T2 (the correlation coefficients for raw signals as well as
filtered signals are positive).
The third hypothesis can be proven with all test runs since
none of the adjusted thresholds overlapped during the
experiments. For the first test run, the signal peak in the
middle was recorded on both modules, R1 and S1, and
the correlation was positive at that point which caused the
threshold adjustment. For the third test run, the correlation
at the end was not positive for both modules. Therefore, the
threshold was not adjusted for the rest of the test run.



For now, the only adjustment made to the threshold
was to either add or subtract the difference of the moving
average and the filtered signal. Adjustments were only made
if the standard deviations crossed a certain value which, for
now, was static in most cases (0.5).
Furthermore, an initial static value has to be measured and
inserted in the current system. This is done by taking the
mean of a measurement which usually contains at least 500
signal values. Instead of taking a static value (the mean), the
live signal value of R1 can be used. Considering the data
from test run 1 and 2, this would work fine as both signal
values from R1 and S1 would always be apart with enough
distance between each other. Only the third test run would
prove to be problematic since both adjusted and filtered
values would converge and be apart for 2.5 dbm.
A more thorough examination of the correlation between the
modules at different locations and various test environments
has to be done to specify if the threshold adjustment would
also work under difficult conditions.

The Path Loss Exponent values in table II were similar
for the first and second test run while the third test included
higher values due to changes in the environment and the
movement of S1 itself. In addition to the factors in our
proposed method, a change in the Path Loss Exponent could
also be included in the query to make the system more
responsive. The current signal strength of R1 could be used
as a reference signal strength and R2 could be measured
for the expected signal strength at the known distance d
to calculate the PLE. The correlations between R1 and R2
were not significantly high in our tests but this needs to be
examined in further experiments with the modules placed at
various positions. An example of including the updated PLE
value when calculating the user’s position can be seen in
[17].

VI. CONCLUSION

Test runs show that signal strength fluctuations can be
detected by using reference modules which are located at fixed
places on the ceiling. Additionally, two reference modules
which are positioned at different locations show no relation
to each other.
A positive correlation between the data of a reference module
on the ceiling and the data of a sender module positioned
underneath it can be seen in the results. This indicates that
for future work, more reference modules have to be placed
around the anchor to detect any correlation when the sender
module is moving.
The requirement was to set up a simple location tracking
system with room-level accuracy. The proposed system would
cost a maximum of $500 per room. At this price, the hardware
would come with disadvantages and restrictions which we try
to compensate by using extra reference modules to have stable
thresholds with a fluctuating signal.
The proposed method to detect and adjust thresholds was
tested successfully on a state-of-the-art proximity-based lo-

cation tracking system. The results suggest that the location
tracking system would react better to fluctuations compared
to the system without any adjustments but this has to be
investigated more thoroughly. In addition to that, more factors
such as the current Path Loss Exponent value should be
evaluated and included to make the system more responsive
to various environments.
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