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Abstract. Estimating the diffusional kurtosis tensor requires fitting a
model with 22 free parameters to noisy diffusion signals, and is subject to
low accuracy. We propose a variation of the model that makes use of the
main directions of diffusion, only requiring the fitting of 10 parameters.
Monte Carlo simulations and experiments on volunteer datasets indicate
that the reduced version of the model has less bias than the full model,
particularly in white matter areas with high fractional anisotropy.

1 Introduction

Diffusion Kurtosis Imaging (DKI) allows for the characterization of the non-
Gaussian diffusion of water within a biological tissue [3]. Kurtosis is quantified
by deriving scalar metrics from the fourth order kurtosis tensor, obtained in turn
from fitting the measured diffusion signal to a model with 22 free parameters.
Fitting this model is prone to low accuracy and high bias of the derived scalar
metrics due to the low SNR of diffusion weighted images and the Rician nature
of the noise distribution [5]. We hypothesize that a simpler version of the model,
i.e. one that only requires the fitting of 10 free parameters, should have a lower
bias and higher accuracy than the standard model. We develop this model based
on the assumption that the cross-terms of the diffusion and kurtosis tensors are
eliminated if the diffusion encoding space (q-space) of every voxel is rotated into
the main directions of diffusion before fitting.

2 Theory

The second order diffusion tensor D ∈ R3×3 and the fourth order kurtosis tensor
W ∈ R3×3×3×3 are related to the measured diffusion signal S by:
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where S0 is the non-weighted signal, b corresponds to the b-value of the diffusion
experiment, and gn represents the n-th component of the directional unit vector
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Fig. 1. Different kurtosis contrasts estimated from the standard (left column) and
reduced (right column) models.

g ∈ R3. We develop the reduced version of the model in three steps: first, we es-
timate the main directions of diffusion; second, we rotate the diffusion encoding
space (q-space) of every voxel into its principal coordinates using the Eigenvec-
tors of the diffusion tensor; and third, we fit the data in the rotated coordinate
system to:

S(b′) = S0 · exp
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In (2) the cross-terms are neglected, yielding a direct calculation of the Eigen-
values λi of the diffusion tensor and reducing the amount of free parameters to
10: S0, the three Eigenvalues of the diffusion tensor, and six coefficients from
the kurtosis tensor, which is now second order instead of fourth.

3 Methods

Two experiments were performed to assess the performance of the reduced
model. In the first experiment we fitted both models to a volunteer dataset.
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Fig. 2. Estimated standard deviation (SD) (a-c) and bias (d-f) from the Monte Carlo
Simulation for characteristic a/d) gray matter (GM), b/e) white matter (WM) with
low fractional anisotropy (FA), and c/f) WM with high FA voxels.

Acquisition was performed in a 3T GE MR750 clinical MR scanner (GE Health-
care, Milwaukee, WI, USA) using a 32-channel head coil (single shot EPI, single
spin echo, TE =80.7 ms, TR = 1.8 s, 96x96, FOV=24 cm) and a 3-shell DKI ac-
quisition with 25, 35 and 70 non collinear directions and corresponding b-values
of 750, 1070, and 3,000 s/mm2 [4]. Post-processing on the data included motion
correction, skull extraction [2], and the estimation of rotationally invariant kur-
tosis metrics [1]. The second experiment consisted of a Monte Carlo simulation
for three representative voxel types: one gray matter (GM) voxel and two white
matter (WM) voxels, one with high and one with low fractional anisotropy (FA).
The FA for each of these voxels was defined as: 0.17 for GM, 0.50 for WM with
low FA, and 0.79 for WM with high FA. These three standard voxels were artifi-
cially corrupted with Rician noise to different extent and fit to both versions of
the model in a linear and non-linear (NL) manner. The simulation consisted of
a total of 1,000 instances for six SNR levels ranging from 10 to 20. The bias was
calculated by subtracting the mean of the different instances to the ground truth
voxels, while the accuracy was quantified in terms of the standard deviation (SD)
of the noise instances.

4 Results

Figure 1 depicts mean kurtosis (MZ), orthogonal apparent kurtosis coefficient
(AKC⊥), and maximum apparent kurtosis coefficient (AKCmax) estimated from
linear fitting of both the standard and reduced model. In areas of known high
anisotropy, such as the areas near the corpus callosum, the estimated kurtosis
maps were smaller than the maps of the standard model. Figure 2 shows the bias
and standard deviation of MZ for the different methods in the three standard
voxels. In areas of WM with high FA the bias of the non-linear implementation
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of the reduced model was significantly less than the other implementations of
the model.

5 Discussion

We propose to reduce the standard kurtosis model by fitting the measured dif-
fusion data in a rotated coordinate system. This implementation reduces the
amount of free parameters from 22 to 10 by making use of an initial estima-
tion of the main directions of diffusion. Even at a reduction of over 50% of
parameters, the method yields comparable parametric maps, stability, and bias.
Furthermore, results indicate that the reduced model yields parametric maps
with a reduced bias in areas of high anisotropy.
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