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Abstract. We recently introduced labeling of discrete Markov random
fields (MRFs) as an attractive approach for non-rigid image registra-
tion. Our MRF framework makes use of recent advances in discrete op-
timization, is efficient in terms of computation time, and provides great
flexibility. Any similarity measure can be encoded right away, since no
differentiation is needed. In this work, we investigate the performance of
our framework in a challenging scenario: the registration of thoracic CT
images. In order to assess the potential of the discrete MRF setting, we
employ the simplest registration objective function based on intensity
differences. The registration is fully-automatic, constant parameters are
used throughout the experiments, we omit the use of the available seg-
mentations, and (except for linear pre-alignment) no pre-processing of
the data is performed. Despite the simplicity of our experimental setup,
we are able to obtain accurate registration results for most of the data
in a very efficient manner. Our registration software is freely available1.

1 Non-rigid Registration using Discrete MRFs

Non-rigid image registration is an important task in computer vision and medical
imaging applications. Given two images I and J , one seeks a transformation T
which aligns corresponding objects visible in the images. This task is commonly
solved by posing an energy minimization problem where the objective function
is a sum of a matching criterion S and a regularization term R,

T̂ = arg min
T

S(I, J ◦ T ) + αR(T ) . (1)

Here, α is a weighting factor controlling the influence of the regularization term.
In case of non-rigid registration, the transformation is often defined as the iden-
tity transformation plus a dense displacement field D. The new location of an
image point p is then computed by

T (p) = p+D(p) . (2)

Recently, labeling of discrete Markov random fields has become an attractive
approach for non-rigid image registration [1–4]. In the following, we will briefly
introduce our general framework, originally presented in [5].
1 http://www.mrf-registration.net/



1.1 Discrete Markov Random Fields

Let us consider a Markov random field X which is a set of n random variables
Xi ∈ X. Each variable can take a value xi ∈ L where L is a discrete set of
events. The events are commonly referred to as labels, and Xi = xi is a label
assignment of variable Xi. If every variable is assigned a label, this is what we
call a labeling of the field denoted by X = x with x = (x1, ..., xn). Sometimes
the labeling is also referred to as the configuration or realization of the field. We
further introduce the concept of neighborhood. Neighboring random variables are
conditionally dependent, and by defining a neighborhood system we can encode
spatial interactions and contextual constraints between variables. Neighborhood
relationship is defined via so called cliques. A clique is a subset of variables
C ⊆ X and variables within the same clique are neighbors. The set containing
all cliques is denoted by C. We further define the order of a field as the size of
the maximal clique minus one. A first-order field contains cliques of size up to
two, a second-order field has cliques of size up to three, and so on.

As a consequence of the famous theorem by Hammersley and Clifford [6], we
can define the energy of a labeling as

E(x) =
∑
C∈C

ψC(xC) . (3)

The functions ψC are the so called potential functions, where one function is de-
fined per clique. The energy of an MRF is simply the sum over clique potentials.
The definition of these functions is an essential part of modeling a problem as a
random field. The potentials are unrestricted real-valued functions which eval-
uate the quality of sub-labelings xC in terms of energies. The lower the energy
the more likely the labeling.

In this work, we will focus on first-order fields for which very efficient opti-
mization methods are available. The energy of an first-order MRF is simply

E(x) =
∑
i

ψi(xi) +
∑
(i,j)

ψij(xi, xj) . (4)

Of course, we are interested in the configuration with the lowest energy (which
is equivalent to the maximum a posteriori (MAP) estimate which is the labeling
with highest probability). Mathematically, we are interested in the following
minimization problem

x̂ = arg min
x
E(x) . (5)

Now, the interesting task is how to model a real world problem, such as the
non-rigid registration, in terms of a discrete random field formulation. This task
involves four steps: (i) identification of the role of random variables, (ii) defini-
tion of the discrete label space, (iii) derivation of the energy function, and (iv)
selection of an appropriate optimization strategy.



1.2 Bridging the Gap

Let us start by discussing the role of the random variables. The ultimate goal
of non-rigid registration is the recovery of an optimal non-linear transformation
T . This is expressed in Equation (1). The transformation is fully defined by the
identity mapping and a dense displacement field D (cf. Equation (2)). So, what
we need to determine are the displacement vectors D(p) for every image point p.
Intuitively, we could introduce a random variable for every image point. Then,
the labels xi correspond to displacements. However, such an approach is doomed
in practice. Considering a 3D registration scenario with moderately sized images,
let’s say 2563 voxels, this would result in a random field with more than 16.7 mil-
lions of variables. Optimization of such huge fields is quite inefficient. We propose
to reduce the dimensionality of the problem by introducing a deformation grid
with a sparse set of control points and an interpolation strategy. We introduce a
random variable for every control point, and the labels correspond to the control
point displacements. The dense displacement field is then defined as the linear
combination of the control point displacements

D(p) =
∑
i

ωi(p)xi . (6)

Here, ωi(p) corresponds to the interpolation or weighting function. In this work,
we employ free form deformations (FFDs) based on cubic B-splines [7, 8]. In com-
mon FFDs the control points are uniformly distributed over the image domain.
The displacement of a control point has only local influence on the displace-
ment field, and thanks to the cubic basis functions the resulting deformation is
guaranteed to be C2 continuous.

Let us now derive the MRF energy function for the registration problem.
As already mentioned, in this work we are focusing on first-order MRFs, so the
energy consists of unary potential functions ψi and pairwise potential functions
ψij . The unaries correspond to the energy for assigning a label to a random
variable, independently of all other variables. In contrast, the pairwise terms
evaluate the energy for a simultaneous label assignment to two variables. We
encode the matching criterion S from Equation (1) locally distributed on the
unary terms. For the sum of absolute intensity differences (SAD), which is the
matching criterion we consider in this work, the unary terms are defined as

ψi(xi) =
∑
p∈Ωi

ω̂i(p) |I(p+D(p) + xi)− J(p)| . (7)

Here, Ωi defines a local domain centered at the control point i. Only image
points p within this domain are considered for the local matching term. We
define this local domain to compass only the immediate neighboring cells of the
regular control grid. The function ω̂i is again a weighting function. Image points
closer to a control point will have a larger contribution to the energy than points
further away. This is similar to the weighting function for the control grid earlier
introduced (cf. Equation (6)). In contrast to the cubic B-spline function for the



deformation, here we commonly use a simple linear weighting function. Note,
that the matching term already considers the displacement field D. This is later
needed in the hierarchical, iterative procedure.

In fact, the use of FFDs implicitly guarantees smooth deformations. How-
ever, additional explicit regularization can be beneficial, in particular in image
areas with less visible structure. We employ a simple neighborhood system on
the random variables, where every variable forms pairwise cliques with its imme-
diate neighbors (i.e. 6-connected neighborhood in 3D). We encode the regular-
ization term R from Equation (1) locally distributed on the pairwise terms. Here
we consider a simple penalty term, which favors similar displacements between
neighboring control points and which is an approximation for penalizing the first
derivatives of the displacement field

ψij(xi, xj) = α
‖(di + xi)− (dj + xj)‖

‖i− j‖
. (8)

Again, we also consider displacements di and dj which might have been occurred
in previous iterations. The factor α controls the influence of the regularization.

Both, our matching term in Equation (7) and the regularization term in
Equation (8) are extremely simple and easy to implement. Still, we will later see
that we are able to obtain quite good registration results with this formulation.
Of course, our framework allows to consider much more sophisticated energies.
Different matching criteria, regularization terms, learned neighborhood systems
and deformation priors have been presented in [1, 9, 10].

1.3 Refinement Strategy

Two of four steps are still missing in our formulation. So far we did not discuss
the definition of the label space and the selection of the optimization strategy.
We continue with the set of labels. Remember, the labels correspond to dis-
placements and thus the set L defines our solution space for the registration. Of
course, the random variables are in fact of continuous nature and their range of
values is actually R3 (in 3D registration). So, how can we efficiently sample this
space and form a set of discrete labels? It is important to find a good compro-
mise. On the one hand, a small number of labels allows fast optimization. On
the other hand, a too sparse sampling of the displacement space may lead to
inaccurate registration.

To this end, we propose an iterative refinement strategy which allows us
to keep the number of labels small, but also to achieve high-accurate results.
We employ a sparse sampling of the displacement space with a fixed number of
samples k. We uniformly sample along the positive and negative directions of
the three coordinate axes up to a maximum value dmax. The total number of
labels is then |L| = 6 · k+ 1 including the zero-displacement. The registration is
then performed iteratively. In every iteration, we try to determine the optimal
update for the displacement field by solving a discrete labeling on the current set
of labels and w.r.t. to the current deformation. After each iteration, the update



is added to the displacement field and the label space is refined by rescaling the
displacements in L by a factor 0 < s < 1. The whole procedure is sketched in
pseudo-code in the following.

Algorithm 1: Non-rigid Registration using Discrete MRFs
input : Images I, J
output: Transformation T

1 T ← initializeTransformation() ;
2 L← initializeLabelSpace() ;
3 repeat
4 x← computeLabeling(I,J ,T ,L) ;
5 T ← updateTransformation(T ,x) ;
6 L← refineLabelSpace() ;

7 until convergence;

We should note, that of course the update of the transformation is only
performed if the energy has decreased. The convergence criterion can be either
based on the change of the energy – if the change is very little and the label space
has been refined sufficiently often, we can stop – or we simply set a maximum
number of iterations. The latter on has been used in this work. For the MRF
optimization, we use a recently proposed method called FastPD [11, 12] which
we also used in [5, 1, 9, 10]. Due to the limited space, we refer the reader to the
given references for more details about the algorithm.

2 Experiments on Empire Database

Our experiments are part of the MICCAI 2010 Grand Challenge “Evaluation of
Methods for Pulmonary Image Registration” (EMPIRE). The EMPIRE database
consists of 20 pairs of thoracic CT images. A full description of the data and the
evaluation of the registration results can be found in [13] and on the website2 of
the EMPIRE study.

In the following, we will describe our experimental setup and the setting of
the internal parameters of our registration method. All parameters have been
empirically determined by running a few test registrations on one of the im-
age pairs and visual inspection of the results. The parameters were then fixed
throughout the experiments. Our registration is fully-automatic and does not
require any pre-processing of the image data. The maintainers of the database
provide segmentations of the lung areas for all images. We decided to omit the
use of these segmentations and thus do not rely on any segmentation algorithm.

2 http://empire10.isi.uu.nl/



2.1 Linear Pre-Alignment

Prior to the non-rigid registration, we employ a linear alignment using a Downhill-
Simplex optimization and the SAD matching criterion. This step roughly recov-
ers a transformation containing translation, rotation, and anisotropic scaling.
To speed up the computation, random sampling with 10% of the voxels is used
here. We also use a common Gaussian image pyramid with four resolution levels
where only the two coarsest levels are considered in the pre-alignment step. In
our image pyramid, we do not perform any downsampling along a dimension
where the number of voxels would drop below 32.

2.2 Non-rigid Alignment

The final non-rigid alignment is performed with a hierarchical setting. Again,
we use a Gaussian image pyramid, this time with five resolution levels and the
preservation of the 32 voxel limit. Only the four coarsest levels are considered
for the registration to speed up the computation. Simultaneously, we use a four
level FFD control grid, starting with a control point spacing of approximately
95mm and ending with a spacing of about 10mm. On each grid level, we perform
5 iterations, which means we compute 5 discrete labelings each corresponding
to an update of the displacement field. After these 5 iterations we continue the
registration on the next higher resolution level, both for the control grid and the
image pyramid. The labels space is defined as follows: we initialize the maximum
displacement dmax on each level with 0.4 times the control point spacing. The
number of samples k is set to 5, so in every iteration we have in total 31 labels
(including the zero-displacement). After each iteration the displacements in L
are scaled by a factor s = 0.67. Finally, the weighting parameter α is set to 20.

2.3 Results

After registration of all 20 pairs, we submitted our displacement fields to the
maintainers of the EMPIRE study who did the evaluation remotely. Our results
are summarized in Table 1. More details are given on the EMPIRE website under
the results section, where our method can found under the name drop. We make
several observations from which we conclude that our method is performing very
well on most of the datasets. Observation one, the lung boundaries are almost
perfectly registered in all datasets. Observation two, the alignment of major fis-
sures is very good in 13 of 20 datasets. In the other 7 (datasets 1,7,8,11,14,18,20)
the alignment exhibits larger errors. Observation three, also the alignment of the
landmarks is very accurate. 11 of 20 datasets exhibit an average error of less than
2mm, in 8 datasets it is even below 1mm. This is quite remarkable, considering
that we did not perform the registration on the full image resolution. Again, the
before mentioned 7 datasets exhibit the largest errors in the landmark category.
The last observation is that in all cases, our displacement fields are free of any
singularities such as folding or tearing. This is a pleasant behavior of our (sim-
ple) regularization term. We should note, that in this work we did not employ
any geometrical constraints on the FFDs to guarantee bijective deformations.



All our experiments were carried out on an Intel R© CoreTM2 Duo 2.16GHz
processor and our software is implemented in C++. The time taken for the pre-
alignment step is between 3 and 30 seconds. For the non-rigid part we measured
running times between 20 and 300 seconds, depending on the size of the images
(which is varying approximately between 5 and 70 millions of voxels).

While we believe that our registration results are quite convincing for most
of the datasets, in particular when considering the simple objective function and
the limit on the image resolution, we also tried to find out the reason for the 7
outliers. The 20 datasets exhibit quite different settings in the image acquisition.
The 7 datasets where we perform worst are the only ones where one image has
been taken in breath-hold inspiration and the other one in breath-hold expira-
tion. Additionally, the inspiration scan was acquired with low dose CT and the
expiration scan with ultra-low dose. Probably the larger amount of deformation
from inspiration to expiration yields larger errors in the alignment, but also the
varying intensities between the low dose and ultra-low dose scans might be a
problem for the simple SAD matching criterion. This should be investigated in
more detail in follow-up experiments with different internal parameters. A differ-
ent matching criterion such as the correlation coefficient and higher resolutions
of the images and FFD control grids might improve the overall accuracy of the
registration.
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Lung Boundaries Fissures Landmarks Singularities

Scan
Pair

Score Rank Score Rank Score Rank Score Rank

01 0.02 17.00 5.55 23.00 6.75 23.00 0.00 11.50

02 0.00 11.00 0.00 15.00 0.46 15.00 0.00 12.50

03 0.00 11.00 0.00 28.00 0.57 19.00 0.00 12.00

04 0.00 21.00 0.00 16.50 2.83 26.00 0.00 14.00

05 0.00 13.00 0.00 16.00 0.06 19.00 0.00 13.50

06 0.00 16.00 0.00 28.00 0.40 18.00 0.00 14.00

07 0.00 8.00 6.72 26.00 7.48 27.00 0.00 10.00

08 0.00 11.00 5.70 30.00 3.75 28.00 0.00 12.50

09 0.00 16.00 0.01 26.00 0.67 20.00 0.00 13.00

10 0.01 20.00 0.00 15.00 3.93 23.00 0.00 13.50

11 0.05 17.00 5.46 31.00 2.90 29.00 0.00 11.50

12 0.00 10.00 0.00 13.50 0.78 25.00 0.00 14.50

13 0.00 13.00 0.10 18.00 1.20 22.00 0.00 13.00

14 0.01 8.00 7.71 24.00 8.94 26.00 0.00 9.50

15 0.00 8.00 0.00 27.00 0.68 16.00 0.00 12.50

16 0.00 9.00 0.12 22.50 1.58 24.00 0.00 13.50

17 0.00 6.50 0.07 31.00 1.21 25.00 0.00 14.00

18 0.00 8.00 7.18 27.00 6.13 25.00 0.00 10.50

19 0.00 14.00 0.00 12.00 0.49 11.00 0.00 14.50

20 0.00 13.00 10.93 29.00 9.77 25.00 0.00 10.50

Avg 0.00 12.52 2.48 22.92 3.03 22.30 0.00 12.52

Average Ranking Overall 17.56

Final Placement 19

Table 1. Results for each scan pair, per category and overall. Rankings and final
placement are from a total of 34 competing algorithms.
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