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Abstract— Current popular methods for Magnetic Resonance
Fingerprint (MRF) recovery are bottlenecked by the heavy stor-
age and computation requirements of a matched-filtering step due
to the growing size and complexity of the fingerprint dictionar-
ies in multi-parametric quantitative MRI applications. In this ab-
stract we investigate and evaluate advantages of a deep learning
approach for embedding the manifold of solutions of the Bloch
equations and to address these shortcomings.

1 Introduction
Magnetic Resonance Fingerprinting (MRF) recently

emerged to accelerate acquisition of the quantitative NMR
characteristics such as the T1, T2 and T2∗ relaxation times,
field inhomogeneity, perfusion and diffusion [1, 2, 3, 4, 5]. As
opposed to mainstream qualitative assessments these absolute
physical quantities can be used for tissue or pathology iden-
tification independent of the scanner or scanning sequences.
Unlike conventional quantitative approaches MRF uses i)
short and often complicated excitation pulses which encode
many NMR parameters simultaneously, and ii) significantly
undersampled k-space data. To overcome the lack of sufficient
spatio-temporal information MRF incorporates a physical
model based on exhaustively simulating a large dictionary
of magnetic responses (fingerprints) for all combinations
of the quantized NMR parameters. This dictionary is then
used for matched-filtering in a model-based reconstruction
scheme e.g. [6]. As occurs to any multi-parametric manifold
enumeration, the main drawback of such approach is the size
of this dictionary which grows exponentially in terms of the
number of parameters and their quantization resolution; a
serious (non-scalability) limitation of the current methods to be
applicable in the emerging multi-parametric MRF applications.

In this study we propose a dictionary-free deep learning ap-
proach to address this shortcoming. The proposed MRF-Net
provides an efficient embedding for the manifold of solutions
to the Bloch differential equation parametrized by the NMR
characteristics. Our in-vivo experiment for estimating two pa-
rameters (i.e. a small-size MRF problem) indicates that the
MRF-Net is able to achieve a good accuracy however with 3x
less storage and model-fitting computations as required for a
baseline dimension-reduced dictionary matching scheme (Fig-
ure 1).

2 Problem statement
MRF acquisitions follow a linear spatio-temporal model:

Y ≈ A(X), (1)

where Y ∈ Cm×L denotes noisy k-space measurements col-
lected at t = 1, . . . , L temporal frames after each excitation.
The MRF image is a complex-valued matrix X of spatio-
temporal resolution n × L i.e. n spatial voxels and L tem-
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Figure 1: Reconstructed T1 and T2 maps using the proposed
MRF-Net and dictionary matching (DM) baseline.
poral frames. The forward operator A := PΩFS(.) models
multi-coil sensitivity maps S and a sub-sampled Fourier opera-
tor PΩF which represents the k-space acquisition with respect
to a set of temporally-varying locations Ω =

⋃L
t=1 Ωt where

Card(Ωt) = m� n.
The main source of quantitative measurements are the per-

voxel magnetization of proton dipoles obtained from dynamic
rotations of the external magnetic field i.e. a sequence of
Flip Angles (FA) {αt}Lt=1 applying at certain repetition times
{TRt}. Tissues with different NMR characteristics respond
distinctively to these excitations. The MRF framework relies
on this principle to regularize the under-determined problem (1)
by a temporal model and enable parameter estimation.

Magnetization trajectories (responses) —denoted by
B(Θ;TR,α) ∈ CL —are distinct solutions of the Bloch differ-
ential equations for a given set of intrinsic NMR parameters
Θ ∈ Rp and excitation sequence {αt, TRt} [7]. Current MRF
approaches discretize through a dense sampling the parameter
space [Θ] = [T1] × [T2] × . . . and simulate a large dictionary
of normalized fingerprints D = {Dj}dj=1 where,

Dj := B([Θj ];TR,α) ∀j = 1, . . . , d, (2)

for all d combinations of the quantized parameters. Under the
voxel purity assumption each spatial voxel of the MRF image
corresponds to a unique NMR parameter and would approxi-
mately match to a temporal trajectory in the fingerprint dictio-
nary: Xv ∈ D ∀v = 1, . . . , n, where Xv denotes the normal-
ized v-th row of X i.e. a multi-dimensional spatial voxel.
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3 Parameter estimation
A popular approach for parameter estimation is to perform

back-projection (adjoint operator) on the k-space data X̂ :=
AH(Y ) ∈ Cn×L followed by dictionary matching to identify
the highest correlated atom and its corresponding NMR param-
eters for each (normalized) voxel of the highly aliased back-
projected image X̂:

[Θv] = NNSD(X̂v), ∀v = 1, . . . , n. (3)

Here NNSD(x) := argminj ||x − Dj ||2 denotes the nearest
neighbour search which serves as a Euclidean projection onto
the discrete set of fingerprints i.e. manifold of Bloch Eq so-
lutions. A temporal compression can be used to shrink the
search dimension i.e. X̃v := V H

s X̂v, D̃j := V H
s Dj across the

s 6 L dominant SVD components of DDH ≈ VsΛV
H
s [8].

However, enumerating the multi-parametric MRF manifold in
order for (3) to be an accurate projection introduces an expo-
nentially growing complexity (in terms of p) to the storage and
computations needed for conducting NNS. A recent line of re-
search [9, 10] shows that certain tree search strategies can ben-
efit from the low intrinsic dimensionality of the MRF manifold
and significantly accelerate the matching step. However stor-
age of the dictionary or the corresponding tree still remains a
big challenge for fine-grid enumerations.

3.1 MRF-Net
In this study we propose to learn a continuous mapF : Cs →

Rp which approximates the MRF manifold projection:

Θv = F(X̃v), (4)

where F(x) ≈ argminΘ ||x − V H
s B(Θ)||2. We train a 3-layer

fully connected deep network dubbed as the MRF-Net for im-
plementing F . Similar architectures are provably shown to be
efficient for manifold embedding tasks in terms of both mem-
ory and computations (see e.g. [11]). Fine-grid manifold enu-
meration i.e. the MRF dictionary is only used for training and
not during reconstruction. MRF-Net is a feed-forward neural
network which has 1 input layer and 3 hidden layers (see Fig-
ure 2b) of size 10-200-30-2. The number of outputs and the
size of hidden units are customized here for a FISP MRF se-
quence [2] which encodes two NMR characteristics i.e. Θ =
{T1, T2} relaxation times. MRF-Net is fed with dimension-
reduced and normalized back-projected images X̃ ∈ Cs×n.
The MRF dictionary corresponding to a FISP sequence can be
represented by very few principal components [8] e.g. here
s = 10. Thanks to this dimensionality-reduction the proposed
MRF-Net requires far less units and training time as those used
for the L-300-300-2 architecture proposed by [12] for solving a
similar problem. To avoid loosing discrimination between fin-
gerprints we process complex-valued images as opposed to the
magnitude-only data treatment used in [12].

We can formulate the network as a combination of layers
connected by non-linear activation functions:

h(i) = f
(
W (i)h(i−1) + b(i)

)
for i = 1, 2, 3.

where h(0) = X̃v , {W (i), b(i)} are the weights and biases at i-
th layer and f(·) is an element-wise nonlinear activation func-
tion. MRF-Net uses sigmoid activation for the output and ReLu
for the remaining layers. The network is firstly unsupervised
pre-trained successively as three standard autoencoders (Fig-
ure 2a). The MRF-Net is consequently supervised trained by
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Figure 2: Illustration of the MRF-Net.
minimizing the following regression loss:

J(W, b) =
∑
k=1

‖h(3)
k −Θk‖22 + λ

3∑
i=1

(
‖W (i)‖22 + ‖b(i)‖22

)
(5)

where λ = 10−5 controls a Tiknonov regularization for sta-
bility. The normalized training inputs are dimension-reduced
atoms of the fine-grid MRF dictionary D̃k corrupted by zero-
mean independent Gaussian noises with SNRs randomly se-
lected between 40-60 dB. After noise corruption we perform
NNS searches to find correct training labels Θk (and not those
originally generated the fingerprints) i.e.

h3
k := F(D̃k + zk) and Θk := NNSD̃(D̃k + zk). (6)

We use stochastic gradient descent (SGD) to optimize (5)
where the gradient updates are computed by the standard back-
propagation algorithm.1

4 In-vivo experiment
An in-vivo MRF dataset was acquired using the Steady State

Precession (FISP) sequence in [2] and spiral readouts which
sample m = 732 k-space locations in each of the L = 1000
time-frames in order to reconstruct n = 256 × 256 resolution
parametric maps T1 and T2.2 We use the Extended Phase
Graph framework [13] to simulate the Bloch responses for
all combinations of T1=[1:20:2000;2100:2000:6000] (ms) and
T2=[20:1:110;112:2:200;200:10:600] (ms), and build a dictio-
nary with d = 25340 atoms for training. Fingerprints are
then corrupted by adding independent Gaussian noises on-the-
fly at each epoch during training. Figure 1 compares the re-
constructed parametric maps using dictionary matching with
brute-force searches and the proposed MRF-Net. Note that the
time-memory requirement for a dimension-reduced dictionary
matching —without a fast tree search —is O(snd) which in
this example is 3x higher than requirements of the MRF-Net.
This comparison is on a small-size MRF dictionary and we ex-
pect that for (emerging) applications and dictionaries encoding
a large number of intrinsic parameters e.g. field inhomogene-
ity, perfusion, diffusion, etc, this gap substantially grows. We
leave this direction for further future investigations.

1Optimization parameters are as follows: batch size 80, 1500 epochs, mo-
mentum 0.5, drop-out factor 10−4, and the step-size 10−2 decaying at the rate
of 0.985 after every 10 iterations.

2Other scanning parameters are TE/Tinv=2/18ms, 8 head-coils GE HDx
MRI system (GE Medical Systems, Milwaukee, WI), variable density spiral
sampling with 89 interleaves, 22:5x22:5cm FOV, 256 x 1mm in-plane resolu-
tion, 5mm slice thickness.
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