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1 Introduction

Hyperpolarized 13C imaging allows real-time in-vivo measurements of metabolic
conversion. Experiments are performed by polarization of [1-13C]pyruvate with
dynamic nuclear polarization and subsequent rapid dissolution, producing a hy-
perpolarized liquid suitable for intravenous injection[1]. In a previous study
we examined the metabolic exchange between [1-13C]pyruvate and its down-
stream metabolites [1-13C]alanine, [1-13C]lactate, [1-13C]pyruvate hydrate and
[13C]bicarbonate in male Wistar rats by acquiring slice-selective FID signals
in slices dominated by heart, liver, and kidney tissue. Using pyruvate doses of
0.1− 0.4 mmol/kg (body mass), we examined the effect of transient exposure to
high pyruvate blood concentrations, causing potential saturation of cellular up-
take and metabolic conversion, semi-quantitatively using signal-time integrals[2].

Further quantification of metabolite conversion can be achieved through ki-
netic modeling of time-domain signals. Present kinetic models represent a two-
side interaction between pyruvate and one specific downstream metabolite[3,4].
Since pyruvate interacts dynamically and simultaneously with all of the down-
stream metabolites, the purpose of this work is the determination of parameter
values through a multi-side, dynamic model involving all possible biochemical
pathways.

2 Theory and Methods

Kinetic modeling parameters were determined by fitting the multi-side model
to time-domain dynamic data (see Fig. 1). The model consists of a series of
exponential equations similar to[4], but takes into account all of the metabolites
into a one-step fitting process. The fitting was done in a least-squares sense
and involved the gradient calculation of the parameters. Parameter values were
compared with values of both two-side models and for different pyruvate doses
and evaluated for statistically significant differences.



Fig. 1. Schematic representation of all possible metabolic pathways taken by [1-
13C]pyruvate that can be visualized with NMR Spectroscopy (LDH = lactate dehydro-
genase, ALT = alanine transaminase, PDC = pyruvate dehydrogenase complex, CA =
carbonic anhydrase) and metabolic time fit of data acquired for a 0.4 mmol/kg dose in
kidney predominant tissue. The yellow square represents the two-side exchange kinetic
model, in this case between [1-13C]pyruvate and [1-13C]alanine. The proposed model
takes into account not only this single pyruvate-to-metabolite exchange, but includes
all of the metabolites represented in the diagram.

3 Results

The model presented was shown to be robust and have an optimal convergence
point. In comparison to the two-side exchange models, the multi-side model
yielded smaller pyruvate-to-metabolite exchange rates and improved determina-
tion of T1 values for pyruvate. Dose effects observed in[2] were confirmed and
quantified through pyruvate-to-metabolite exchange rate values (results will be
presented at the conference).

4 Conclusions

The proposed kinetic modeling method that takes into account all of the down-
stream metabolites in one system can be used for the quantification of pyruvate
metabolic exchange rates. Parameter interdependency allowed a more accurate
quantification than other modeling methods and can therefore be useful for the
monitoring of metabolic activity in different tissues.
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