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Abstract. Diffusion MRI uses a multi-step data processing pipeline.
With certain steps being prone to instabilities, the pipeline relies on
considerable amounts of partly redundant input data, which requires
long acquisition time. This leads to high scan costs and makes advanced
diffusion models such as diffusion kurtosis imaging (DKI) and neurite
orientation dispersion and density imaging (NODDI) inapplicable for
children and adults who are uncooperative, uncomfortable or unwell.
We demonstrate how deep learning, a group of algorithms in the field
of artificial neural networks, can be applied to reduce diffusion MRI
data processing to a single optimized step. This method allows obtaining
scalar measures from advanced models at twelve-fold reduced scan time
and detecting abnormalities without using diffusion models.

1 Introduction

Advanced diffusion MRI models such as DKI [1] and NODDI [2] are prefer-
able over traditional diffusion MRI models because they provide more accurate
characterization of tissue microstructure. However, they require long acquisition
times. This can be problematic in clinical applications due to high scan costs or
if the patient is uncooperative, uncomfortable or unwell.

In diffusion MRI, a number of diffusion-weighted images (DWIs) for different
diffusion weightings and directions (constituting the so-called three-dimensional
q-space) are acquired. The task in quantitative diffusion MRI is to find a mapping
from a limited number of noisy signal samples to rotationally invariant scalar
measures that quantify microstructural tissue properties. This inverse problem
is solved in each image voxel. The classical approach consists of fitting [3] a
diffusion model and calculating rotationally invariant measures from the fitted
model parameters. Another approach to calculate scalar measures is approxi-
mation, particularly machine learning. Simulations of simplified tissue models
with extensive sets of diffusion weightings [4, 5] indicate that standard model
fitting procedures can be replaced by approximation methods. On the basis of



these observations, we apply deep learning [6–9] for accurate approximation and
present a deep learning framework for different inputs (full and subsampled
sets of regular DWIs, non-diffusion contrasts) and outputs (denoising, missing
DWI reconstruction, scalar measure estimation, tissue segmentation). We term
this framework q-space deep learning (q-DL). Scalar measure estimation from
twelve-fold shortened acquisition is demonstrated on two advanced models: DKI
and NODDI. By shortening the acquisition duration of advanced models by an
order of magnitude, we strongly improve their potential for clinical use.

Recent applications of machine learning in diffusion MRI [10–12] use fitted
model parameters as learning inputs, whereas we omit model fitting altogether by
using the DWIs themselves, which allows the use of unprecedented subsampling
factors that model fitting (Fig. 1a–d) cannot handle.

Besides, our framework allows tissue segmentation and lesion detection in
diffusion MRI without using diffusion models.

2 Methods

Deep learning [6–9] is a set of algorithms for learning of input-output-mappings.
It can outperform other machine learning methods and has recently been suc-
cessfully applied in a variety of fields such as computer vision, natural language
processing and drug discovery. It is based on artificial neural networks, where in-
put data is propagated through several layers of hidden units (artificial neurons).
Each layer is a data transformation step. The classical diffusion MRI pipeline
also consists of several steps: in DKI, approximately 150 measurements are re-
duced to 22 model parameters, then to a few rotationally invariant measures,
and finally (implicitly or explicitly) to the tissue property of interest. In every
step, information is partly lost by reducing the degrees of freedom. However, the
classical pipeline does not provide feedback to the earlier steps with regard to
what part of the information should be retained or discarded and which transfor-
mations should be applied. Thus, the pipeline relies on handcrafting and fixing
each step. Deep learning takes a more holistic approach: all layers are optimized
jointly in terms of the final objective, namely minimizing the output error. This
prevents the loss of information at intermediate steps.

In an artificial neural network with L layers (particularly in a so-called
multilayer perceptron), the data transformation in layer i ∈ {1, . . . , L} de-
pends on the weight matrix W (i) and bias term b(i) according to the rule

a
(i)
j = si(W

(i)a
(i−1)
j + b(i)), where a

(i)
j are the output vectors of layer i for

data sample j, the a
(0)
j are the input vectors of the network, and si are non-

linearities (see below). During training, all weight matrices and bias terms are

jointly adjusted such that the output vectors a
(L)
j for each training sample j

(in our case: each image voxel j) well approximate the target output vectors
yj . This adjustment is achieved by using the backpropagation algorithm (imple-

mentation [13]) to solve arg minW ,b

∑
j

∥∥∥a(L)
j − yj

∥∥∥2, where the sum of errors is

taken over all training samples j, and outputs a
(i)
j recursively depend on W , b.



In all experiments, training data originate from different human subjects than
test data. The network thus does not “know” the true output vectors of the
test data but rather estimates them based on the input-output-mapping learned
from training data. Each voxel j is treated individually as a data sample. The
algorithm does not know its location in the image. We introduce several input-
output-mapping tasks. Different deep networks are trained for different tasks:

Denoising. For denoising, the signal Sj from all DWIs in voxel j is used as

both the input a
(0)
j and target yj of the neural network. The number of network

inputs is the number n of used DWIs, i.e. each input vector a
(0)
j = Sj has length

n (for every j). The length of the output vector a
(L)
j is also n. A network trained

to reconstruct its own inputs is known as an autoencoder [7]. Its approximate
nature and dropout-based training [8] prevent overfitting and reduce noise.

Reconstruction of Missing DWIs. For q-DL-based Reconstruction of missing
DWIs (q-DL-R), a neural network is trained to predict the signal Sj in all DWIs
(voxel j) from a reduced subset Sj,α where α is a pseudorandom subsampling
multi-index (such that the q-space sampling is consistent across training and

test data). The length of the input vector a
(0)
j = Sj,α is |α|. Due to partial

data redundancy in q-space, missing DWIs can be reconstructed from a reduced
subset.

Estimation of Scalar Measures. A network is trained to predict microstructure-
characterizing scalar measures mj directly from the (reduced set of) DWIs Sj,α.

In other words, inputs are a
(0)
j = Sj,α and targets are yj = mj . The length of

the output vector is the number of considered scalar measures. Training targets
yj = mj are obtained from a fully sampled training dataset by model fitting.

Model-Free Segmentation. Tissue segmentation is achieved by training a neural
network to discriminate between several tissue types. We propose modifying the
approach [14] of multi-parametric MRI tissue characterization by artificial neu-
ral networks such that the DWIs are directly used as inputs rather than using
scalar measures obtained from model fitting. State-of-the-art automatic segmen-
tation [15, 16] (based on non-diffusion images with spatial priors) into healthy
white matter (WM), grey matter (GM), cerebrospinal fluid (CSF) and multiple
sclerosis lesions was used as ground truth for our proof-of-concept model-free seg-
mentation (based on diffusion images without spatial priors). The q-DL frame-
work allows incorporating additional contrasts other than DWIs as inputs to the
learning algorithm. We used fluid-attenuated inversion recovery (FLAIR) signal
as an additional input. The length of the output vector is the number of tissue
classes (with each output representing a relative class membership “likeliness”
using softmax, see below).

Additional Remarks. The trained network with optimized W (i) and b(i) is then

applied to other datasets using the recursive formula for a
(i)
j . In the case of
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Fig. 1. Maps of radial kurtosis in the human brain for various methods and MRI scan
acceleration factors. 148, 40, 25 and 12 randomly selected DWIs are used; required scan
time for each scheme is shown in seconds per slice. (a–d) Standard processing (model
fitting followed by radial kurtosis calculation). (e–h) q-DL-R, followed by model fitting
and radial kurtosis calculation. (j–m) q-DL.

α-subsampling, a large number of DWIs is required only once (for the training
dataset) in order to estimate target scalar measures m using model fitting.
Subsequently, training is performed using few DWIs as inputs, and the trained
network can be applied to any number of previously unseen test datasets which
have only few DWIs (same subsampling scheme).

The deep learning toolbox [13] was used for experiments. In each of the
described tasks, the neural network architecture used is a multilayer perceptron
with three fully connected hidden layers, each consisting of 150 rectified linear
units [6], i.e. si(z) = max(0, z). Linear units sL(z) = z are used in the output
layer L for fitting tasks and softmax outputs sL(z) = exp(z)/‖ exp(z)‖1 for
classification tasks. Each input and output of the neural network is scaled to
the interval [0, 1] during training, and the same linear transformation is applied
to test data. We found that results improve if the network is pre-trained [7]
using training data or initialized with orthogonal random weights [9]. We use
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Fig. 2. Error evaluation of different
methods at different acceleration factors.
Root-mean-square deviation from the ra-
dial kurtosis estimated by the standard
pipeline (fully sampled model fitting) is
used as error metric. Model fitting is out-
performed by the proposed methods when
less than 70 DWIs are used.

a dropout [8] fraction of 0.1, stochastic gradient descent with momentum 0.9,
batch size 128, learning rate 0.01, warm-up learning rate 0.001 for first 10 epochs.

Datasets. The in vivo protocols were approved by our institutional review board
and prior informed consent was obtained. Two data sets of healthy volunteers
were acquired using a scheme optimized [17, 18] for DKI and suitable for NODDI:
three shells (b = 750, 1070, 3000 s/mm2) with 25, 40, 75 directions, respectively,
and eight b = 0 images. This is a non-radial multi-shell q-space acquisition
scheme for which no missing data reconstruction algorithm exists to the best of
our knowledge. Echo-planar imaging was performed using a 3T GE MR750 MR
scanner (GE Healthcare, Waukesha, WI, USA) equipped with a 32-channel head
coil (TE = 80.7 ms, TR = 2 s, FOV = 24× 24× 4 cm, isotropic voxel size 2.5 mm,
ASSET factor 2). All data underwent FSL topup distortion correction [19]. For
the tissue segmentation experiments, six multiple sclerosis patients were scanned
using a diffusion spectrum uniform sampling pattern [20] with 167 DWIs (bmax =
3000 s/mm2, TE = 80.3 ms, TR = 5.4 s, FOV = 24× 24× 12 cm, isotropic voxel
size 2.5 mm, ASSET factor 2).
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Fig. 3. Comparison of (a) model fitting and (b–e) q-DL for neurite orientation disper-
sion index based on NODDI. q-DL allows strong scan time reduction with moderate
contrast loss.



3 Results

In Fig. 1, we show the radial kurtosis [21] measure based on DKI because of its
particular susceptibility to noise and because no analytical solutions are known.
In the case of denoising and q-DL-R, model parameters are estimated from the
reconstructed DWIs by standard model fitting [3] for comparison.

DKI results of denoising for fully sampled data (Fig. 1e) exhibit slightly
less noise than the standard pipeline (Fig. 1a) without sacrificing spatial reso-
lution. Moreover, compared with the standard pipeline (Fig. 1a–d), results of
q-DL-R (Fig. 1e–h) and of q-DL (Fig. 1j–m) exhibit feasibility of scan time
reduction by a factor of twelve. Fig. 2 compares the methods in terms of root-
mean-square deviation from model-fitting results of fully sampled data. Despite
their approximate nature leading to disparity with model fitting, the proposed
methods outperform model fitting when less than 70 DWIs are used. NODDI
results (Fig. 3) demonstrate strong scan time reduction with moderate contrast
loss when using q-DL. Segmentation results are shown in Fig. 4. The area un-
der the curve (AUC) of the receiver operating characteristic (ROC) for lesions
ranged between 0.869 and 0.934 for six different patients. AUC for WM, GM
and CSF was consistently above 0.894 for all patients. Thus, q-space data can
be used for segmentation directly without a diffusion model, i.e. without the
intermediate information loss detailed above. Results were slightly worse when
not using FLAIR (between 0.859 and 0.934 for lesions; above 0.892 for WM,
GM, CSF). Tailoring the protocol to optimal results in specific applications is
subject of future research.
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Fig. 4. Direct model-free segmentation. Slices from datasets with the best (upper row,
0.934) and worst lesion AUC (lower row, 0.869) are shown.



4 Discussion

The presented short-scan and model-free protocols open interesting research di-
rections. While state-of-the-art methods [12, 22] require 30 DWIs for NODDI and
64 for radial kurtosis, we require only 8 and 12, respectively. Our results indicate
that a considerable amount of information is contained in a limited number of
DWIs, and that this information can be better retrieved by deep learning than
by model fitting. The network architecture is quite simple compared to other
works in deep learning, and yet it works surprisingly well for diffusion MRI. In
all presented applications, neural network training takes about one minute on a
desktop computer. The network needs to be trained only once and can be ap-
plied to any number of datasets, taking 0.03 seconds per dataset, as opposed to
several minutes per dataset required by most model fitting methods. Analytical
solutions of scalar measure estimation [23] provide reduction of scan time and
processing time comparable to q-DL, but are limited to specific scalar measures
and acquisition schemes, as opposed to q-DL. A combination with multi-slice
imaging is straightforward, yielding additional scan time reduction. Benefits of
using spatial neighborhoods [12] for q-DL and (Rician-)noise-robust training [7]
can be explored in the future. Our methods require full sampling of the training
data only; subsequently, the network can be applied to new subsampled data.
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